跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/03/20 16:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李立心
研究生(外文):LEE, LI-HSIN
論文名稱:在大型多輸入多輸出系統下使用1位元數位轉類比轉換器之預編碼器設計
論文名稱(外文):Precoder Design for Massive MIMO Systems with 1-Bit DACs
指導教授:余金郎余金郎引用關係
指導教授(外文):Yu, Jung-Lang
口試委員:劉鴻裕柳茂林余金郎
口試委員(外文):Liu, Hong-YuLeou, Maw-LinYu, Jung-Lang
口試日期:2019-07-03
學位類別:碩士
校院名稱:輔仁大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:50
中文關鍵詞:大型多輸入多輸出1位元數位轉類比轉換器數位預編碼器低計算複雜度
外文關鍵詞:massive MIMO1-bit DACsdigital percodercomplexity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
近年來隨著行動通訊的普及,需要連網的設備數量持續的增長,為了維持通訊品質,目前普遍使用大型多輸入多輸出(massive mutiple-input multiple-output, massive MIMO)系統,來增加通訊容量。由於傳統的MIMO中天線以一對一的方式和射頻鏈路(radio frequency chain, RF chain)連接,而射頻鏈路是由許多元件所組成,因此天線數量的增加會造成硬體成本增加,為了降低硬體成本可以選擇使用混合式預編碼器的架構來減少射頻鏈路的數量,或是在射頻鏈路中使用低解析度的數位轉類比轉換器(digital-to-analog converters, DACs),都可降低成本。因此有論文針對在PSK調變系統,提出在massive MIMO系統下結合1位元DACs的數位預編碼器設計方法,主要將數位預編碼器的輸出訊號以1位元量化的形式設計,以減少量化過程中的量化誤差,提出一演算法分別使用兩種方式進行設計,再從中挑選較好的結果作為輸出訊號。但這需要完整的計算兩種方法,其中的計算複雜度不少,因此本篇論文提出新的演算法,設計適當的條件將文獻中兩種計算方法合併進行設計,這樣可以大幅的減少演算法的計算複雜度,同時在模擬中證實此演算法在性能方面也有所提升。另外提出改良的精煉算法來進一步改善系統效能,在模擬中發現對於部分演算法的系統效能的提升有顯著的幫助。
In recent years, with the popularity of mobile communications, the number of devices that need to be connected has continued to grow.In order to maintain communication quality, massive multiple-input multiple-output (massive MIMO) system is currently widely used to increase the capacity. However, in the traditional MIMO system, antenna and radio frequency chain (RF chain) connect one by one. Increasing the number of antennas will increase the hardware cost, because RF chain is combined with many components. There are some methods to decrease the hardware cost. The method is using hybrid precoder structures to reduce the number of RF chains or using low resolution digital-to-analog converters (DACs) to reduce the cost. Some paper focusing on PSK modulation proposes the digital percoder design method on the massive MIMO system with 1-bit DACs. The main idea is to design a digital precoder output as the 1-bit quantized form to reduce the quantization error. One paper suggests an algorithm that contains two methods calculating respectively, then finds the best one as algorithm answer. In this case, the complexity will be a lot because it need to compute two methods complete. Therefore, we suggest a new algorithm designing an appropriate condition to combine with method, and we suppose it can reduce the complexity in the algorithm. It also proves the performance enhance in simulation results. Furthermore, we propose a refinement method to make better performance.
摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 vi
符號說明 vii
第1章 緒論 1
第2章 多用戶massive MIMO 系統架構 6
2.1 多用戶massive MIMO 系統架構 6
2.2 預編碼器設計 7
2.3 非線性預編碼器設計問題 8
2.3.1 動態星座擴展圖(Active Constellation Extension, ACE)的應用 8
2.3.2 非線性轉換的預編碼器設計 10
2.4 分配方法(Allocation method) 13
2.4.1 初始化階段Initialization Stage 13
2.4.2 分配階段Allocation Stage Sum-Max 14
2.4.3 分配階段Allocation Stage Max-Min 15
2.4.4 精煉階段Refinement Stage 16
2.4.5 Symbol Scaling 17
第3章 1位元DACs非線性轉換的預編碼器設計 18
3.1 非線性預編碼器設計 18
3.2 分配法的改進 20
3.2.1 公平結合分配法(Fairness combine allocation method, FC) 20
3.2.2 條件式公平結合分配法(Fairness combine with constrain allocation method, FCC) 23
3.3 精煉演算法的改良方法 26
3.3.1 Sorting refinement method 26
第4章 電腦模擬 27
4.1 計算複雜度分析 28
4.1.1 Symbol Scaling的計算複雜度分析 28
4.1.2 FC與FCC的計算複雜度分析 29
4.2 電腦模擬分析 34
第5章 結論與未來展望 46
參考文獻 47

[1]L. M. Ericsson, "More than 50 billion connected devices," Stockholm, Sweden, White Paper, 2011
[2]"The 1000x mobile data challenge San Diego," San Diego, CA, USA, Qualcomm, White Paper, https://www.qualcomm.com/documents/1000x-mobile-data-challenge, Nov. 2013.
