Alcaide, M., Portoles, P., López-Noriega, A., Arcos, D., Vallet-Regí, M., & Portoles, M. T. (2010). Interaction of an ordered mesoporous bioactive glass with osteoblasts, fibroblasts and lymphocytes, demonstrating its biocompatibility as a potential bone graft material. Acta biomaterialia, 6(3), 892-899.
Alt, V., Bechert, T., Steinrücke, P., Wagener, M., Seidel, P., Dingeldein, E., & Schnettler. R. (2004). An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials, 25(18), 4383-4391.
Arcos, D., & Vallet-Regí, M. (2010). Sol–gel silica-based biomaterials and bone tissue regeneration. Acta biomaterialia, 6(8), 2874-2888.
Atkinson, I., Anghel, E. M., Predoana, L., Mocioiu, O. C., Jecu, L., Raut, I., & Zaharescu, M. (2016). Influence of ZnO addition on the structural, in vitro behavior and antimicrobial activity of sol–gel derived CaO–P2O5–SiO2 bioactive glasses. Ceramics International, 42(2), 3033-3045.
Brink, A. J., Coetzee, J., Clay, C. G., Sithole, S., Richards, G. A., Poirel, L., & Nordmann, P. (2012). Emergence of New Delhi metallo-beta-lactamase (NDM-1) and Klebsiella pneumoniae carbapenemase (KPC-2) in South Africa. Journal of clinical microbiology, 50(2), 525-527.
Brinker, C. J., Lu, Y., Sellinger, A., & Fan, H. (1999). Evaporation‐induced self‐assembly: nanostructures made easy. Advanced materials, 11(7), 579-585.
Brinker, C. J., & Scherer, G. W. (2013). Sol-gel science: the physics and chemistry of sol-gel processing. Academic press.
Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 74(3), 417-433.
Dizaj, S. M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M. H., & Adibkia, K. (2014). Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science and Engineering: C, 44, 278-284.
Doostmohammadi, A., Monshi, A., Salehi, R., Fathi, M. H., Golniya, Z., & Daniels, A. U. (2011). Bioactive glass nanoparticles with negative zeta potential. Ceramics International, 37(7), 2311-2316.
Durán, N., Marcato, P. D., De Souza, G. I., Alves, O. L., & Esposito, E. (2007). Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. Journal of biomedical nanotechnology, 3(2), 203-208.
El-Kady, A. M., Ali, A. F., Rizk, R. A., & Ahmed, M. M. (2012). Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles. Ceramics International, 38(1), 177-188.
Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of biomedical materials research, 52(4), 662-668.
Folwarczna, J., Zych, M., Burczyk, J., Trzeciak, H., & Trzeciak, H. I. (2009). Effects of natural phenolic acids on the skeletal system of ovariectomized rats. Planta medica, 75(15), 1567-1572.
Gerhardt, L. C., & Boccaccini, A. R. (2010). Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials, 3(7), 3867-3910.
Gupta, N., Santhiya, D., Murugavel, S., Kumar, A., & Aditya, A., (2018). Ganguli, M., Gupta, S. Effects of transition metal ion dopants (Ag, Cu and Fe) on the structural, mechanical and antibacterial properties of bioactive glass. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538, 393-403.
Han, P., Wu, C., Chang, J., & Xiao, Y. (2012). The cementogenic differentiation of periodontal ligament cells via the activation of Wnt/β-catenin signalling pathway by Li+ ions released from bioactive scaffolds. Biomaterials, 33(27), 6370-6379.
Harris, P. J., & Hartley, R. D. (1980). Phenolic constituents of the cell walls of monocotyledons. Biochemical Systematics and Ecology, 8(2), 153-160.
Hatchett, D. W., & White, H. S. (1996). Electrochemistry of sulfur adlayers on the low-index faces of silver. The Journal of Physical Chemistry, 100(23), 9854-9859.
Hench, L. L. (2006). The story of Bioglass®. Journal of Materials Science: Materials in Medicine, 17(11), 967-978.
Hench, L. L., & West, J. K. (1990). The sol-gel process. Chemical reviews, 90(1), 33-72.
Huang, X., Teng, X., Chen, D., Tang, F., & He, J. (2010). The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials, 31(3), 438-448.
