跳到主要內容

臺灣博碩士論文加值系統

(98.84.25.165) 您好!臺灣時間:2024/11/10 01:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊依庭
研究生(外文):YANG, YI-TING
論文名稱:摻鋁氧化鋅/鈣鈦礦複合奈米樹結構開發與應用研究
論文名稱(外文):The study of developing Al-doped ZnO/MAPbBr3 composite nanotree structure
指導教授:羅仕守
指導教授(外文):LUO, SHIH-SHOU
口試委員:詹德均林碩泰羅仕守
口試委員(外文):JHAN, DE-JYUNLIN, SHUO-TAILUO, SHIH-SHOU
口試日期:2019-01-22
學位類別:碩士
校院名稱:逢甲大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:71
中文關鍵詞:摻鋁氧化鋅鈣鈦礦複合奈米樹結構
外文關鍵詞:Al-doped ZnOPerovskitecomposite nanotree structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究開發了摻鋁氧化鋅 / MAPbBr3 鈣鈦礦奈米樹複合材料,其中摻鋁氧化鋅透過低成本的簡單水熱法合成並以化學合成MAPbBr3 鈣鈦礦材料,最後利用填充及再生長技術製備完成摻鋁氧化鋅 / MAPbBr3 鈣鈦礦複合奈米樹結構,研究結果顯示,鋁元素可被摻雜進氧化鋅奈米柱中,鈣鈦礦MAPbBr3 有機材料亦可被填入氧化鋅奈米管中,研究中比對了在結構上對光催化效應的影響,發現由於有機半導體鈣鈦礦的導入,使得其在可見光光催化效果方面有顯著提升,此奈米複合導電機制非常適用於可見光光催化應用,可藉此作為電解產氫之功用。
In this study, the Al-doped ZnO/MAPbBr3 composite nanotree structure were developed. The Al-doped zinc oxide nanostructure were grown using a hydrothermal method and the methylammonium lead bromide perovskite (MAPbBr3) were synthesis by simple chemical method. The SEM images show that MAPbBr3 have been successfully filled in ZnO nanotubes and had been sealed. The incorporation of Al atoms into ZnO nanorods were verified by the EDS analyze. The Photocatalytic effect of Al-doped ZnO/MAPbBr3 composite nanotree structure were observed. The introduction of organic semiconductor perovskite have a significant improvement in visible light photocatalytic effect. This nanocomposite conductive mechanism is very suitable for visible light photocatalysis applications. It also can be used as a function of electrolysis hydrogen production.
誌  謝 i
摘  要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 奈米材料 2
1.2.1 表面效應 3
1.2.2 小尺寸效應 4
1.2.3 量子尺寸效應 5
1.2.4 功能性奈米複合材料 6
1.3 氧化鋅 7
1.4 鈣鈦礦 10
1.5 文獻回顧 12
1.6 研究動機與目的 19
第二章 理論 20
2.1 光催化 20
2.2 氧化鋅/鈣鈦礦複合結構能帶 22
第三章 實驗流程 23
3.1 基板的切割與清洗 24
3.2 晶種層製備 26
3.2.1 氧化鋅晶種液製備 26
3.2.2 製備氧化鋅晶種層 29
3.2.3 氧化鋅奈米柱方向性生長 31
3.3 水熱法生長氧化鋅奈米柱 33
3.3.1 配製生長液 33
3.3.2 摻鋁氧化鋅奈米柱製備流程 34
3.3.3 氧化鋅奈米柱再生長 37
3.4 製備氧化鋅奈米管 40
3.5 鈣鈦礦製備及填入氧化鋅奈米管 42
3.6 合成氧化鋅奈米樹 44
