跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2025/02/13 08:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾正堂
研究生(外文):Tseng Cheng Tang
論文名稱:建構CDIO內涵之工業4.0模具同步系統設計課程及成效評估
論文名稱(外文):Construct the Concurrent Mold Design System Course of Industry 4.0 with CDIO concept and Effectiveness Evaluation
指導教授:戴國政戴國政引用關係李靜儀李靜儀引用關係
指導教授(外文):TAI, KUO-CHENGLEE, CHING-YE
口試委員:戴國政李靜儀劉明山陳狄成吳宗亮
口試委員(外文):TAI, KUO-CHENGLEE, CHING-YELIU, MIN-SHANCHEN, DYI-CHENGWU, JONG-LIANG
口試日期:2019-07-20
學位類別:博士
校院名稱:逢甲大學
系所名稱:機械與航空工程博士學位學程
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:182
中文關鍵詞:模具設計智慧化模具製造CDIO整合式課程工業4.0同步工程工程教育改革職能指標
外文關鍵詞:Mold Design CourseCDIOIntegrated CurriculumCourse ModuleIndustry 4.0Concurrent SystemEngineering Education.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:300
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:1
本研究旨在建構一套以CDIO教學模式為內涵的模具同步系統設計課程,並藉由課程的實施進行成效評估。目的在解決目前普遍性的大學畢業生學用落差問題,並為模具產業的人才培育盡一份心力。首先本研究探討臺灣模具產業的發展趨勢,與工業4.0智慧化模具製造的人力資源策略,以了解模具產業需要甚麼樣的工程人才?標準為何?並制定出模具同步系統設計的職能項目與職能指標,以做為課程規劃的重要依據與成效的評量標準。其次探討目前臺灣高等教育學用落差的困境與改革對策,從CDIO做中學的教學模式中規劃出具體的工程教育改革方案,企圖回答要如何在高等教育中培育符合工業4.0的人才需求。最後再以CDIO的課程設計原理進行整合式課程模組化設計,針對逢甲大學精密系統設計學程之54位大二學生進行18週的實驗教學,並以「老人居家生活用品之友善設計與改造」做為產品研發專題發想的範圍,讓學生經歷CDIO整個階段,共計整合七門課、6位教師(含3位業師)、12學分。本研究採用職能指標問卷評量表進行前、後測,亦進行學生課程滿意度調查。結果顯示,學生的職能指標,在模具專業技術、CAX軟體使用與同步系統工程能力等方面都有相當顯著的進步。對課程的滿意度也很高,尤其是對「本課程將有助於未來的升學與就業」這個項目最為滿意。證明透過本課程,可以有效地為產業培育優良的模具設計人才,解決大學畢業生學用落差問題,為高等工程教育改革提供一個良好的範例。
This study aimed to construct a system of synchronizing syllabus based on the CDIO teaching model and evaluate its effectiveness. This is to examine the nowadays common problem of college graduates not being able to apply what they learned in school to real-life professions. The purpose of this study was to find ways to provide a specific strategy that could benefit future students in the industry. First, the development trends of the mold industry in Taiwan and the human resources strategy of the smart mold manufacturing industry of Industry 4.0 were investigated to explore the standard of engineering talent in the industry and create a competency indicator for mold design concurrent systems to serve as an essential reference for curriculum planning and the criteria for learning outcome assessments. Second, the scope covered by the mold industry in the product life cycle was used as the blueprint for developing the curriculum. Finally, the CDIO curriculum design principle was applied to the design of the integrated curriculum module. Experimental teaching was conducted in the Bachelor’s Program in Precision System Design at Feng Chia University in Taiwan for 18 weeks. A total of 54 sophomores participated in the experimental program and the product research and development project entitled “Design and transformation of older-adult-friendly living supplies” to experience the entire process of CDIO. The curriculum consisted of a total of seven courses and six teachers (including three industry experts) and offered 12 credits.
Moreover, this study used the competency indicator scale in the pre- and post-tests, and a student program satisfaction survey was conducted to assess the effectiveness of the curriculum design and implementation. The results revealed that the students’ competency indicators exhibited significant progress in understanding the professional technology of molds, using CAX software, and understanding concurrent system engineering capabilities. The students were highly satisfied with the program, and the item “The engineering practice of the integrated curriculum is helpful for my future academic progression and employment needs” received the highest level of satisfaction. This program was proven effective for cultivating excellent mold design talent for the industry, thereby bridging the mismatch between knowledge and application among university graduates and serving as a great example for higher-level engineering education reform.