Itagaki, S., Kurokawa, T., Nakata, C., Saito, Y., Oikawa, S., Kobayashi, M., & Iseki, K. (2009). In vitro and in vivo antioxidant properties of ferulic acid: a comparative study with other natural oxidation inhibitors. Food Chemistry, 114(2), 466-471.
Kalinowska, M., Piekut, J., Bruss, A., Follet, C., Sienkiewicz-Gromiuk, J., Świsłocka, R., & Lewandowski, W. (2014). Spectroscopic (FT-IR, FT-Raman, 1H, 13C NMR, UV/VIS), thermogravimetric and antimicrobial studies of Ca (II), Mn (II), Cu (II), Zn (II) and Cd (II) complexes of ferulic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 122, 631-638.
Kumar, A., Aditya, A., & Murugavel, S. (2019). Effect of surfactant concentration on textural characteristics and biomineralization behavior of mesoporous bioactive glasses. Materials Science and Engineering: C, 96, 20-29.
Kumar, N., & Pruthi, V. (2014). Potential applications of ferulic acid from natural sources. Biotechnology Reports, 4, 86-93.
Lee, J. H., Mandakhbayar, N., El-Fiqi, A., & Kim, H. W. (2017). Intracellular co-delivery of Sr ion and phenamil drug through mesoporous bioglass nanocarriers synergizes BMP signaling and tissue mineralization. Acta biomaterialia, 60, 93-108.
Li, Q., Mahendra, S., Lyon, D. Y., Brunet, L., Liga, M. V., Li, D., & Alvarez, P. J. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water research, 42(18), 4591-4602.
Li, X., Wang, X., Chen, H., Jiang, P., Dong, X., & Shi, J. (2007). Hierarchically porous bioactive glass scaffolds synthesized with a PUF and P123 cotemplated approach. Chemistry of materials, 19(17), 4322-4326.
Liang, Q., Hu, Q., Miao, G., Yuan, B., & Chen, X. (2015). A facile synthesis of novel mesoporous bioactive glass nanoparticles with various morphologies and tunable mesostructure by sacrificial liquid template method. Materials Letters, 148, 45-49.
Lu, F., Wu, S. H., Hung, Y., & Mou, C. Y. (2009). Size effect on cell uptake in well‐suspended, uniform mesoporous silica nanoparticles. Small, 5(12), 1408-1413.
Marambio-Jones, C., & Hoek, E. M. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 12(5), 1531-1551.
Moghanian, A., Sedghi, A., Ghorbanoghli, A., & Salari, E. (2018). The effect of magnesium content on in vitro bioactivity, biological behavior and antibacterial activity of sol–gel derived 58S bioactive glass. Ceramics International,44(8), 9422-9432.
Mori, T., Koyama, N., Guillot-Sestier, M. V., Tan, J., & Town, T. (2013). Ferulic acid is a nutraceutical β-secretase modulator that improves behavioral impairment and alzheimer-like pathology in transgenic mice. PloS one, 8(2), e55774.
Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver. nanoparticles. Nanotechnology, 16(10), 2346.
Muthusamy, G., Gunaseelan, S., & Prasad, N. R. (2019). Ferulic acid reverses P-glycoprotein-mediated multidrug resistance via inhibition of PI3K/Akt/NF-κB signaling pathway. The Journal of nutritional biochemistry, 63, 62-71.
Ostomel, T. A., Shi, Q., Tsung, C. K., Liang, H., & Stucky, G. D. (2006). Spherical bioactive glass with enhanced rates of hydroxyapatite deposition and hemostatic activity. Small, 2(11), 1261-1265.
Hu, Q., Chen, X., Zhao, N., & Li, Y. (2013). Facile synthesis and in vitro bioactivity of monodispersed mesoporous bioactive glass sub-micron spheres. Materials Letters, 106, 452-455
Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology advances, 27(1), 76-83.
Salinas, A. J., Shruti, S., Malavasi, G., Menabue, L., & Vallet-Regí, M. (2011). Substitutions of cerium, gallium and zinc in ordered mesoporous bioactive glasses. Acta biomaterialia, 7(9), 3452-3458.
