跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/15 03:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪皓君
研究生(外文):HUNG, HAO-CHUN
論文名稱:利用噴霧式大氣壓化學氣相沉積技術成長高介電係數氧化物與C軸優選氧化銦鎵鋅薄膜與薄膜電晶體之研製
論文名稱(外文):Investigation and Fabrication of Thin-Film Transistor with high-K Oxides and C-axis Aligned Crystalline InGaZnO Thin Films by Mist Atmospheric Pressure Chemical Vapor Deposition Technology
指導教授:劉漢胤楊炳章楊炳章引用關係
指導教授(外文):LIU, HAN-YINYANG, PING-CHANG
口試委員:許渭州劉漢胤楊炳章
口試委員(外文):HSU, WEI-CHOULIU, HAN-YINYANG, PING-CHANG
口試日期:2019-07-13
學位類別:碩士
校院名稱:逢甲大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:102
中文關鍵詞:噴霧式大氣壓化學氣象沉積法C軸優選氧化銦鎵鋅高介電系數介電層低操作電壓
外文關鍵詞:MAPCVDCAAC-IGZOHigh-k dielectric layerLow operation voltage
相關次數:
  • 被引用被引用:0
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究以氟摻雜氧化錫之玻璃基板作為底閘極與氧化銦鎵鋅(InGaZnO)作為通道層以及多種高介電係數氧化物氧化物作為閘極介電層之薄膜電晶體進行直流電性以及光穩定度比較。透過在非真空環境下以噴霧式大氣壓化學氣相沉積法成長多種high-K氧化物包含氧化鋁、氧化鎂、氧化鉿、氧化鋯,以及利用多段沉積退火之方式沉積氧化銦鎵鋅,藉此達到具由C軸優選之結構,並透過熱蒸鍍法於高真空環境下以鋁作為源極、汲極電極製成元件。
為了瞭解實驗中沉積薄膜之晶格方向、材料品質、化學元素構成、元件結構、表面狀態,本論文以 (1) 掃描式電子顯微鏡 (2) 穿透式電子顯微鏡(3) X光繞射 (4) X射線光電子能譜儀 (5) 氧化層CV測量 (6) 橢圓偏光儀 (7) 光致發光能譜儀 (8)紫外光/可見光/進紅外光分光光譜儀來進行檢測,利用掃描式電子顯微鏡與穿透式顯微鏡來檢測薄膜表面與元件之結構,以X光繞射來確認氧化銦鎵鋅之結晶與否,使用X射線光電子能譜儀分析所有介電層以及主動層薄膜之元素組成,利用CV量測檢測各界電層之介電常數,與光激發光分析檢測氧化銦鎵鋅薄膜品質,最後使用紫外光/可見光/進紅外光分光光譜儀分析元件的穿透度。
本論文透過噴霧式大氣壓化學氣相沉積法在非真空環境下成長多種High-K介電層以及以多段沉積退火方式達到具C軸結晶之結構之氧化銦鎵鋅薄膜電晶體,以鉿為介電層與主動層為例,其閾值電壓為0.53V、場效遷移率117.98(cm2/v·s)、飽和遷移率159.80(cm2/v·s)、次臨界擺幅為84(mV/dec)、開關電流比超過108(A/A)。此結果表明,利用噴霧式大氣壓化學氣相沉積法所製成之High-K氧化物半導體薄膜式電晶體具有良好的電性,且製作過程簡單,成本不高,有利於學界或是業界的發展。
This dissertation used fluorine-doped tin oxide (FTO) on the glass substrate as the bottom gate, c-axis aligned crystalline indium gallium zinc oxide (CAAC-IGZO) as the channel layer, and the various high-K oxides as the gate dielectric of the thin-film transistor (TFT). Further, we compared the electrical and stability characteristics of the thin-film transistors with different high-K oxides. The various high-K oxides in this work were deposited by using mist atmospheric pressure chemical vapor deposition (MAPCVD) technology including, aluminum oxide (Al2O3), magnesium oxide (MgO), hafnium oxide (HfO2), and zirconium oxide (ZrO2). In order to obtain the c-axis aligned crystalline InGaZnO, the multiple deposition/annealing method was used. The aluminum was used as the source and drain electrodes, which was deposited by the thermal evaporator to form the thin-film transistor.