[3]F. Rusek, D. Persson, L. Buon Kiong, et al., "Scaling up MIMO: Opportunities and challenges with very large arrays," IEEE Signal Processing Magazine, vol. 30, pp. 40-60, Dec. 2013.
[4]A. Alkhateeb, O. E. Ayach, G. Leus, and R. W. Heath, "Channel estimation and hybrid precoding for millimeter wave cellular systems," IEEE Journal of Selected Topics in Signal Processing, vol. 8, pp. 831-846, Oct. 2014.
[5]Y.-Y. Lee, C.-H. Wang, and Y.-H. Huang, "A hybrid RF/baseband precoding processor based on parallel-index-selection matrix-inversion-bypass simultaneous orthogonal matching pursuit for millimeter wave MIMO systems," IEEE Transactions on Signal Processing, vol. 63, pp. 305-317, Jan. 2015.
[6]F. Khalid and J. Speidel, "Robust hybrid precoding for multiuser MIMO wireless communication systems," IEEE Transactions on Wireless Communications, vol. 13, pp. 3353-3363, June 2014.
[7]L. Liang, W. Xu, and X. Dong, "Low-complexity hybrid precoding in massive multiuser MIMO systems," IEEE Wireless Communications Letters, vol. 3, pp. 653-656, Dec. 2014.
[8]W. Roh, J. Y. Seol, J. Park, et al., "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results," IEEE Communications Magazine, vol. 52, pp. 106-113, Feb. 2014.
[9]I. Ahmed, H. Khammari, A. Shahid, et al., "A survey on hybrid beamforming techniques in 5G: architecture and system model perspectives," IEEE Communications Surveys & Tutorials, vol. 20, pp. 3060-3097, June 2018.
[10]S. Jacobsson, G. Durisi, M. Coldrey, T. Goldstein, and C. Studer, "Quantized precoding for massive MU-MIMO," IEEE Transactions on Communications, vol. 65, pp. 4670-4684, Nov. 2017.
[11]M. Joham, W. Utschick, and J. A. Nossek, "Linear transmit processing in MIMO communications systems," IEEE Transactions on Signal Processing, vol. 53, pp. 2700-2712, July 2005.
[12]A. Mezghani, R. Ghiat, and J. A. Nossek, "Transmit processing with low resolution D/A-converters," in proc. 16th IEEE International Conference on Electronics, Circuits and Systems, Yasmine Hammamet, Tunisia, pp. 683-686, 2009.
[13]H. Jedda, J. A. Nossek, and A. Mezghani, "Minimum BER precoding in 1-bit massive MIMO systems," in proc. IEEE Sensor Array and Multichannel Signal Processing Workshop, Rio de Janerio, Brazil, pp. 1-5, 2016.
[14]A. K. Saxena, I. Fijalkow, A. Mezghani, and A. L. Swindlehurst, "Analysis of one-bit quantized ZF precoding for the multiuser massive MIMO downlink," in proc. 50th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, pp. 758-762, 2016.
[15]O. B. Usman, H. Jedda, A. Mezghani, and J. A. Nossek, "MMSE precoder for massive MIMO using 1-bit quantization," in proc. IEEE International Conference on Acoustics, Speech and Signal Processing, Shanghai, China, pp. 3381-3385, 2016.
[16]A. Noll, H. Jedda, and J. A. Nossek, "PSK precoding in multi-user MISO systems," in proc. 21th International ITG Workshop on Smart Antennas, Berlin, Germany, 2017.
