跳到主要內容

臺灣博碩士論文加值系統

(18.206.76.226) 您好!臺灣時間:2021/07/30 23:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張博凱
研究生(外文):CHANG,PO-KAI
論文名稱:多層次非均匀橋墩於橋樑保護工之應用
論文名稱(外文):Application of Multi-layer Non-uniform Piers in Bridge Protection Works
指導教授:王傳益
指導教授(外文):WANG, CHUAN-YI
口試委員:陳正炎許盈松
口試委員(外文):CHEN,JEN-YANHSU,YIN-SUNG
口試日期:2019-04-23
學位類別:碩士
校院名稱:逢甲大學
系所名稱:水利工程與資源保育學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:117
中文關鍵詞:多層次非均勻橋墩墩基裸露敏感度
外文關鍵詞:multi-layer non-uniform pierspier foundation exposuresensitivity analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:43
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究改善現有均勻橋墩及雙層非均勻橋墩(雙層墩柱,單層不均勻面),利用多層次非均勻橋墩(三層墩柱,雙層不均勻面)之雙層不均勻面阻擋墩前向下射流,嘗試延緩墩基裸露發生之時間,並探討橋墩之最大局部沖刷深度,以研提較佳保護橋梁之橋墩型式。
本研究利用水工試驗模擬定量流況之三種相對水流(V/Vc=0.95、0.80、0.65)下,均勻橋墩(對照組)、雙層非均勻橋墩 (H/D*=0.0)以及多層次非均勻橋墩 (H/D*=0.4、0.6、0.8)於不同覆土高度(Y=高於中層10mm、齊平中層、齊平下層)時,橋墩局部沖刷深度及歷程變化。
據研究結果顯示,最大沖刷深度皆發生於墩前。在不同定量流流況下,相對水流強度越大,其最大平衡沖刷深度也越大;覆土高度越大其最大平衡沖刷深度則越小;而墩高比越大其沖刷深度也會越大,但若考量墩基受覆土保護之時間,墩高比H/D*=0.8之墩基受覆土保護之時間最長。
敏感度分析之結果顯示,對於最大沖刷深度的影響,相對水流強度最為敏感,其次為墩高比,最低則為覆土高度且為負敏感。然而對於墩基裸露時間之結果,覆土高度之敏感度則高於墩高比。
故考量墩基裸露對於橋梁安全的危害性,多層次非均勻橋墩(H/D*=0.8)、墩基未裸露(即覆土高度高於中層10mm),雖其最大平衡沖刷深度較大,但卻能有效延緩墩基裸露之時間,因此為較理想之配置模式。

This study utilizes a multi-layer non-uniform piers (three-layer pier columns, double-layer uneven surfaces) to improve the protection works of existing uniform piers and double-layer non-uniform piers (double-layer pier columns, monolayer uneven surface). The downflow of piers front were be retarded by the uneven surfaces of the piers, and delayed the occurrence time of pier foundation exposure. The maximum local scour depth of the piers was discussed to develop a better pier type for the protection of the bridges.
The study used hydraulic models to simulate local scour depth and temporal variation of scour depth with time for the uniform piers (control group), double-layer non-uniform piers (H/D*=0.0) and multi-layer non-uniform piers (H/D*=0.4, 0.6, 0.8) at different initial bed level relative to the foundation top elevation (Y = the initial bed higher than the middle layer 10 mm, level with the middle layer, level with the lower layer) under three types relative flow intensity (V/Vc=0.95、0.80、0.65) of steady flows.
According to the results of this study, the maximum scouring depth occurs in front of the pier. Under different type of steady flow conditions, the greater of the relative flow intensity, the greater of the maximum equilibrium scour depth; and the greater of the initial bed level relative to the foundation top elevation(Y), the smaller of the maximum equilibrium scour depth; and the greater of the pier height ratio (H/D*), the greater of the maximum equilibrium scour depth will be. However, if the time of soil cover protection of pier foundation is considered, when the pier height ratio of multi-layer non-uniform pier is 0.8 H/D*, the pier foundation is protected by soil cover for the longest time.
The results of sensitivity analysis show that the relative flow intensity is the most sensitive to the maximum scour depth, followed by the pier height ratio, and the lowest is initial bed level relative to the foundation top elevation and negative sensitivity. If the exposure time of the pier foundation is discussed, the sensitivity of the initial bed level relative to the foundation top elevation is higher than the pier height ratio.