第一章 緒論
第一節 研究背景與動機
壹、臺灣模具產業的困境與未來發展新趨勢
貳、臺灣高等教育的現況與困境
參、建構符合CDIO理念的教學方法與課程
第二節 研究目的
第三節 待答問題
第四節 研究範圍與限制
第五節 研究架構
第六節 名詞解釋
第二章 文獻探討
第一節 工業4.0模具產業智慧化工程技術
壹、臺灣模具產業動態與發展方向
貳、工業4.0的人才培育新思維
參、智慧化模具製造的人才需求
肆、「模具同步系統設計」的內涵
第二節 模具同步系統設計的職能探討
壹、模具同步系統設計技術與設計流程
貳、模具同步系統設計的系統功能
參、建立模具同步系統設計職能指標
第三節 模具設計能力分析與課程的探討
壹、模具設計能力分析的相關文獻
貳、模具設計人才培育課程相關文獻
參、國際間模具設計技術與課程的發展趨勢
第四節 CDIO的理念與內涵
壹、CDIO工程教育改革的12項標準
貳、整合式課程的設計過程與模式
參、以CDIO工程模式發展的CDIO教學模式
第三章 研究設計
第一節 研究方法
壹、文獻探討
貳、專家座談與訪談法
參、問卷調查法
肆、實驗教學法
第二節 研究參與對象
第三節 研究工具
第四節 資料處理與分析
第四章 研究實施
第一節 課程構思
壹、以產品生命週期為藍圖的課程發展
貳、建立模具設計職能指標與職能評量表
第二節 課程設計
壹、職能指標與課程單元關連性矩陣
貳、整合式課程的模組化結構
第三節 課程實施
壹、整合式課程表與課程實施要點
貳、串聯各學科的連貫式教學法
參、工程實踐專題的實施
第四節 成效評估
壹、學生學期成績
貳、職能評量表訓練前、後測
參、學生滿意度調查表
第五章 研究結果與討論
第一節 職能項目與課程單元矩陣問卷調查
壹、課程單元對應於36條職能項目的關聯性
貳、課程單元關聯與職能訓練優先的曲線比較
參、課程單元的C-D-I-O 類別統計
第二節 模具設計職能評量前後測
第三節 學生滿意度調查表
第六章 結論與建議
第一節 結論
第二節 建議
參考文獻
附錄
【附件一】模具同步系統設計職能業界專家問卷
【附件二】模具同步系統設計職能項目與指標問卷
【附件三】模具同步系統設計職能評量表問卷
【附件四】模具同步系統設計職能評量表(完整篇)
【附件五】模具同步系統設計職能評量表(基礎篇)
【附件六】整合式課程小組長會議紀錄
【附件七】整合式課程學科教師訪談問卷

一、中文部份
王偉宇 (2003)。協同設計與工作流程之探討。碩士論文,臺灣大學機械工程學研究所,台北。
公函 (2012)。教育部補助產業先進設備人才培育學程計畫徵件事宜。臺顧字第1010145140 號函訂定。
石錦璋 (2004)。大學精密模具設計與分析專業課程內涵與其可行性分析。碩士論文,高雄第一科技大學機械與自動化工程系,高雄市。
行政院 (2015)。行政院生產力 4.0 發展方案。檢自:www.bost.ey.gov.tw/DL.ashx?u=/Upload/UserFiles/行政院生產力4_0發展方案(2).pdf
汪建南、馬雲龍 (2016)。工業4.0 的國際發展趨勢與台灣因應之道。中央銀行 國際金融參考資料,69,153。
谷家恆 (2002)。建構「技職教育(科技大學)之精密模具設計分析人才培育課程與專業能力鑑定標準」之研究。國科會計劃成果報告,NSC-90-2516-S-327-001。
吳清山(2011)。我國高等教育革新的重要課題與未來發展之分析。長庚人文社會學報,4(2),241‐280。
李靜儀、吳俊哲、王柏婷 (2016)。Conceive-Design-Implement-Operate(CDIO)理念對臺灣工程教育的啟發。臺灣教育評論月刊,5(2),102。
呂禮全 (2012)。CAE模具成型技術周報 CMW-004-120326。檢自:http://www.caemolding.org/web/index8.html。
林宗聖 (2006)。本體論應用於塑膠射出成形模具設計之研究。碩士論文,台灣科技大學機械工程系。
周祝瑛 (2008)。台灣教育怎麼辦?。臺北:心理。
洪千惠 (2016)。智慧化模具製造亞洲市場發展潛力大。DIGITIMES物聯網,檢自:http://www.digitimes.com.tw/iot/。
陳清溪 (2013)。我國人才培育政策之探討。教育資料與研究,112(2),17。
康文成 (2003)。精密模具設計分析專業能力鑑定標準之研究。碩士論文,高雄第一科技大學機械與自動化工程系,高雄市。
教育部 (2013)。人才培育白皮書。臺北:教育部。
郭添財 (2014)。台灣高等教育問題與改善策略。教育學術彙刊,6,63-65。
連啟華 (2011)。應用Teamcenter於工程變更流程管理之研究。碩士論文,逢甲大學,台中市。
陳維昭 (2005)。二十一世紀大學教育的新挑戰。臺北:台灣大學。
黃明賢(2005)。開發「精密射出模具設計分析」教材、教具、數位學習系統及教學評量。行政院國家科學委員會專題研究計畫成果報告。
楊瑞雯 (2018)。2018 金屬製品業年鑑─模具篇。ITIS產業評析。
劉曼君 (2012)。2019年畢業生核心能力。評鑑雙月刊,38。
鍾文仁、吳俊賢、李泰志、賴柏榕、李銘衍 (2008)。自動化模具設計與製造引導系統。中原大學機械工程學系,產學合作暨成果發表專刊。
二、英文部份
A.Lunev, I. Petrova & V. Zaripova, (2013). Competency-based models of learning for engineers: a comparison. European Journal of Engineering Education, 38(5), pp. 543–555.
