Badhe, R. V., Bijukumar, D., Chejara, D. R., Mabrouk, M., Choonara, Y. E., Kumar, P., . . . Pillay, V. (2017). A composite chitosan-gelatin bi-layered, biomimetic macroporous scaffold for blood vessel tissue engineering. Carbohydrate polymers, 157, 1215-1225.
Baniasadi, H., SA, A. R., & Mashayekhan, S. (2015). Fabrication and characterization of conductive chitosan/gelatin-based scaffolds for nerve tissue engineering. International journal of biological macromolecules, 74, 360-366.
Brinker, C. J., Lu, Y., Sellinger, A., & Fan, H. (1999). Evaporation‐induced self‐assembly: nanostructures made easy. Advanced materials, 11(7), 579-585.
Bueno, E. M., & Glowacki, J. (2009). Cell-free and cell-based approaches for bone regeneration. Nature Reviews Rheumatology, 5(12), 685.
Dong, Z., Wang, Q., & Du, Y. (2006). Alginate/gelatin blend films and their properties for drug controlled release. Journal of Membrane Science, 280(1-2), 37-44.
Dvir, T., Timko, B. P., Kohane, D. S., & Langer, R. J. N. n. (2011). Nanotechnological strategies for engineering complex tissues. 6(1), 13.
George, M., & Abraham, T. (2007). pH sensitive alginate–guar gum hydrogel for the controlled delivery of protein drugs. International journal of pharmaceutics, 335(1-2), 123-129.
George, M., & Abraham, T. E. (2006). Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. Journal of controlled release, 114(1), 1-14.
Gleeson, J., Plunkett, N., & O’Brien, F. (2010). Addition of hydroxyapatite improves stiffness, interconnectivity and osteogenic potential of a highly porous collagen-based scaffold for bone tissue regeneration. Eur Cell Mater, 20(218), 30.
Hamman, J. H. (2010). Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Marine drugs, 8(4), 1305-1322.
Hutmacher, D. W. (2000). Scaffolds in tissue engineering bone and cartilage. In The biomaterials: Silver jubilee compendium (pp. 175-189): Elsevier.
Kakkar, P., Verma, S., Manjubala, I., & Madhan, B. (2014). Development of keratin–chitosan–gelatin composite scaffold for soft tissue engineering. Materials Science and Engineering: C, 45, 343-347.
Koski, C., Onuike, B., Bandyopadhyay, A., & Bose, S. (2018). Starch-hydroxyapatite composite bone scaffold fabrication utilizing a slurry extrusion-based solid freeform fabricator. Additive manufacturing, 24, 47-59.
Lai, J.-Y., & Li, Y.-T. (2010). Evaluation of cross-linked gelatin membranes as delivery carriers for retinal sheets. Materials Science and Engineering: C, 30(5), 677-685.
Leong, K., Cheah, C., & Chua, C. (2003). Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials, 24(13), 2363-2378.
Lien, S.-M., Ko, L.-Y., & Huang, T.-J. (2009). Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering. Acta biomaterialia, 5(2), 670-679.
Martins, M., Barros, A. A., Quraishi, S., Gurikov, P., Raman, S., Smirnova, I., . . . Reis, R. L. (2015). Preparation of macroporous alginate-based aerogels for biomedical applications. The Journal of Supercritical Fluids, 106, 152-159.
Mojarradi, H. (2010). Coupling of substances containing a primary amine to hyaluronan via carbodiimide-mediated amidation. In.
Nabavinia, M., Khoshfetrat, A. B., & Naderi-Meshkin, H. (2019). Nano-hydroxyapatite-alginate-gelatin microcapsule as a potential osteogenic building block for modular bone tissue engineering. Materials Science and Engineering: C, 97, 67-77.
Nieto-Suárez, M., López-Quintela, M. A., & Lazzari, M. (2016). Preparation and characterization of crosslinked chitosan/gelatin scaffolds by ice segregation induced self-assembly. Carbohydrate polymers, 141, 175-183.
