跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/03/20 05:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳子恩
研究生(外文):Chen, Tzu-En
論文名稱:台灣非小細胞肺癌病人之甲基營養狀態與惡性腫瘤進展能量代謝質體指標之相關性
論文名稱(外文):Relationship between methyl nutrients status and bioenergetic metabolomic signatures of malignancy tumors in a Taiwan NSCLC cohort study
指導教授:許瑞芬許瑞芬引用關係
指導教授(外文):Huang Syu, Rwei-Fen
口試委員:林璧鳳陳晉興鄭美玲林可軒
口試委員(外文):Lin, Bi-FongChen, Jin-ShingCheng, Mei-LingLynn, Ke-Shiuan
口試日期:2019-07-23
學位類別:碩士
校院名稱:輔仁大學
系所名稱:營養科學系碩士班
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:75
中文關鍵詞:甲基營養狀態非小細胞肺癌乳酸能量代謝質體惡性腫瘤
外文關鍵詞:Methyl nutritional statusnon-small cell lung cancerlactatebioenergetic metabolomic signaturesmalignant tumor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
肺癌為癌症死因之首,85%為非小細胞肺癌。單碳營養狀態與肺癌風險有關,已知葉酸營養不良會重新編程 Warburg 代謝,誘導癌幹性表現釋出乳酸,改變微 細環境而誘導惡性進展。而台灣肺癌病人腫瘤能量代謝指印乳酸與單碳營養狀態可能有關。故本研究欲評估肺癌單碳營養狀態及乳酸與其之相關性,並以腫瘤代謝質體學應證。於台大醫院胸腔外科門診招募 54 位肺癌病患,以半定量飲食頻率問卷分析攝取量,收集血液分析單碳營養素; 採集 12對腫瘤/非腫瘤組織分析代謝質體。分析代謝體發現,腫瘤乳酸、ADP、AMP、GDP 代謝指標皆顯著高於非腫瘤組織,但葡萄糖卻顯著低於非腫瘤組織,表腫瘤極度需要能量。其他研究指出乳酸在腫瘤中可作燃料來源; 透過代謝體熱圖可推測腫瘤乳酸有往 TCA cycle 之趨勢。比較不同期別代謝體/葡萄糖比率,發現乳酸/葡萄糖比率在腫瘤後期顯著高於腫瘤前期。比較不同期別血液數值後發現,腫瘤後期乳酸濃度顯著高於良性腫瘤近2倍(p<.05)。亦發現隨期別增加,葉酸攝取量、維生素B12攝取量、紅血球葉酸濃度、血漿維生素B12濃度皆顯著增加 (p<.05); 再比較甲基營養素與乳酸之相關性,發現血漿乳酸與紅血球葉酸、血漿維生素B12濃度皆呈顯著正相關(r=0.329, p=0.015; r=0.453, p=0.004),推斷血漿乳酸與甲基營養有關。然而,腫瘤營養來自微細環境之血管提供養分,故欲瞭解台灣非小細胞肺癌病人甲基營養狀態,其中血液葉酸營養不良率為 18-20%,葉酸攝取營養不良者約佔1/3,其中 7.5% 為超越 UL 過量攝取 ; 血漿維生素B12營養不良率為11.1%,但皆為超越上限值之營養不良,維生素B12攝取營養不良率約1/5。綜上所述,目前仍需更多研究了解甲基營養素對於肺癌影響為何,方能在臨床上有更明確之營養補充方向。
Lung cancer is the leading cause of cancer death, 85% is non-small cell lung cancer (NSCLC). One carbon nutritional status was associated with lung cancer risk, folate malnutrition may reprogram Warburg metabolism, induced cancer stemness releasing lactate and changed microenvironment to motivate malignant tumor progression. However, tumor energy metabolite – lactate in Taiwan NSCLC patients may be related to one carbon nutrition which is unknown. Thus, it is necessary to evaluate NSCLC patients’ one carbon nutritional status, correlation between lactate and tumor metabolites. We recruited 54 lung cancer patients in NTUH Division of Thoracic Surgery, dietary intake was analyzed by semi-quantitative one carbon nutrient food frequency questionnaire, blood was analyzed for lactate and one carbon nutrients; 12 pairs tumor/non-tumor tissues were analyzed by metabolomics. We found that tumor metabolomic markers, such as lactate, ADP, AMP, and GDP were significantly higher