跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/10 05:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃亭予
研究生(外文):HUANG, TING-YU
論文名稱:探討含銀及含浸藥物之球型介孔生醫玻璃之雙重釋放對抑菌及生物相容性評估
論文名稱(外文):To evaluate the dual releasing effects of silver and impregnated drugs in mesoporous bioactive glass spheres on antibacterial and cytotoxicity
指導教授:陳文正陳文正引用關係
指導教授(外文):CHEN, WEN-CHENG
口試委員:石啟仁柯嘉泠陳文正
口試委員(外文):SHIH, CHI-JENKO, CHIA-LINGCHEN, WEN-CHENG
口試日期:2019-07-16
學位類別:碩士
校院名稱:逢甲大學
系所名稱:纖維與複合材料學系
學門:工程學門
學類:紡織工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:98
中文關鍵詞:介孔生醫玻璃銀粒子藥物載體抑菌因子
外文關鍵詞:Mesoporous bioactive glassSilver particlesDrug carrierAntibacterial factor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:169
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目 錄
誌  謝 i
摘  要 ii
Abstracts iv
第一章 緒論 1
第二章 文獻回顧 5
2-1 牙周病 5
2-2 介孔生醫活性玻璃(Mesoporous Bioactive Glass, MBG) 5
2-2-1介孔生醫活性玻璃之簡介 5
2-2-2介孔生醫活性玻璃之優勢 7
2-2-3介孔生醫活性玻璃之問題與改善方式 8
2-3 球型介孔生醫活性玻璃 8
2-3-1 熔融-焠火法(Melt-quenching methods) 9
2-3-2 溶膠-凝膠法(Sol-gel methods) 10
2-3-2-1鹼催化法(Base-catalyzed method) 12
2-3-2-2酸/鹼共催化法(Acid/base co-catalyzed method) 12
2-3-2-3微乳液輔助法(Microemulsion-assisted method) 12
2-4介孔生醫活性玻璃之藥物包埋 16
2-4-1介孔生醫活性玻璃吸附藥物方式 16
2-4-2介孔生醫活性玻璃之藥物釋放行為 17
2-5介孔生醫活性玻璃奈米球的改質 17
2-5-1金屬離子之功能 18
2-5-2 銀離子之抑菌性與抑菌機制 19
2-6 阿魏酸(Ferulic acid, FA) 21
2-7 研究目的 22
第三章 實驗材料與方法 23
3-1實驗材料與儀器 23
3-2實驗總流程圖 27
3-3前驅實驗流程 28
3-3-1球型介孔生醫玻璃的製備流程與實驗組別代號 28
3-3-2摻雜銀之球型MBG的製備流程與實驗組別代號 30
3-4後續實驗流程 32
3-4-1 實驗組別代號 32
3-4-2 球型MBG含浸阿魏酸流程 35
3-5材料物化性質分析 37
3-5-1氮氣吸/脫附等溫曲線分析(BET) 37
3-5-2穿透式電子顯微鏡(TEM) 39
3-5-3 傅立葉紅外線光譜儀(FTIR) 39
3-5-4 X-ray繞射分析(XRD) 40
3-5-5 紫外線/可見光分光光譜儀(UV-Vis spectrometers) 40
3-6抑菌測試 41
3-6-1抑菌定性測試 41
3-6-2抑菌定量測試 41
3-7體外(in vitro)生物相容性測試 42
3-7-1細胞培養 42
3-7-2萃取液之準備 43
3-7-3細胞毒性測試(Cytotoxicity test) 43
3-7-4細胞長期增生測試 44
3-7-5鹼性磷酸酶(Alkaline phosphatase, ALP)半定量與染色 44
3-8統計分析 45
第四章 前驅實驗 46