In order to understand the material characteristics of the MAPCVD-deposited thin films, the following material analysis techniques were used. Scanning Electron Microscope and Transmission electron microscopy are used to confirm the CAAC-IGZO thin film surface morphology and the thickness of each layer in the thin-film transistor and the interface quality between each layer. X-ray diffraction is used to confirm the CAAC-IGZO. We also use X-ray photoelectron spectroscopy to characterized the chemical composition and the oxygen deficiency in the MAPCVD-deposited oxides. The energy bandgap and the trap energy level of the CAAC-IGZO can be observed by ellipsometry and photoluminescence spectrum. In the end, we use the UV/Visible/NIR Spectrophotometer to analyze the transmittance of devices.
In our research, the CAAC-IGZO thin-film transistor with HfO2 gate dielectric structure exhibits the best performance compared to the others. The threshold voltage is 0.53 V, the field-effect mobility is 117.98 cm2/v·s, saturation mobility is 159.80 cm2/v·s, subthreshold swing is 84 mV/Dec, and on/off current ratio is over 108 A/A. The above research result suggests that the thin-film transistor which uses MAPCVD-deposited high-K dielectrics and CAAC-IGZO shows good electrical characteristics. Moreover, the advantages of MAPCVD such as easy process, low-cost, and environmental-friendly make the MAPCVD technology is promising for the semiconductor science and industries.

目錄

致謝 I
摘要 III
Abstract V
第一章 導論 1
1.1 研究背景 1
1.1.1氧化銦鎵鋅(IGZO)主動層 3
1.1.2閘極介電層 7
1.2研究動機 9
1.3 論文結構 11
第二章 材料沉積與元件製程 12
2.1 基板清洗 13
2.2 前驅液製備 14
2.3 噴霧式大氣壓化學氣相沉積法 16
2.4 閘極氧化層沉積 18
2.5 主動層沉積 19
2.6 源/汲極電極 21
第三章 結果與討論 23
3.1 材料分析 23
3.1.1 掃描式電子顯微鏡 24
3.1.2 穿透式電子顯微鏡 25
3.1.3 X光繞射 27
3.1.4 X光電子能譜 29
3.1.5 氧化層介電常數量測 40
3.1.6 橢圓偏光儀 43
3.1.7 光致發光能譜儀 46
3.1.8 紫外光/可見光/近紅外光分光光譜儀 48
3.2 氧化銦鎵鋅薄膜電晶體 49
3.2.1薄膜式電晶體 50
3.2.2 非晶與C軸優選氧化銦鎵鋅元件直流電性比較 55
3.2.3 不同閘極介電層之元件直流電性比較 61
3.2.4 元件穩定性 68
3.2.5 低頻雜訊(Low Frequency Noise) 73
第四章 結論與未來發展 74
4.1結論 74
4.1.1材料分析 74
4.1.2電性分析 76
4.2 未來展望 77
4.3 附錄 79
參考文獻 81


參考文獻
[1]Martin, S. Chiang, CS. Nahm, JY. Li, T. Kanicki, J. and Ugai, Y , “Influence of the amorphous silicon thickness on top gate thin-film transistor electrical performances,” Japanese Journal Of Applied Physics., vol. 40, No. 2A, pp. 530-537, 2001.
[2]Chen, CW. Chang, TC. Liu, PT. Lu, HY. Wang, KC. Huang, CS. Ling, CC. and Tseng, TY. “High-performance hydrogenated amorphous-Si TFT for AMLCD and AMOLED applications” IEEE Electron Device Letters , vol. 26 ,No. 10 , pp. 731-733, 2005
[3]Hung, BF. Chiang, KC. Huang, CC. Chin, A. and McAlister, SP. “High-performance poly-silicon TFTs incorporating LaAlO3 as the gate dielectric”. IEEE Electron Device Letters , vol.26, No. 6, pp.384-386 ,2005
[4]Jackson, TN. Lin, YY. Gundlach, DJ and Klauk, H “Organic thin-film transistors for organic light-emitting flat-panel display backplanes.” IEEE Journal Of Selected Topics In Quantum Electronics , vol. 4, No. 1, pp. 100-104, 1998
[5]Nomura, K. Ohta, H. Takagi, A. Kamiya, T. Hirano, and M. Hosono, H., “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors.” Nature, vol. 432, No.7016, pp.488-492, 2004.
[6]Fortunato, EMC. Barquinha, PMC. Pimentel, ACMBG. Goncalves, AMF . Marques, AJS. Pereira, LMN. and Martins, RFP. “Fully transparent ZnO thin-film transistor produced at room temperature” Advanced Materials . vol. 17, No. 5, pp. 590-594, 2005.
[7]Park, SM. Ikegami, T. and Ebihara, K. , “Effects of substrate temperature on the properties of Ga-doped ZnO by pulsed laser deposition.” Thin Solid Films, vol. 513,No. 1-2,pp. 90-94, 2006.