Pawar, S. N., & Edgar, K. J. (2012). Alginate derivatization: a review of chemistry, properties and applications. Biomaterials, 33(11), 3279-3305.
Sarem, M., Moztarzadeh, F., Mozafari, M., & Shastri, V. P. (2013). Optimization strategies on the structural modeling of gelatin/chitosan scaffolds to mimic human meniscus tissue. Materials Science and Engineering: C, 33(8), 4777-4785.
Stender, E. G., Khan, S., Ipsen, R., Madsen, F., Hägglund, P., Hachem, M. A., . . . Svensson, B. (2018). Effect of alginate size, mannuronic/guluronic acid content and pH on particle size, thermodynamics and composition of complexes with β-lactoglobulin. Food hydrocolloids, 75, 157-163.
Sung, H.-W., Chang, Y., Chiu, Y.-T., Hsu, H.-L., Shih, C.-C., Lu, J.-H., & Yang, P.-C. (1996). Evaluation of an epoxy-fixed biological patch with ionically bound heparin as a pericardial substitute. Biomaterials, 17(17), 1693-1701.
Türe, H. (2019). Characterization of hydroxyapatite-containing alginate–gelatin composite films as a potential wound dressing. International journal of biological macromolecules, 123, 878-888.
Tønnesen, H. H., Karlsen, J. J. D. d., & pharmacy, i. (2002). Alginate in drug delivery systems. 28(6), 621-630.
Takahashi, Y., Yamamoto, M., & Tabata, Y. (2005). Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and β-tricalcium phosphate. Biomaterials, 26(17), 3587-3596.
Tkalec, G., Kranvogl, R., Uzunalić, A. P., Knez, Ž., & Novak, Z. (2016). Optimisation of critical parameters during alginate aerogels' production. Journal of Non-Crystalline Solids, 443, 112-117.
Tsigkou, O., Pomerantseva, I., Spencer, J. A., Redondo, P. A., Hart, A. R., O’Doherty, E., . . . Lin, C. P. (2010). Engineered vascularized bone grafts. Proceedings of the National Academy of Sciences, 107(8), 3311-3316.
Wang, C., Jiang, W., Zuo, W., Han, G., & Zhang, Y. (2018). Effect of heat-transfer capability on micropore structure of freeze-drying alginate scaffold. Materials Science and Engineering: C, 93, 944-949.
Wang, C., Liu, H., Gao, Q., Liu, X., & Tong, Z. (2008). Alginate–calcium carbonate porous microparticle hybrid hydrogels with versatile drug loading capabilities and variable mechanical strengths. Carbohydrate polymers, 71(3), 476-480.
Wang, H.-J., Di, L., Ren, Q.-S., & Wang, J.-Y. (2009). Applications and degradation of proteins used as tissue engineering materials. Materials, 2(2), 613-635.
Xie, P., Du, J., Li, Y., Wu, J., He, H., Jiang, X., & Liu, C. (2019). Robust hierarchical porous MBG scaffolds with promoted biomineralization ability. Colloids and Surfaces B: Biointerfaces, 178, 22-31.
Jatnika, R. (2014). 一階段合成銀複合介孔生物活性玻璃 之生物活性與抗菌性探討之研究.
Tian, Y.-J. (2000). 以天然交聯劑 Genipin 交聯幾丁聚醣材料的體外及體內性質評估. National Central University,
李玉寶, 顧寧, & 魏于全. (2006). 奈米生醫材料. 初版, 台北, 五南出版股份有限公司, 162-184.
林哲毅. (2015). 果膠與明膠複合體提升優格發酵劑的抗凍性及儲存存活率之研究. (碩士), 國立中興大學, 台中市.林裕昇. (2015). 海藻酸鈉與明膠製備球型藥物載體 物化性質與藥物釋放探討. (碩士), 逢甲大學, 台中市.張文馨. (2011). 以不同交聯劑製備多孔性三維明膠支架及其特性研究. 中興大學材料科學與工程學系所學位論文, 1-93.
陳威志, 胡. (2009). 人工關節是什麼 人工關節的材質與種類.