3.7 特性分析儀器 47
3.7.1 冷場發射式電子顯微鏡 (FE-SEM) 48
3.7.2 能量散佈光譜儀 (EDS) 49
3.7.3 三電極光電化學電池測試系統 50
第四章 結果與討論 51
4.1 摻鋁氧化鋅奈米柱與再生長 51
4.2 氧化鋅奈米管 54
4.3 氧化鋅奈米管/ MAPbBr3 鈣鈦礦複合結構 55
4.4 氧化鋅奈米管的密封 57
4.5 摻鋁氧化鋅/鈣鈦礦複合奈米樹 59
4.6 摻鋁氧化鋅/鈣鈦礦複合奈米樹電阻量測 60
4.7 摻鋁氧化鋅/鈣鈦礦複合奈米樹吸收光譜量測 62
4.8 摻鋁氧化鋅/鈣鈦礦複合奈米樹光電流密度量測 63
4.9 摻鋁氧化鋅/鈣鈦礦複合奈米樹瞬時光電流量測 64
第五章 結論 65
參考文獻 66


圖目錄
圖1.1 不同維度示意圖 2
圖1.2 比表面積示意圖 3
圖1.3 六方纖鋅礦結構 9
圖1.4 甲基胺鉛鹵化物鈣鈦礦結構示意圖 11
圖1.5 不同摻鋁濃度氧化鋅紫外可見吸收光譜[42] 13
圖1.6 氧化鋅在不同鋁摻雜濃度下電阻變化[43] 14
圖1.7 未摻雜和摻鋁氧化鋅奈米柱 IV特性比較[44] 15
圖1.8 不同基材之鈣鈦礦薄膜UV-vis吸收光譜圖[45] 16
圖1.9 石墨烯包覆氧化鋅納米球製備示意圖[46] 17
圖1.10氧化鋅/石磨烯奈米複合光電流密度[46] 17
圖1.11太陽光下銪摻雜氧化鋅對苯酚降解的光催化機理[47] 18
圖2.1 光催化示意圖 21
圖2.2 氧化鋅/鈣鈦礦複合結構能帶示意圖 22
圖3.1 實驗流程圖 23
圖3.2 基板清潔示意圖 25
圖3.3 氧化鋅晶種液製備流程 27
圖3.4 氧化鋅基礎液製備裝置示意圖 28
圖3.5 氧化鋅晶種層製備流程 29
圖3.6 氧化鋅晶種層裝置示意圖 30
圖3.7 固定氧化鋅奈米柱生長方向實驗裝置圖 32
圖3.8 摻鋁氧化鋅奈米柱製備流程圖 35
圖3.9 摻鋁氧化鋅生長裝置圖 36
圖3.10 氧化鋅奈米柱再生長流程圖 38
圖3.11 氧化鋅再生長裝置圖 39
圖3.12 製備氧化鋅奈米管流程圖 40
圖3.13 氧化鋅奈米管裝置示意圖 41
圖3.14 製備與填入鈣鈦礦裝置圖 43
圖3.15 濺鍍氧化鋅奈米管示意圖 45
圖3.16 水熱法再生長密封奈米管示意圖 46
圖3.17 SEM架構示意圖[52] 48
圖3.18 特徵X光產生示意圖[52] 49
圖3.19 三電極電化學光電流量測示意圖 50
圖4.1 摻鋁氧化鋅奈米柱與再生長奈米柱SEM俯視圖 (a) 摻鋁氧化鋅奈米柱 (b) 再生長奈米柱(c) 摻鋁氧化鋅奈米柱放大圖(d) 再生長奈米柱放大圖 52
圖4.2 摻鋁氧化鋅奈米柱與再生長奈米柱SEM剖面圖 (a) 摻鋁氧化鋅奈米柱 (b) 再生長奈米柱 52
圖4.3 摻鋁氧化鋅奈米柱EDS元素分析Mapping圖 53
圖4.4 氧化鋅奈米管結構SEM影像 (a) 俯視圖 (b) 剖面圖 54
圖4.5 氧化鋅奈米管/ MAPbBr3 鈣鈦礦複合結構SEM影像 55
圖4.6 鈣鈦礦EDS 元素分析 56
圖4.7 濺鍍法密封氧化鋅奈米管SEM影像 (a) 濺鍍 20 分鐘 (b) 濺鍍 40 分鐘 (c) 濺鍍 60 分鐘 (d) 較小直徑奈米管濺鍍 60 分鐘 58
圖4.8 摻鋁氧化鋅/鈣鈦礦複合奈米樹SEM影像 59
圖4.9 摻鋁氧化鋅/鈣鈦礦複合奈米樹結構電阻量測示意圖 60
圖4.10 摻鋁氧化鋅/鈣鈦礦複合奈米樹吸收光譜圖 62
圖4.11 摻鋁氧化鋅/鈣鈦礦複合奈米樹光電流密度量測J-V曲線圖 63
圖4.12 摻鋁氧化鋅/鈣鈦礦複合奈米樹瞬時光電流量測圖 64



表目錄
表一 氧化鋅鋁摻雜濃度比較表[42] 13
表二 實驗所用儀器對照表 47
表三 摻鋁氧化鋅奈米柱EDS元素量表 53
表四 鈣鈦礦 EDS 元素量表 56
表五 摻鋁氧化鋅/鈣鈦礦複合奈米樹電阻量測表 61


[1]S. Brunauer, et al., "Adsorption of gases in multimolecular layers," Journal of the American Chemical Society, vol. 60, pp. 309-319, 1938.
[2]V. Skripov, et al., "Size effect on melting of small particles," physica status solid (a), vol. 66, pp. 109-118, 1981.
[3]F. D. M. Haldane, "”Fractional statistics” in arbitrary dimensions: A generalization of the Pauli principle," Physical review letters, vol. 67, pp. 937, 1991.