When the multi-layer non-uniform pier (H/D*=0.8) and the pier foundation is not exposed (initial bed is higher than the middle layer 10 mm), although it’s the maximum equilibrium scour depth is slightly higher than the double-layer non-uniform pier, but it can effectively delay the exposure time of the pier foundation. Considering the harmfulness of the pier foundation exposure to the safety of bridge, the multi-layer non-uniform pier is an ideal configuration mode.

謝誌 I
摘要 II
ABSTRACT III
目錄 V
表目錄 VIII
圖目錄 IX
照片目錄 XI
符號表 XII
第壹章 前言 1
1.1 研究動機 1
1.2 研究目的 1
1.3 內容架構 3
第貳章 文獻回顧 4
2.1 沖刷之分類 4
2.2 橋墩周圍局部沖刷機制 5
2.3 等效橋墩 7
2.4 均勻橋墩沖刷 9
2.5 非均勻橋墩沖刷 12
2.6 橋墩沖刷因子 21
2.6.1 橋墩沖刷因子之分類 21
2.6.2 橋墩沖刷因子之探討 21
第叁章 理論分析 34
3.1 圓柱型橋墩周圍水流之流況 34
3.2 橋墩周圍局部沖刷之過程 37
3.3 因次分析 39
3.4 敏感度分析 43
第肆章 水工試驗 44
4.1 試驗設備與佈置 44
4.1.1 試驗渠槽 45
4.1.2 試驗儀器 46
4.2 橋墩模型與原型之比例關係 48
4.2.1 試驗橋墩模型 48
4.2.2 原型與模型之比例關係 51
4.3 試驗規劃 52
4.3.1 試驗河床質 52
4.3.2 試驗流量 53
4.3.3 相對水流強度 54
4.3.4 完全發展段 55
4.3.5 平衡沖刷時間檢定 56
4.3.6 墩基裸露判定 57
4.4 試驗內容 58
4.5 試驗步驟 60
4.5.1 試驗橋墩模型安置與底床質鋪設 60
4.5.2 試驗流量控制 61
4.5.3 沖刷深度與河床剖面量測 61
4.5.4 試驗操作程序 62
第伍章 結果分析與討論 64
5.1 橋墩沖刷型態 64
5.2 定量流流況於不同配置之沖刷歷程變化 65
5.3 不同墩高比之橋墩的沖刷歷程比較 67
5.3.1 覆土高度高於中層10mm時不同墩高比之沖刷歷程 67
5.3.2 覆土高度齊平中層時不同墩高比之沖刷歷程 70
5.3.3 覆土高度齊平下層時不同墩高比之沖刷歷程 72
5.4 不同覆土高度於沖刷歷程之比較 74
5.4.1 墩高比H/D*=0.4時不同覆土高度之沖刷歷程 74
5.4.2 墩高比H/D*=0.6時不同覆土高度之沖刷歷程 76
5.4.3 墩高比H/D*=0.8時不同覆土高度之沖刷歷程 78
5.5 沖刷坑與堆積丘之縱斷面變化 80
5.6 沖刷深度減緩率分析(RP) 93
5.7 墩基裸露時間點與墩基裸露深度 99
5.7.1 墩基裸露時間點 99
5.7.2 墩基裸露深度 101
5.8 敏感度分析 105
5.8.1 等值覆土高 105
5.8.2 敏感度分析 105
5.9 前人文獻比較 106
5.9.1 定量流與變量流之差異性 106
5.9.2 雙層非均勻橋墩與多層次非均勻橋墩之比較 108
第陸章 結論與建議 110
6.1 結論 110
6.2 建議 112
參考文獻 113


1.王傳益、林彥伶、邱琨皓、張峻銘,2018,「變量流流況下多層次非均勻橋墩於橋墩沖刷防治之研究」,水土保持學報,第五十卷,第一期,第2331~2338頁。
2.王傳益、陳湘婷、林彥伶及張博凱,2018,「定量流非均勻橋墩於橋墩沖刷防治之研究」,台灣水利,第六十六卷,第三期,第47~56頁。
3.王傳益、鄭人豪、施漢鵬、黃奕超及陳浩寧,2008,「變量流流況下非同心圓柱型橋墩局部沖刷之研究」,水土保持學報,第三卷,第三期,第118~130頁。
4.王傳益、蔡岳臻、李昱廷、林岳葆、鄭人豪,2007,「變量流作用下非均勻圓柱型橋墩局部沖刷之研究」,台灣水利,第五十五卷,第三期,第92~101頁。
5.交通部公路總局委託研究計劃,2003,「河川橋梁沖刷並補強後之安全評估」。
6.李俊穎,2005,「歷線型流況下同心圓局部沖刷之研究」,逢甲大學水利工程研究所碩士論文。
7.林彥伶,2018,「變量流流況下非均勻圓柱型橋墩於沖刷防治之研究」,逢甲大學水利工程研究所碩士論文。