4-1篩選製備方法 46
4-1-1 微相結構分析 46
4-1-2 比表面積、孔體積及孔徑大小分析 47
4-2篩選鹼催化劑濃度 50
4-2-1微相結構分析 50
4-3篩選MBG的銀含量 54
4-3-1銀含量3、6、9 mol%之MBG抑菌分析 54
4-3-2不同銀含量之MBG細胞毒性分析 57
第五章 後續實驗 59
5-1不同銀含量MBG微相結構分析 59
5-2不同銀含量MBG比表面積、孔體積及孔徑大小分析 61
5-3不同銀含量MBG晶相分析 64
5-4各組別之官能基分析 65
5-5阿魏酸釋放曲線分析 67
5-6各組別之細胞毒性測試 69
5-7各組別之抑菌測試 76
5-8複合CPC之抑菌測試 79
5-9複合CPC之機械性質測試 81
5-10複合CPC之細胞毒性測試 82
5-11複合CPC之細胞增生測試 84
5-12複合CPC之鹼性磷酸酶(ALP)半定量測試 86
5-13複合CPC之鹼性磷酸酶(ALP)染色分析 88
第六章 結論 90
參考文獻 92


圖目錄
圖 1、介孔生醫活性玻璃形成原理示意圖 6
圖2、水包油型微乳液製備球型MBG之形成過程 (參考文獻繪製Liang et al, 2015) 13
圖3、雙相型微乳液製備球型MBG之形成過程(Shen et al, 2014) 15
圖4、介孔生醫活性玻璃藥物釋放機制示意圖(參考文獻繪製Xia & Chang, 2006) 16
圖5、銀離子抑菌機制示意圖(參考文獻繪製Marambio-Jones & Hoek, 2010) 21
圖6、阿魏酸化學結構式 22
圖7、製備含有銀粒子之球型MBG實驗流程圖 27
圖8、以鹼催化法與微乳液法製備球型MBG之實驗流程圖 28
圖9、微乳液法製備球型MBG含不同濃度Ag之實驗流程圖 30
圖10、製備含有銀粒子之球型MBG實驗流程圖 33
圖11、球型MBG含浸藥物之實驗流程圖 35
圖12、球型MBG含浸藥物之實驗流程圖 36
圖13、(a)氮氣吸/脫附之等溫吸附曲線類型;(b)遲滯曲線類型(Thommes et al., 2015) 38
圖14、各組別的微相結構分析(40kX) 46
圖15、各組別的氮氣吸/脫附曲線圖及(左上)孔徑大小分布圖 49
圖16、1M氨水製備球型MBG含銀0、3、6、9 mol%之TEM及EDS分析圖 51
圖17、3M氨水製備球型MBG含銀0、3、6、9 mol%之TEM及EDS分析圖 52
圖18、5M氨水製備球型MBG含銀0、3、6、9 mol%之TEM及EDS分析圖 53
圖19、各組別對大腸桿菌及金黃色葡萄球菌之抑菌測試(單位: mm) 54
圖20、各組別於大腸桿菌菌液中培養1、4、8、24、48小時之定量抑菌測試 56
圖21、各組別於金黃色葡萄球菌菌液中培養1、4、8、24、48小時之定量抑菌測試 56
圖22、各組別對L929細胞進行培養24小時之細胞毒性測試 57
圖23、各組別對L929細胞進行培養24小時之細胞型態觀察 58
圖24、0Ag、0.1 Ag、0.5 Ag、1 Ag之TEM及EDS分析圖 60
圖25、各組別的(a)氮氣吸/脫附曲線圖及(b)孔徑大小分布圖 63
圖26、各組別的XRD分析 64
圖27、各組別的官能基分析 66
圖28、含浸藥物後各組別之藥物累計釋放量曲線(n=10) 68
圖29、各組別對L929細胞進行培養24小時之細胞毒性測試 70
圖30、各組別對L929細胞進行培養24小時之細胞型態觀察 70
圖31、稀釋0.1Ag、0.5Ag、1Ag之萃取液後對L929細胞進行培養24小時之細胞毒性測試 72
圖32、稀釋0.1Ag、0.5Ag、1Ag之萃取液後對L929細胞進行培養24小時之細胞型態觀察 73
圖33、含浸藥物後各組別對L929細胞進行培養24小時之細胞毒性測試 75
圖34、含浸藥物後各組別對L929細胞進行培養24小時之細胞型態觀察 75
圖35、(a)含浸藥物前(b)含浸藥物後對大腸桿菌及金黃色葡萄球菌之抑菌定性測試(單位: mm) 77
圖36、含浸藥物前後對大腸桿菌菌液中培養1、4、8、24、48小時之抑菌定量測試 78
圖37、含浸藥物前後對金黃色葡萄球菌菌液中培養1、4、8、24、48小時之抑菌定量測試 78
圖38、含銀之球型MBG對(a)大腸桿菌與(b)金黃色葡萄球菌之抑菌定性測試(單位: mm) 80