Alexander Lunev, Irina Petrova & Viktoria Zaripova (2013). Competency-based models of learning for engineers: a comparison. European Journal of Engineering Education, 38(5), pp. 543–555.
BCG. (2015). Man and Machine in Industry 4.0: How Will Technology Transform the Industrial Workforce Through 2025?.
Boden, D. G. & P. J. Gray. (2006). CDIO and its Adoption and Assessment at the U.S. Naval Academy. 5th Global.Congress on Engineering Education, Polytechnic University, Brooklyn, New York.
Bruegel Institute. (2016). Chart of the Week: 54% of EU jobs at risk of computerization, Available online.
Chan, W. M. Yan, L. Xiang, W. Cheok, B. T. (2003). A 3D CAD knowledge-based assisted injection mould design system. The International Journal of Advanced Manufacturing Technology.
Chung-Hua Institution for Economic Research. (2003). Cooperate with WTO service trade negotiations, research and implement the specific promotion plan for the internationalization of service industry, ch.11, p.1-11.
Crawley, E. Malmqvist, J. Ostlund, S. & Brodeur, D. (2014). Rethinking engineering education: The CDIO Approach (2nd ed), Springer Singapore: Springer, ch. 1, pp. 2-3.
D. C. McClelland, (1973). Testing for competence rather than for intelligence. American Psychologist, 28(1), 1-14.
D. J. Newman & A. R. Amir, (2001). Innovative first-year aerospace design course at MIT. Journal of Engineering Education, 90 (3), pp. 375–381.
Daryl G. Boden and Peter J. Gray. (2007). Using Rubrics to assess the Development of CDIO Syllabus personal and professional Skills and Attributes at the 2.xx level, Proceedings of the 3rd International CDIO Conference, MIT, Cambridge, Massachusetts, USA.
David (2007)。產品生命週期管理(PLM)與其內涵。STPI科技產業資訊室。檢自:http://cdnet.stpi.org.tw/techroom/analysis/pat_A104.htm。
E. Crawley, J. Malmqvist, S. Ostlund & D. Brodeur, (2014). Rethinking engineering education: The CDIO Approach , 2nd edn. Springer Singapore: Springer, pp. 25, 97-99, 102, 294.
Frey, C. & Osborne, M. (2013). The future of employment: how susceptible are jobs to computerisation?, Oxford Martin School Working paper.
Graham, R. (2012). Achieving excellence in engineering education: the ingredients of successful change. Massachusetts Institute of Technology, The Royal Academy of Engineering, pp. 1.
Gyung-Ju Kang, Chang-Hyun Park, & Dong-Hoon Choi (2016). Metamodel-based design optimization of injection molding process variables and gates of an automotive glove box for enhancing its quality. Journal of Mechanical Science and Technology, 30 (4), pp. 1723-1732.
Hengyuan Ma, Xionghui Zhou, Wei Liu, Junjie Li, Qiang Niu, & Chuipin Kong (2018). A feature-based approach towards integration and automation of CAD/CAPP/CAM for EDM electrodes. The International Journal of Advanced Manufacturing Technology, 98(9-12), pp 2943–2965.
Japan Ministry of Economy Trade and Industry. (2015). Through IoT, Japanese factories Connected Together, METI Journal, May, PP4-13.
Jorge Manuel Mercado-Colmenero, M.A. Rubio-Paramio, Antonio Vizan-Idoipe, & Cristina Martin-Doñatea (2017). A new procedure for the automated design of ejection systems in injection molds. Robotics and Computer–Integrated Manufacturing, 46, pp. 68–85.