Sambhy, V., MacBride, M. M., Peterson, B. R., & Sen, A. (2006). Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. Journal of the American Chemical Society, 128(30), 9798-9808.
Shen, D., Yang, J., Li, X., Zhou, L., Zhang, R., Li, W., ... & Zhao, D. (2014). Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano letters, 14(2), 923-932.
Shoaib, M., Saeed, A., Akhtar, J., Rahman, M. S. U., Ullah, A., Jurkschat, K., & Naseer, M. M. (2017). Potassium-doped mesoporous bioactive glass: Synthesis, characterization and evaluation of biomedical properties. Materials Science and Engineering: C, 75, 836-844.
Stoimenov, P. K., Klinger, R. L., Marchin, G. L., & Klabunde, K. J. (2002). Metal oxide nanoparticles as bactericidal agents. Langmuir, 18(17), 6679-6686.
Tang, J., Chen, X., Dong, Y., Fu, X., & Hu, Q. (2017). Facile synthesis of mesoporous bioactive glass nanospheres with large mesopore via biphase delamination method. Materials Letters, 209, 626-629.
Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069.
Wang, S. (2009). Ordered mesoporous materials for drug delivery. Microporous and mesoporous materials, 117(1-2), 1-9.
Wang, X., Cheng, F., Liu, J., Smått, J. H., Gepperth, D., Lastusaari, M., & Hupa, L. (2016). Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing application. Acta biomaterialia, 46, 286-298.
Wang, X., Wang, G., & Zhang, Y. (2017). Research on the biological activity and doxorubicin release behavior in vitro of mesoporous bioactive SiO2-CaO-P2O¬5 glass nanospheres. Applied Surface Science, 419, 531-539.
Wang, X., Zhang, Y., Lin, C., & Zhong, W. (2017). Sol-gel derived terbium-containing mesoporous bioactive glasses nanospheres: In vitro hydroxyapatite formation and drug delivery. Colloids and Surfaces B: Biointerfaces, 160, 406-415.
Witasp, E., Kupferschmidt, N., Bengtsson, L., Hultenby, K., Smedman, C., Paulie, S., & Fadeel, B. (2009). Efficient internalization of mesoporous silica particles of different sizes by primary human macrophages without impairment of macrophage clearance of apoptotic or antibody-opsonized target cells. Toxicology and applied pharmacology, 239(3), 306-319.
Wu, C., Fan, W., Zhu, Y., Gelinsky, M., Chang, J., Cuniberti, G.,& Xiao, Y. (2011). Multifunctional magnetic mesoporous bioactive glass scaffolds with a hierarchical pore structure. Acta biomaterialia, 7(10), 3563-3572.
Wu, C., Zhou, Y., Xu, M., Han, P., Chen, L., Chang, J., & Xiao, Y. (2013). Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials, 34(2), 422-433.
Xia, W., & Chang, J. (2006). Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. Journal of Controlled Release, 110(3), 522-530.
Yamanaka, M., Hara, K., & Kudo, J. (2005). Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Applied and Environmental Microbiology, 71(11), 7589-7593.
Yan, X., Yu, C., Zhou, X., Tang, J., & Zhao, D. (2004). Highly ordered mesoporous bioactive glasses with superior in vitro bone‐forming bioactivities. Angewandte Chemie International Edition, 43(44), 5980-5984.
Zheng, K., & Boccaccini, A. R. (2017). Sol-gel processing of bioactive glass nanoparticles: A review. Advances in colloid and interface science, 249, 363-373.
呂晃志(2007)。揭開抗菌、防腐的神奇面紗─奈米銀 (Nano Silver)。逢甲大學奈米科技研究中心。
林佳瑩(2007)。以有機鹼催化溶-凝膠反應製備有機-無機複合材料之研究。未出版之碩士論文,國立交通大學材料科學與工程學系碩士班,新竹市。林苡晴(2018)。探討介孔生醫活性玻璃含浸大豆卵磷酯複合磷酸鈣骨水泥應用性評估。未出版之碩士論文,逢甲大學纖維與複合材料學系碩士班,台中市。謝豪哲(2014)。含銀之介孔矽基鈣磷酸鹽生醫玻璃之合成與抗菌分析。未出版之碩士論文,高雄醫學大學香粧品學系碩士班,高雄市。