圖39、CPC與C-1Ag不同wt.%之抗壓測試結果(n=3) 81
圖40、CPC、C-0Ag、C-0.5、C-1Ag對L929細胞進行培養24小時之細胞毒性定量測試結果 83
圖41、CPC、C-0Ag、C-0.5、C-1Ag對L929細胞進行培養24小時之細胞型態觀察 83
圖42、CPC、C-0Ag、C-0AgF、C-1Ag、C-1AgF與D1 cell做接觸性培養,培養不同時間之細胞活性分析(n=3) 85
圖43、CPC、C-0Ag、C-0AgF、C-1Ag、C-1AgF與D1 cell做接觸性培養,培養不同時間之吸光值(n=3) 87
圖44、CPC、C-0Ag、C-0AgF、C-1Ag、C-1AgF與D1 cell做接觸性培養,培養不同時間之ALP半定量分析(n=3) 87
圖45、CPC、C-0Ag、C-0AgF、C-1Ag、C-1AgF與D1 cell做接觸性培養,培養不同時間之ALP染色定性分析 89

表目錄
表1、MBG之臨床應用(Arcos & Vallet-Regí, 2010) 7
表2、實驗材料 23
表3、實驗儀器 25
表4、球型MBG的不同製備方式與條件代號 29
表5、球型MBG的催化劑濃度與銀含量代號 31
表6、不同銀含量及藥物代號 32
表7、複合CPC後之代號 32
表8、各組別的比表面積、孔體積及孔徑大小與粒徑分析(n=20) 48
表9、不同催化劑濃度與銀含量之球型MBG粒徑分析(n=20) 50
表10、各組別的比表面積、孔體積及孔徑大小與粒徑分析(n=20) 62
表11、樣本萃取液稀釋倍率與相對應之萃取液粉液比 72
Alcaide, M., Portoles, P., López-Noriega, A., Arcos, D., Vallet-Regí, M., & Portoles, M. T. (2010). Interaction of an ordered mesoporous bioactive glass with osteoblasts, fibroblasts and lymphocytes, demonstrating its biocompatibility as a potential bone graft material. Acta biomaterialia, 6(3), 892-899.
Alt, V., Bechert, T., Steinrücke, P., Wagener, M., Seidel, P., Dingeldein, E., & Schnettler. R. (2004). An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials, 25(18), 4383-4391.
Arcos, D., & Vallet-Regí, M. (2010). Sol–gel silica-based biomaterials and bone tissue regeneration. Acta biomaterialia, 6(8), 2874-2888.
Atkinson, I., Anghel, E. M., Predoana, L., Mocioiu, O. C., Jecu, L., Raut, I., & Zaharescu, M. (2016). Influence of ZnO addition on the structural, in vitro behavior and antimicrobial activity of sol–gel derived CaO–P2O5–SiO2 bioactive glasses. Ceramics International, 42(2), 3033-3045.
Brink, A. J., Coetzee, J., Clay, C. G., Sithole, S., Richards, G. A., Poirel, L., & Nordmann, P. (2012). Emergence of New Delhi metallo-beta-lactamase (NDM-1) and Klebsiella pneumoniae carbapenemase (KPC-2) in South Africa. Journal of clinical microbiology, 50(2), 525-527.