Junyu Fu, & Yongsheng Ma (2019). A method to predict early-ejected plastic part air-cooling behavior towards quality mold design and less molding cycle time. Robotics and Computer Integrated Manufacturing, 56, pp. 66–74.
Kim, Y. J. & Terada-Hagiwara, A. (2013). A survey on the relationship between education and growth with implications for developing Asia. Journal of International Commerce, Economics and Policy, 4(01), pp. 3-4.
Li Li, Hongtao Tang, Shunsheng Guo, Lang Huang, & Yaohua Xu (2017). Design and implementation of an integral design CAD system for plastic profile extrusion die. The International Journal of Advanced Manufacturing Technology, 89(1–4), pp 543–559.
Loacker, G., Cromwell, C., & O'Brien, K. (1986). Assessment in Higher Education: To Serve the Learner.In Adelman, C., Assessment in American higher education (pp. 47-62). Washington, DC: US Department of Education.
Ma, Y. S. Britton, G. A. Tor, S. B. Gunawan, E. & Lee, C. H. (2003). Standard Component Library Design and Implementation for Plastic Injection Mold Design with a CAD Tool. The Fourth International Conference on Control and Automation (ICCA’03), Montreal, Canada.
Marton, F. & Säljö, R. (1984). Approaches to learning. In F. Marton, D. Hounsell, & N. J. Entwistle (Eds.), The experience of learning. Edinburgh: Scottish Academic Press.
Patil A. S. & Gray P. J. (2009). Éngineering Education Quality Assurance: A Global Perspective. Springer.
R. Lynch, N. Seery & S. Gordon, (2007). An evaluation of CDIO approach to engineering education. In: Proceedings of the International Symposium for Engineering Education, Dublin City University, pp. 13–21.
Rajani Shankar, Sakunthalai Suppiah. (2014). A case study on the enhancement of faculty teaching competencies in an engineering Diploma. Proceedings of the 10th International CDIO Conference, Universitat Politècnica de Catalunya,Barcelona, Spain.
Sabine, P. (2015). Effects of Industry 4.0 on vocational education and training. ITA-15-04, Austrian Academy of Sciences (ÖAW), Institute of Technology Assessment (ITA), Vienna, pp. 5-6.
Song, D. Tavares, A. Pinto, S. & Xu, H. (2017). Setting Engineering Students Up for Success in the 21st Century: Integrating Gamification and Crowdsourcing into a CDIO-based Web Design Course. EURASIA Journal of Mathematics Science and Technology Education, 13(7), pp. 3566-3567.
Thankachan, T. Pullana, M. Bhasib, & Madhuc, G. (2010). Application of concurrent engineering in manufacturing industry. International Journal of Computer Integrated Manufacturing, 23, 425–440.
Tien-Chi Huang, & Chun-Yu Lin (2017). From 3D modeling to 3D printing: Development of a differentiated spatial ability teaching model. Telematics and Informatics, 34, pp. 604-613.
Ulrish Sendler (2014)。工業4.0:即將來襲的第四次工業革命。機械工業出版社,中國。
V. Taajamaa, M. Eskandari, B. Karanian, A. Airola, T. Pahikkala and T. Salakoski, (2016). O-CDIO: Emphasizing Design Thinking in CDIO Engineering Cycle. International Journal of Engineering Education, 32(3), pp. 1531–1532.
Wang, C. N. & Ma, Y. L. (2016). The international development trend of Industry 4.0 and Taiwan's response, Central Bank of China (Taiwan) ,International financial reference, 69(153), pp. 138.
Wen-Ren Jong, Po-Jung Lai, Yu-Wei Chen, & Yu-Hung Ting (2015). Automatic process planning of mold components with integration of feature recognition and group technology. The International Journal of Advanced Manufacturing Technology, 78(5-8), pp 807–824.
Wick, C. & Bakerjian, R. (1993). Tool and manufacturing engineers handbook, Vol. 7. Michigan, USA: Society of Manufacturing Engineers.
Wolter, M. I. Mnnig, A. Hummel, M. Schneemann, C. Weber, E. Zika, G. Helmrich, R. Maier, T. & Neuber-Pohl, C. (2015). Industry 4.0 and the Consequences for Labour Market and Economy. Project work of Institute for Employment Research, the Research Institute of the Federal Employment Agency.
Yinghui Fan, Xingwei Zhang, & Xinlu Xie (2015). Design and Development of a Course in Professionalism and Ethics for CDIO Curriculum in China. Science and Engineering Ethics, 21(15), pp 1381–1389.
Zhenyong, Z. Shuming, G. Zhengchao, G. Jiaoying, S. (2000). A Feature-Based Approach to Automatic Injection Mold Generation. Geometric Modeling and Processing 2000. Theory and Applications, Hong Kong , China.

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top