8.林景輝,1993,「圓柱型橋墩周圍局部沖刷之研究」,逢甲大學土木及水利工程研究所碩士論文。
9.周憲德、吳沛倫、王新貴、張藝馨,2002,「裸露圓柱橋基之局部沖刷分析」,中國土木水利工程學刊,第十四卷,第四期,第631~640頁。
10.張文鎰,2002,「圓形橋墩局部沖刷之模擬與試驗驗證」,台灣大學土木工程研究所博士論文。
11.程仕帆,2003,「保護工法對減少橋墩局部沖刷之研究」,中央大學土木工程研究所碩士論文。
12.陸浩、高冬光,1991,「橋梁水力學」,人民交通出版社,第167頁至第184頁。
13.陳湘婷,2017,「定量流非均勻橋墩於橋墩沖刷防治之研究」,逢甲大學水利工程研究所碩士論文。
14.張藝馨,2000,「不均勻圓形橋墩之局部沖刷研究」,中央大學土木工程研究所碩士論文,第2頁至第5頁。
15.鄭暐曦,2005,「變量流流況下非均勻圓柱型橋墩局部沖刷之研究」,中興大學土木工程研究所碩士論文。
16.鄭人豪,2007,「變量流流況下非同心圓柱型橋墩局部沖刷之研究」,逢甲大學水利工程研究所碩士論文。
17.蔡岳臻,2006,「變量流歷線作用下非均勻同心圓柱型橋墩局部沖刷之研究」,逢甲大學水利工程研究所碩士論文。
18.Baker, C. J., (1980). “Theoretical Approach to Predication of Local Scour around Bridge Piers.” Journal of Hydraulic Research, Vol.18 , No.1 , pp.1-12.
19.Batuca, D. and B. Dargahi, (1986). “Some Experimental Results on Local Scour around Cylindrical Piers for Open and Covered Flows.” 3rd International Symposium on River Sedimentation, April, pp.1095-1104.
20.Breusers, H. N. C. and A. J. Raudkivi, (1991). “Scouring.” IAHR, Hydraulic Structure Design Manual, Vol.2, Belkema.
21.Chabert, J., and P. Engeldinger, (1956). “Etude Des Affouillements Author Des Piles Des Ponts.” Laboratoire National d’Hydraulique, Chatou.
22.Dargahi, B., (1990). “Controlling Mechanism of Local Scouring.” Journal of Hydraulic Engineering, ASCE, Vol.116, No.10 , pp.1197-1214.
23.Dey S., (1999). “Time-variation of Scour in the Vicinity of Circular Piers.” Proc Instn Civ. Engrs Wat., Marit. and Energy, Vol.136, pp67-75.
24.Ettema, R., (1980). “Scour at Bridge Piers”, School of Engineering Report No.216, Department of Civil Engineering, University of Auckland, Auckland, New Zealand.
25.Hamby, D.M., (1994). “A Review of Techniques for Parameter Sensitivity Analysis of Environmental Models.” Environmental Monitoring and Assessment, Vol.32, pp135-154.
26.Imamoto H., and Ohtoshi K., (1987). “Local Scour around a Non-uniform Circular Pier”, Proc., IAHR Congress, Lausanne, Switzerland, pp.304-309.
27.Jacomino V.M.F., and Fields D.E., (1997). “A Critical Approach to the Calibration of A Watershed Model”, J. Am. Water Resource. As. Vol.33 , No.1, pp.143-154.