Brinker, C. J., Lu, Y., Sellinger, A., & Fan, H. (1999). Evaporation‐induced self‐assembly: nanostructures made easy. Advanced materials, 11(7), 579-585.
Brinker, C. J., & Scherer, G. W. (2013). Sol-gel science: the physics and chemistry of sol-gel processing. Academic press.
Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 74(3), 417-433.
Dizaj, S. M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M. H., & Adibkia, K. (2014). Antimicrobial activity of the metals and metal oxide nanoparticles. Materials Science and Engineering: C, 44, 278-284.
Doostmohammadi, A., Monshi, A., Salehi, R., Fathi, M. H., Golniya, Z., & Daniels, A. U. (2011). Bioactive glass nanoparticles with negative zeta potential. Ceramics International, 37(7), 2311-2316.
Durán, N., Marcato, P. D., De Souza, G. I., Alves, O. L., & Esposito, E. (2007). Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. Journal of biomedical nanotechnology, 3(2), 203-208.
El-Kady, A. M., Ali, A. F., Rizk, R. A., & Ahmed, M. M. (2012). Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles. Ceramics International, 38(1), 177-188.
Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of biomedical materials research, 52(4), 662-668.
Folwarczna, J., Zych, M., Burczyk, J., Trzeciak, H., & Trzeciak, H. I. (2009). Effects of natural phenolic acids on the skeletal system of ovariectomized rats. Planta medica, 75(15), 1567-1572.
Gerhardt, L. C., & Boccaccini, A. R. (2010). Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials, 3(7), 3867-3910.
Gupta, N., Santhiya, D., Murugavel, S., Kumar, A., & Aditya, A., (2018). Ganguli, M., Gupta, S. Effects of transition metal ion dopants (Ag, Cu and Fe) on the structural, mechanical and antibacterial properties of bioactive glass. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538, 393-403.
Han, P., Wu, C., Chang, J., & Xiao, Y. (2012). The cementogenic differentiation of periodontal ligament cells via the activation of Wnt/β-catenin signalling pathway by Li+ ions released from bioactive scaffolds. Biomaterials, 33(27), 6370-6379.
Harris, P. J., & Hartley, R. D. (1980). Phenolic constituents of the cell walls of monocotyledons. Biochemical Systematics and Ecology, 8(2), 153-160.
Hatchett, D. W., & White, H. S. (1996). Electrochemistry of sulfur adlayers on the low-index faces of silver. The Journal of Physical Chemistry, 100(23), 9854-9859.
Hench, L. L. (2006). The story of Bioglass®. Journal of Materials Science: Materials in Medicine, 17(11), 967-978.
Hench, L. L., & West, J. K. (1990). The sol-gel process. Chemical reviews, 90(1), 33-72.
Huang, X., Teng, X., Chen, D., Tang, F., & He, J. (2010). The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials, 31(3), 438-448.
Itagaki, S., Kurokawa, T., Nakata, C., Saito, Y., Oikawa, S., Kobayashi, M., & Iseki, K. (2009). In vitro and in vivo antioxidant properties of ferulic acid: a comparative study with other natural oxidation inhibitors. Food Chemistry, 114(2), 466-471.
Kalinowska, M., Piekut, J., Bruss, A., Follet, C., Sienkiewicz-Gromiuk, J., Świsłocka, R., & Lewandowski, W. (2014). Spectroscopic (FT-IR, FT-Raman, 1H, 13C NMR, UV/VIS), thermogravimetric and antimicrobial studies of Ca (II), Mn (II), Cu (II), Zn (II) and Cd (II) complexes of ferulic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 122, 631-638.
Kumar, A., Aditya, A., & Murugavel, S. (2019). Effect of surfactant concentration on textural characteristics and biomineralization behavior of mesoporous bioactive glasses. Materials Science and Engineering: C, 96, 20-29.