[4]Y. Wang, et al., "Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties," The Journal of Physical Chemistry, vol. 95, pp. 525-532, 1991.
[5]F. E. Kruis, et al., "Synthesis of nanoparticles in the gas phase for electronics, optical and magnetic applications-a review," Journal of Aerosol Science, vol. 29, pp. 511-535, 1998.
[6]B. Karthikeyan, et al., "In situ synthesis and nonlinear optical properties of Au: Ag nanocomposite polymer films," Applied physics letters, vol. 88, pp. 053104, 2006.
[7]Z. Xu, et al., "Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties," Journal of the American Chemical Society, vol. 129, pp. 8698-8699, 2007.
[8]H. Chen, et al., "Hydrothermally grown ZnO micro/nanotube arrays and their properties," Nanoscale research letters, vol. 5, no. 3, pp. 570-575, 2010.
[9]F. Dehghan Nayeri, et al., "Low temperature insertion of energy levels into the ZnO nanorod's bandgap by nanotube conversion," Thin Solid Films, vol. 562, pp. 343-346, 2014.
[10]C. Chang, et al., "ZnO nanowires synthesized by vapor trapping CVD method." Chemistry of materials, vol. 16, no. 24, pp. 5133-5137, 2004.
[11]G. She, et al., "Electrochemical/chemical synthesis of highly-oriented single-crystal ZnO nanotube arrays on transparent conductive substrate," Electrochem. Commun, vol. 9, no. 12, pp. 2784-2788, 2007.
[12]J. Elias, et al., "Conversion of ZnO nanowires into nanotubes with Tailored Dimensions," Chem. Mater, vol. 20, no. 21, pp. 6633-6637, 2008.
[13]M. X. Qiu, et al., "Synthesis of ZnO/cubic (Zn, Mg)O heterostructure nanorods," J. Phys. D: Appl. Phys., vol. 41, pp. 085109, 2008.
[14]J. X. Wang, et al., "A two-step hydrothermally grown ZnO microtube array for COgas sensing," Appl. Phys. A, vol. 88, pp. 611-615, 2007.
[15]J. B. Baxter, et al., Appl. Phys. Lett., vol. 86, pp. 053114, 2005.
[16]Xu Sheng, et al., "Ordered Nanowire Array Blue/Near‐UV Light Emitting Diodes," Advanced Materials, vol. 22, no. 42, pp. 4749-4753, 2010.
[17]Mazhar Ali, et al., "The fabrication of white light-emitting diodes using the n-ZnO/NiO/p-GaN heterojunction with enhanced luminescence," Nanoscale research letters, vol. 8, no. 1, pp. 320, 2013.
[18]Könenkamp, et al., "Vertical nanowire light-emitting diode," Applied Physics Letters, vol. 85, no. 24, pp. 6004-6006, 2004.
[19]Guo, et al., "ZnO nanorod light-emitting diodes fabricated by electrochemical approaches," Electrochemistry Communications, vol. 10, no. 1, pp. 146-150, 2008.
[20]Katwal, et al., "Rapid growth of zinc oxide nanotube–nanowire hybrid architectures and their use in breast cancer-related volatile organics detection," Nano letters, vol. 16, no. 5, pp. 3014-3021, 2016.
[21]J. X. Wang, et al., "Zinc oxide nanocomb biosensor for glucose detection," Appl. Phys. Lett., vol. 88, no. 23, pp. 233106, 2006.
[22]Dai, J., et al., "Whispering gallery-mode lasing in ZnO microrods at room temperature," Applied physics letters, vol. 95, no. 24, pp. 241110, 2009.
[23]Zhang, et al., "Quantum efficiency of ZnO nanowire nanolasers," Applied Physics Letters, vol. 87, no. 4, pp. 043106, 2005.
[24]Jiang, C. Y., et al., "Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode," Applied Physics Letters, vol. 90, no. 26, pp. 263501, 2007.
[25]D.-K. Hwang, et al., "p-ZnO/n-GaN heterostructure ZnO light-emitting diodes," Applied physics letters, vol. 86, pp. 222101-222101-3, 2005.
[26]H.-T. Wang, et al., "Hydrogen-selective sensing at room temperature with ZnO nanorods," Applied Physics Letters, vol. 86, pp. 243503, 2005.
[27]Y. Heo, et al., "Depletion-mode ZnO nanowire field-effect transistor," Applied Physics Letters, vol. 85, pp. 2274-2276, 2004.
[28]K. Keis, et al., "A 5% efficient photoelectrochemical solar cell based on nanostructured ZnO electrodes," Solar Energy Materials and Solar Cells, vol. 73, pp. 51-58, 2002.
[29]K. Vanheusden, et al., J.Appl. Phys., vol. 79, pp. 7983, 1996.