[8]Sheng, J. Lee, HJ. Oh, S. and Park, JS. “Flexible and High-Performance Amorphous Indium Zinc Oxide Thin-Film Transistor Using Low-Temperature Atomic Layer Deposition” ACS Applied Materials & Interfaces, vol.8, No.49, pp. 33821-33828, 2016.
[9]Yang, CS. Huang, SJ. Kao, YC. Chen, GH. and Chou, WC. “Physical properties of InGaO3(ZnO)(m) with various content ratio grown by PAMBE.” Journal Of Crystal Growth , vol.425 , pp. 285-261, 2015.
[10]Nomura, K. Takagi, A. Kamiya, T. Ohta, H. Hirano, and M. Hosono, H., “Amorphous oxide semiconductors for high-performance flexible thin-film transistors” Japanese Journal Of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol.45, No.5B, pp.4303-4308 , 2017.
[11]Shunpei Yamazaki, Satoru Ohshita, Masashi Oota, Haruyuki Baba, Tatsuya Onuki, Hitoshi Kunitake, Kazuaki Ohshima, Daigo Shimada, Hajime Kimura, Tsutomu Murakawa, Tomoaki Atsumi, and Kiyoshi Kato , “Crystalline IGZO ceramics (crystalline oxide semiconductor)-based devices for artificial intelligence.” International Journal of Ceramic Engineering & Science, vol. 1, No.1 , 2018.
[12]Shin, Y. Kim, ST. Kim, K. Kim, MY. Oh, and S. Jeong, JK., “The Mobility Enhancement of Indium Gallium Zinc Oxide Transistors via Low-temperature Crystallization using a Tantalum Catalytic Layer”, Scientific Reports, vol. 7, No.8 pp. 10885,2017.
[13]Nomura, K. Ohta, H. Ueda, K. Kamiya, T. Hirano, M. and Hosono, H. , “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor.” Science , vol. 300, No. 5623, pp. 1269-1272, 2003.
[14]Yamazaki, S. Suzawa, H. Inoue, K. Kato, K. Hirohashi, T. Okazaki, and K. Kimizuka, N. , “Properties of crystalline In-Ga-Zn-oxide semiconductor and its transistor characteristics”, Japanese Journal Of Applied Physics, vol. 53, No.4, SI, 2014.
[15]Yamada, Y. Matsubayashi, D. Matsuda, S. Sato, Y. Ota, M. Ito, D. Tsubuku, M. Takahashi, M. Hirohashi, T. Sakakura, and M. Yamazaki, S. , “Single crystalline In-Ga-Zn oxide films grown from c-axis aligned crystalline materials and their transistor characteristics” Japanese Journal Of Applied Physics, vol.53, No.9, pp. 091102, 2014.
[16]Chung, CY. Zhu, B. Greene, RG. Thompson, MO. And Ast, DG. , "High mobility, dual layer, c-axis aligned crystalline/amorphous IGZO thin film transistor." Applied Physics Letters, vol. 107, No.18 ,2015.
[17]Okazaki, K. Shima, Y. Kurosaki, D. Miyake, H. Koezuka, J. Kawashima, S. Shiokawa, M. Shishido, and H. Yamazaki, S. , " Fabrication of 8K4K organic EL panel using high-mobility IGZO material." Journal Of The Society For Information Display, vol. 23, No.12, pp.561-569 ,2015.
[18]Zhu, B. Lynch, DM. Chung, CY. Ast, DG. Greene, RG. and Thompson, MO., "Chemical Etch Rate and X-Ray Structure of Reactive Sputtered c-Axis Aligned Crystalline InxGayZnzO4 Films." Ecs Journal Of Solid State Science And Technology, vol. 4, No.5 ,pp. Q43-Q45,2015.
[19]Noboru Kimizuka. Shunpei Yamazaki., “Physics And Technology Of Crystalline Oxide Semiconductor CAAC-IGZO Fundamentals” First edition, John Wiley & Sons, Ltd, 2017.
[20]Lim, W . Kim, S. Wang, YL. Lee, JW. Norton, DP. Pearton, SJ. Ren, F. and Kravchenko, II. , “High-performance indium gallium zinc oxide transparent thin-film transistors fabricated by radio-frequency sputtering.” Journal Of The Electrochemical Society, vol. 155, No.6, pp.H383-H385, 2008.
[21]Park, K. Park, HW. Shin, HS. Bae, J. Park, KS. Kang, I. Chung, KB. and Kwon, JY . “Reliability of Crystalline Indium-Gallium-Zinc-Oxide Thin-Film Transistors Under Bias Stress With Light Illumination.” IEEE Transactions On Electron Devices, vol. 62, No. 9, pp.2900-2905, 2013.