Kumar, N., & Pruthi, V. (2014). Potential applications of ferulic acid from natural sources. Biotechnology Reports, 4, 86-93.
Lee, J. H., Mandakhbayar, N., El-Fiqi, A., & Kim, H. W. (2017). Intracellular co-delivery of Sr ion and phenamil drug through mesoporous bioglass nanocarriers synergizes BMP signaling and tissue mineralization. Acta biomaterialia, 60, 93-108.
Li, Q., Mahendra, S., Lyon, D. Y., Brunet, L., Liga, M. V., Li, D., & Alvarez, P. J. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water research, 42(18), 4591-4602.
Li, X., Wang, X., Chen, H., Jiang, P., Dong, X., & Shi, J. (2007). Hierarchically porous bioactive glass scaffolds synthesized with a PUF and P123 cotemplated approach. Chemistry of materials, 19(17), 4322-4326.
Liang, Q., Hu, Q., Miao, G., Yuan, B., & Chen, X. (2015). A facile synthesis of novel mesoporous bioactive glass nanoparticles with various morphologies and tunable mesostructure by sacrificial liquid template method. Materials Letters, 148, 45-49.
Lu, F., Wu, S. H., Hung, Y., & Mou, C. Y. (2009). Size effect on cell uptake in well‐suspended, uniform mesoporous silica nanoparticles. Small, 5(12), 1408-1413.
Marambio-Jones, C., & Hoek, E. M. (2010). A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 12(5), 1531-1551.
Moghanian, A., Sedghi, A., Ghorbanoghli, A., & Salari, E. (2018). The effect of magnesium content on in vitro bioactivity, biological behavior and antibacterial activity of sol–gel derived 58S bioactive glass. Ceramics International,44(8), 9422-9432.
Mori, T., Koyama, N., Guillot-Sestier, M. V., Tan, J., & Town, T. (2013). Ferulic acid is a nutraceutical β-secretase modulator that improves behavioral impairment and alzheimer-like pathology in transgenic mice. PloS one, 8(2), e55774.
Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver. nanoparticles. Nanotechnology, 16(10), 2346.
Muthusamy, G., Gunaseelan, S., & Prasad, N. R. (2019). Ferulic acid reverses P-glycoprotein-mediated multidrug resistance via inhibition of PI3K/Akt/NF-κB signaling pathway. The Journal of nutritional biochemistry, 63, 62-71.
Ostomel, T. A., Shi, Q., Tsung, C. K., Liang, H., & Stucky, G. D. (2006). Spherical bioactive glass with enhanced rates of hydroxyapatite deposition and hemostatic activity. Small, 2(11), 1261-1265.
Hu, Q., Chen, X., Zhao, N., & Li, Y. (2013). Facile synthesis and in vitro bioactivity of monodispersed mesoporous bioactive glass sub-micron spheres. Materials Letters, 106, 452-455
Rai, M., Yadav, A., & Gade, A. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnology advances, 27(1), 76-83.
Salinas, A. J., Shruti, S., Malavasi, G., Menabue, L., & Vallet-Regí, M. (2011). Substitutions of cerium, gallium and zinc in ordered mesoporous bioactive glasses. Acta biomaterialia, 7(9), 3452-3458.
Sambhy, V., MacBride, M. M., Peterson, B. R., & Sen, A. (2006). Silver bromide nanoparticle/polymer composites: dual action tunable antimicrobial materials. Journal of the American Chemical Society, 128(30), 9798-9808.
Shen, D., Yang, J., Li, X., Zhou, L., Zhang, R., Li, W., ... & Zhao, D. (2014). Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano letters, 14(2), 923-932.
Shoaib, M., Saeed, A., Akhtar, J., Rahman, M. S. U., Ullah, A., Jurkschat, K., & Naseer, M. M. (2017). Potassium-doped mesoporous bioactive glass: Synthesis, characterization and evaluation of biomedical properties. Materials Science and Engineering: C, 75, 836-844.