28.Jain S. C. and E. E. Fischer, (1980). “Scour around Bridge Piers at High Velocity.” Journal of Hydraulic Engineering, ASCE, Vol.106, No.11, pp.1827-1842.
29.Jian-Hao H., Yee-Meng C., Po-Hung Y., and Hsun-Chuan C., (2017).“Evolution of Local Pier-Scour Depth with Dune Migration in Subcritical Flow Conditions”, Journal of Hydraulic Engineering, ASCE,Vol.143, No.4, pp.1-11.
30.Jau-Yau L., Zhong-Zhi S., Jian-Hao H., Jun-Ji L., and Rajkumar V. R., (2011).“ Temporal Variation of Scour Depth at Nonuniform Cylindrical Piers”,Journal of Hydraulic Engineering, ASCE, Vol.137, NO.1, pp.45-56.
31.Jones J. S., R. T. Kilgore, and M. P. Mistichelli, (1992). “Effects of Footing Location on Bridge Pier”, Journal of Hydraulic Engineering, ASCE, Vol.118, No.2 , pp.280-290.
32.Kothyari and Kumar.(2012).“Three-Dimensional Flow Characteristics within the Scour Hole around Circular Uniform and Compound Piers”, Journal of Hydraulic Engineering, ASCE, Vol.138, No.5, pp. 420-429.
33.Laursen, E. M., (1962). “Scour at Bridge Crossings”, Journal of the Hydraulic Division, ASCE, Vol.86, No.2, February, pp.39-54.
34.Melville, B. W., (1997). “Pier and Abutment Scour: Intergrated Approach”, Journal of Hydraulic Engineering, ASCE, Vol.123 , No.2 , pp.125-136.
35.Melville, B. W., and Chiew, Y. M., (1999). “Time scale for Local Scour at Bridge Piers”, Journal of Hydraulic Engineering, ASCE, Vol.125 , No.1, pp.59-65.
36.Melville, B. W., and Coleman, S. E., (2000). “Bridge Scour”, Water Resources Publications, LLC., Highlands Ranch, Colorado, USA.
37.Melville, B. W. and A. J. Raudkivi, (1977). “Flow Characteristics in Local Scour at Bridge Piers”, Journal of Hydraulic Research, Vol.15 , No.4 , pp.373-380.
38.Melville, B. W., and A. J. Raudkivi, (1996). “Effects of Foundation Geometry on Bridge Pier Scour”, Journal of Hydraulic Engineering, pp.203-209.
39.Melville, B. W. and A. J. Sutherland, (1988). “Design Method for Local Scour at Bridge Piers”, Journal of Hydraulic Engineering, ASCE, Vol.114 , No.10 , pp.1210-1226.
40.M. Moreno, R. Maia, and L. Couto. (2016). “Effects of Relative Column Width and Pile-Cap Elevation on Local Scour Depth around Complex Piers”,Journal of Hydraulic Engineering, ASCE, Vol.142 , No.2 ,pp. 04015051-1~04015051-9.
41.Parola, A. C., S. K. Mahavadi, B. M. Brown and A. El Khoury, (1996). “Effects of Rectangular Foundation Geometry on Local Pier Scour”, Journal of Hydraulic Engineering, ASCE, pp.35-40.
42.Raudkivi, A. J. and R. Ettema, (1977). “Effect of Sediment Gradation on Clear Water Scour”, Journal of Hydraulic Engineering, ASCE, Vol.109, No.3, pp.338-349.
43.Raudkivi, A. J. and R. Ettema, (1983). “Clear-Water Scour at Cylindrical Piers”, Journal of Hydraulic Engineering, ASCE, Vol.111, No.4, April, pp.713-731.
44.Raudkivi, A. J., (1986). “Functional Trends of Scour at Bridge Piers”, Journal of Hydraulic Engineering, ASCE, Vol.112, No.1, January, pp.1-13.
45.Shen, H. W., V. R. Schneider, and S. Karaki, (1969). “Local Scour around Bridge Piers”, Journal of Hydraulic Engineering, ASCE, Vol.95, No.6 ,pp.1919-1940.
46.Yanmaz, A. M. and Attinbilek, H. D., (1991). “Study of Time-Dependent Local Scour around Bridge Piers”, Journal of Hydraulic Engineering, ASCE, Vol.117, No.10, pp.1247-1268.

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top