[17]A. Swindlehurst, A. Saxena, A. Mezghani, and I. Fijalkow, "Minimum probability-of-error perturbation precoding for the one-bit massive MIMO downlink," in proc. IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6483-6487, 2017.
[18]J. C. Chen, "Alternating minimization algorithms for one-bit precoding in massive multiuser MIMO systems," IEEE Transactions on Vehicular Technology, vol. 67, pp. 7394-7406, Aug. 2018.
[19]Q. Hou, R. Wang, E. Liu, and D. Yan, "Hybrid precoding design for MIMO system with one-bit ADC receivers," IEEE Access, vol. 6, pp. 48478-48488, Aug. 2018.
[20]C. J. Wang, C. K. Wen, S. Jin, and S. H. L. Tsai, "Finite-alphabet precoding for massive MU-MIMO with low-resolution DACs," IEEE Transactions on Wireless Communications, vol. 17, pp. 4706-4720, May 2018.
[21]C. Masouros, "Correlation rotation linear precoding for MIMO broadcast communications," IEEE Transactions on Signal Processing, vol. 59, pp. 252-262, Jan. 2010.
[22]C. Masouros, M. Sellathurai, and T. Ratnarajah, "Vector perturbation based on symbol scaling for limited feedback MISO downlinks," IEEE Transactions on Signal Processing, vol. 62, pp. 562-571, Feb. 2014.
[23]M. Alodeh, S. Chatzinotas, and B. Ottersten, "Constructive multiuser interference in symbol level precoding for the MISO downlink channel," IEEE Transactions on Signal Processing, vol. 63, pp. 2239-2252, May 2015.
[24]H. Jedda, A. Mezghani, J. A. Nossek, and A. L. Swindlehurst, "Massive MIMO downlink 1-bit precoding with linear programming for PSK signaling," in proc. IEEE 18th International Workshop on Signal Processing Advances in Wireless Communications, pp. 1-5, July 2017.
[25]A. K. Saxena, I. Fijalkow, and A. L. Swindlehurst, "Analysis of one-bit quantized precoding for the multiuser massive MIMO downlink," IEEE Transactions on Signal Processing, vol. 65, pp. 4624-4634, June 2017.
[26]A. L. Swindlehurst, H. Jedda, and I. Fijalkowt, "Reduced dimension minimum BER PSK precoding for constrained transmit signals in massive MIMO," in proc. IEEE International Conference on Acoustics, Speech and Signal Processing, Calgary, AB, Canada, pp. 3584-3588, Apr. 2018.
[27]I. Fijalkow and A. L. Swindlehurst, "Predistortion techniques for vector perturbation precoding of one-bit massive-MIMO," in proc. 51st Asilomar Conference on Signals, Systems, and Computers, pp. 32-36, Apr. 2017.
[28]A. Li, C. Masouros, F. Liu, and A. L. Swindlehurst, "Massive MIMO 1-bit DAC transmission: a low-complexity symbol scaling approach," IEEE Transactions on Wireless Communications, vol. 17, pp. 7559-7575, Sep. 2018.
[29]F. Sohrabi, Y.-F. Liu, and W. Yu, "One-bit precoding and constellation range design for massive MIMO with QAM signaling," IEEE Journal of Selected Topics in Signal Processing, vol. 12, pp. 557-570, June 2018.
[30]L. Lu, G. Y. Li, A. L. Swindlehurst, et al., "An overview of massive MIMO: benefits and challenges," IEEE Journal of Selected Topics in Signal Processing, vol. 8, pp. 742-758, Apr. 2014.
[31]Y. Li, C. Tao, G. Seco-Granados, et al., "Channel estimation and performance analysis of one-bit massive MIMO systems," IEEE Transactions on Signal Processing, vol. 65, pp. 4075-4089, May 2017.
[32]B. S. Krongold and D. L. Jones, "PAR reduction in OFDM via active constellation extension," IEEE Transactions on Broadcasting, vol. 49, pp. 258-268, Sep. 2003.
[33]R. Hunger, "Floating point operations in matrix-vector calculus," Dept. Inst. Circuit Theory Signal Process., Tech. Univ. Munich, München, Germany, Tech. Rep., 2005.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top