[22]Robertson, J., “High dielectric constant gate oxides for metal oxide Si transistors.” Reports On Progress In Physics, 2015 11th Conference on. vol.69, No.2, pp.327-396, 2006.
[23]Ren, JH. Li, KW. Yang, JW. Lin, D. Kang, HQ. Shao, JJ. Fu, RF. and Zhang, Q. , “Solution-processed amorphous gallium-tin oxide thin film for low-voltage, high-performance transistors.” Science China-Materials, vol.62, No.6, pp.803-812, 2014.
[24]Jiang, GX. Liu, A. Liu, GX. Zhu, CD. Meng, Y. Shin, B. Fortunato, E. Martins, R. and Shan, FK., “Solution-processed high-K magnesium oxide dielectrics for low-voltage oxide thin-film transistors.” Applied Physics Letters, vol. 109, No.18, pp. 183508, 2016.
[25]Zhou, SX. Fang, ZQ. Ning, HL. Cai, W. Zhu, ZN. Wei, JL. Lu, XB. Yuan, WJ . Yao, and RH. Peng, JB. “Bias Stability Enhancement in Thin-Film Transistor with a Solution-Processed ZrO2 Dielectric as Gate Insulator.” Applied Sciences-Basel, vol. 8, No. 5, 2018.
[26]Yoo, YB. Park, JH. Lee, KH. Lee, HW. Song, KM. Lee, SJ. and Baik, HK. ," Solution-processed high-K HfO2 gate dielectric processed under softening temperature of polymer substrates." Journal Of Materials Chemistry C, vol.1, No.8, pp. 1651-1658, 2013.
[27]Hsu, HH. Chang, CY. and Cheng, CH., “A Flexible IGZO Thin-Film Transistor With Stacked TiO2-Based Dielectrics Fabricated at Room Temperature,” IEEE Electron Device Letters, vol.34, No.6, pp. 768-770, 2013.
[28]Xu, F. Liu, A. Liu, GX. Shin, B. and Shan, FK., “Solution-processed yttrium oxide dielectric for high-performance IZO thin-film transistors.” Ceramics International, vol. 41, pp. S337-S343, 2015.
[29]Park, MH. Kim, HJ. Kim, YJ. Lee, W. Moon, T. and Hwang, CS., “Evolution of phases and ferroelectric properties of thin Hf0.5Zr0.5O2 films according to the thickness and annealing temperature.” Applied Physics Letters, vol.102, No.24, 2013.
[30]Jayaraman, VK. Alvarez, AM. and Amador, MDO., “Effect of substrate temperature on structural, morphological, optical and electrical properties of IGZO thin films.” Physica E-Low-Dimensional Systems & Nanostructures ,vol. 86, pp. 164-167, 2017.
[31]Chen, XF. He, G. Gao, J. Zhang, JW. Xiao, DQ. Jin, P. and Deng, B., “ Substrate temperature dependent structural, optical and electrical properties of amorphous InGaZnO thin films”, Journal Of Alloys And Compounds, vol.632, pp.533-539, 2015.
[32]Um, JG. Mativenga, M. Migliorato, P. and Jang, J., “ Increase of interface and bulk density of states in amorphous-indium-gallium-zinc-oxide thin-film transistors with negative-bias-under-illumination-stress time.”, Applied Physics Letters, vol.101, No.11, pp.113502, 2012.
[33]Kim, WS. Lee, YH. Cho, YJ. Kim, BK. Park, KT. and Kim, O., “Effect of Wavelength and Intensity of Light on a-InGaZnO TFTs under Negative Bias Illumination Stress.”, Ecs Journal Of Solid State Science And Technology, vol.6, No.1, pp.Q6-Q9, 2017.
[34]Wang, DP. Hung, MP. Jiang, JX. Toda, T. Li, CY. and Furuta, M., “Effect of drain bias on negative gate bias and illumination stress induced degradation in amorphous InGaZnO thin-film transistors.”, JAPANESE JOURNAL OF APPLIED PHYSICS, vol.53, No.3, pp.03CC01, 2014.
[35]Lee, KH. Jung, JS. Son, KS. Park, JS. Kim, TS. Choi, R . Jeong, JK. Kwon, JY . Koo, B . and Lee, S., “The effect of moisture on the photon-enhanced negative bias thermal instability in Ga-In-Zn-O thin film transistors.”, Applied Physics Letters, vol.95, No.23, pp.232106, 2009.

電子全文 電子全文(全文開放日期20240901,本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top