[30]M. Gratzel, et al., "Electron Paramagnetic Resonance Studies of Doped TiO2 Colloids," J. Phys, Chem., vol. 94, no. 6, pp. 2566-2572, 1990.
[31]Li Yong Jun, et al., "Output coupling of perovskite lasers from embedded nanoscale plasmonic waveguides," Journal of the American Chemical Society, vol. 138, no. 7, pp. 2122-2125, 2016.
[32]Zheng Jian-Yao, et al., "Fast and scalable synthesis of lead halide perovskite nanowires for tunable room-temperature nanolasers," Lasers and Electro-Optics (CLEO), 2016 Conference on. IEEE, 2016.
[33]Kojima Akihiro, et al., "Organometal halide perovskites as visible-light sensitizers for photovoltaic cells," Journal of the American Chemical Society, vol. 131, no. 17, pp. 6050-6051, 2009.
[34]Xiao Manda, et al., "A fast deposition‐crystallization procedure for highly efficient lead iodide perovskite thin‐film solar cells," Angewandte Chemie International Edition, vol. 53, no.37, pp. 9898-9903, 2014.
[35]Oku Takeo, et al. "Crystal structures of CH3NH3PbI3 and related perovskite compounds used for solar cells," Solar Cells-New Approaches and Reviews. InTech, 2015.
[36]Santomauro Fabio G., et al., "Localized holes and delocalized electrons in photoexcited inorganic perovskites: Watching each atomic actor by picosecond X-ray absorption spectroscopy," Structural Dynamics, vol. 4, no. 4, pp. 044002, 2017.
[37]Zhang Dandan, et al., "Solution-phase synthesis of cesium lead halide perovskite nanowires," Journal of the American Chemical Society, vol. 137, no. 29, pp. 9230-9233, 2015.
[38]Yin Jie, et al., "Improvement of electron/hole injection balance based on nanowire/nanocube hybrid perovskite," Materials Letters, vol. 184, pp. 78-81, 2016.
[39]Zhu Haiming, et al., "Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors," Nature materials, vol. 14, no. 6, pp. 636, 2015.
[40]J. T. Chen, et al., "The effect of Al doping on the morphology and optical property of ZnO nanostructures prepared by hydrothermal process," Applied Surface Science, vol. 255, pp. 3959-3964, 2009.
[41]Hai Zhou, et al., "The investigation of Al-doped ZnO as an electron transporting layer for visible-blind ultraviolet photodetector based on n-ZnO nanorods/p-Si heterojunction," Materials Sciencein Semiconductor Processing, vol. 38, pp. 67-71, 2015.
[42]R. Sankar ganesh, et al., "Influence of Al doping on the structural, morphological, optical, and gas sensing properties of ZnO nanorods," Journal of Alloys and Compounds, vol. 698, pp. 555-564, 2017.
[43]Jun Young Kim, et al., "Improved photovoltaic performance of inverted polymer solar cells through a sol-gel processed Al-doped ZnO electron extraction layer," OPTICS EXPRESS A1341, vol. 23, No. 19, 2015.
[44]Zheng-Lun Huang, et al., " Efficiency enhancement of regular-type perovskite solar cells based on Al-doped ZnO nanorods as electron transporting layers," Superlattices and Microstructures, vol. 102, pp. 94-102, 2017.
[45]A. Baltakesmez, et al., "Inverted planar perovskite solar cells based on Al doped ZnO substrate," Journal of Radiation Research and Applied Sciences, vol. 11, pp. 124-129, 2018.
[46]Da Chen, et al., "Graphene-wrapped ZnO nanospheres as a photocatalyst for high performance photocatalysis," Thin Solid Films, vol. 574, pp. 1-9, 2015.
[47]Morasae Samadi, et al., " Recent progress on doped ZnO nanostructures for visible-light photocatalysis," Thin Solid Films, vol. 605, pp. 2-19, 2016.
[48]M. H. Huang, et al., " Catalytic growth of zinc oxide nanowires by vapor transport," Adv. Mater, vol. 13, pp. 113, 2001.
[49]H. C. Qin, et al., "Photocatalytic activity of heterostructures based on ZnO and N-doped ZnO," ACS Appl. Mater. Interfaces, vol. 3, pp. 3152, 2011.
[50]C. Wang, et al., "Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation," J. Photochem. Photobiol. A Chem, vol. 168, pp. 47, 2004.
[51]D. Chen, et al., "Preparation and enhanced photoelectrochemical performance of coupled bicomponent ZnO–TiO2 nanocomposites," J. Phys. Chem, vol. 112, pp. 117, 2008.
[52]陳雅惠, "高解析可變真空掃描式電子顯微鏡及能量散佈光譜儀儀器原理," 逢甲大學研發處共同貴重儀器中心, 2016.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top