Stoimenov, P. K., Klinger, R. L., Marchin, G. L., & Klabunde, K. J. (2002). Metal oxide nanoparticles as bactericidal agents. Langmuir, 18(17), 6679-6686.
Tang, J., Chen, X., Dong, Y., Fu, X., & Hu, Q. (2017). Facile synthesis of mesoporous bioactive glass nanospheres with large mesopore via biphase delamination method. Materials Letters, 209, 626-629.
Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069.
Wang, S. (2009). Ordered mesoporous materials for drug delivery. Microporous and mesoporous materials, 117(1-2), 1-9.
Wang, X., Cheng, F., Liu, J., Smått, J. H., Gepperth, D., Lastusaari, M., & Hupa, L. (2016). Biocomposites of copper-containing mesoporous bioactive glass and nanofibrillated cellulose: Biocompatibility and angiogenic promotion in chronic wound healing application. Acta biomaterialia, 46, 286-298.
Wang, X., Wang, G., & Zhang, Y. (2017). Research on the biological activity and doxorubicin release behavior in vitro of mesoporous bioactive SiO2-CaO-P2O¬5 glass nanospheres. Applied Surface Science, 419, 531-539.
Wang, X., Zhang, Y., Lin, C., & Zhong, W. (2017). Sol-gel derived terbium-containing mesoporous bioactive glasses nanospheres: In vitro hydroxyapatite formation and drug delivery. Colloids and Surfaces B: Biointerfaces, 160, 406-415.
Witasp, E., Kupferschmidt, N., Bengtsson, L., Hultenby, K., Smedman, C., Paulie, S., & Fadeel, B. (2009). Efficient internalization of mesoporous silica particles of different sizes by primary human macrophages without impairment of macrophage clearance of apoptotic or antibody-opsonized target cells. Toxicology and applied pharmacology, 239(3), 306-319.
Wu, C., Fan, W., Zhu, Y., Gelinsky, M., Chang, J., Cuniberti, G.,& Xiao, Y. (2011). Multifunctional magnetic mesoporous bioactive glass scaffolds with a hierarchical pore structure. Acta biomaterialia, 7(10), 3563-3572.
Wu, C., Zhou, Y., Xu, M., Han, P., Chen, L., Chang, J., & Xiao, Y. (2013). Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials, 34(2), 422-433.
Xia, W., & Chang, J. (2006). Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system. Journal of Controlled Release, 110(3), 522-530.
Yamanaka, M., Hara, K., & Kudo, J. (2005). Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Applied and Environmental Microbiology, 71(11), 7589-7593.
Yan, X., Yu, C., Zhou, X., Tang, J., & Zhao, D. (2004). Highly ordered mesoporous bioactive glasses with superior in vitro bone‐forming bioactivities. Angewandte Chemie International Edition, 43(44), 5980-5984.
Zheng, K., & Boccaccini, A. R. (2017). Sol-gel processing of bioactive glass nanoparticles: A review. Advances in colloid and interface science, 249, 363-373.
呂晃志(2007)。揭開抗菌、防腐的神奇面紗─奈米銀 (Nano Silver)。逢甲大學奈米科技研究中心。
林佳瑩(2007)。以有機鹼催化溶-凝膠反應製備有機-無機複合材料之研究。未出版之碩士論文,國立交通大學材料科學與工程學系碩士班,新竹市。
林苡晴(2018)。探討介孔生醫活性玻璃含浸大豆卵磷酯複合磷酸鈣骨水泥應用性評估。未出版之碩士論文,逢甲大學纖維與複合材料學系碩士班,台中市。
謝豪哲(2014)。含銀之介孔矽基鈣磷酸鹽生醫玻璃之合成與抗菌分析。未出版之碩士論文,高雄醫學大學香粧品學系碩士班,高雄市。
電子全文 電子全文(全文開放日期20240801,本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