than non-tumor tissues, but glucose was upside down, which meant that tumor extremely required energy. Other study found that lung tumor would use lactate as fuel; Through the correlation heat map, which assumed that lactate tended to TCA cycle. Compared several metabolites/glucose ratios at different stages, we were found that lactate/glucose ratio was significantly higher in late stage than early stage of tumor. Compared blood values of different stages, we found that lactate levels in tumor late stage was significantly higher than benign tumor (p<.05), it was also found that while tumor stages increased, folate intake, vitamin B12 intake, RBC folate levels, plasma vitamin B12 levels significantly increased too (p<.05). Compared the relationship between lactate and methyl nutrients, we found that RBC folate, plasma vitamin B12 had significantly positive correlation with plasma lactate (r=0.329, p=0.015; r=0.453, p=0.004). According to the above, we assumed that lactate was associated with methyl nutrition. However, tumor’s nutrition came from the microenvironment provided nutrients from blood vessel, therefore we needed to understand methyl nutritional status of NSCLC patients in Taiwan. Blood folate malnutrition rate 18-20%, folate intake malnutrition rate was 1/3, and 7.5% was exceeded UL. Blood vitamin B12 malnutrition rate was 11.1%, which was exceeded the upper limit level, and vitamin B12 malnutrition rate was 1/5. Therefore, more researches were needed to understand the effect between methyl nutrients and lung cancer, which could give the correct direction of methyl nutritional supplementation in clinical.
中文摘要 I
英文摘要 III
縮寫表 V
目錄 VII
表目錄 XI
圖目錄 XII
第一章 前言 1
第二章 文獻回顧 2
一、台灣國人肺癌死亡率及風險性 4
二、肺癌能量代謝質體學與腫瘤惡性進展 4
(一) 腫瘤能量代謝與惡性進展 4
(二) 癌症病人血液代謝質體分析 5
(三) 癌症病人腫瘤代謝質體分析 6
三、單碳營養狀態與肺癌之關係 7
(一) 單碳葉酸循環代謝途徑 7
(二) 葉酸 8
(三) 膽鹼 9
(四) 甜菜鹼 10
(五) 葉酸營養狀態與癌症風險性 11
(六) 葉酸、膽鹼、甜菜鹼營養狀態與肺癌風險性 13
四、台灣單碳營養素攝取量與肺癌惡性進展 13
五、研究目標 15
第三章 實驗架構與材料方法 16
一、實驗設計與流程 16
二、實驗材料與方法 18
(一) 研究對象 18
(二) 問卷 18
(三) 血液樣本 18
(四) 腫瘤樣本 18
(五) 儀器設備 18
(六) 實驗用試藥 18
三、實驗方法 19
(一) 問卷調查 19
(二) 血液單碳營養素分析 20
(三) 腫瘤代謝質體指標分析 21
四、統計分析 22
第四章 結果 23
ㄧ、台灣非小細胞肺癌患者之基本資料 23
二、肺癌腫瘤之臨床病理學特徵 23
三、比較腫瘤與非腫瘤組織間Targeted能量代謝質體指標 24
(一) 分析腫瘤vs. 配對非腫瘤組織間之特色代謝質 24
(二) 分析腫瘤組vs. 非腫瘤組間之特色代謝質 24
四、腫瘤特色代謝質乳酸與其它代謝質之相關性 25
五、不同期別腫瘤乳酸相關代謝質之差異性 25
(一) 比較不同期別乳酸相關代謝質差異趨勢性 25
(二) 比較不同期別乳酸相關代謝質差異性 26
六、不同期別肺癌病人周邊血液乳酸及血液葉酸濃度差異 26
七、肺癌病人周邊血液乳酸與單碳營養狀態相關性 27
八、監測台灣非小細胞肺癌病人單碳營養狀態 27
(一) 肺癌病人血液單碳營養狀態 27
(二) 肺癌病人單碳營養素攝取狀態 27
第五章 討論 29
一、台灣非小細胞肺癌患者基本資料 29
二、非小細胞肺癌腫瘤之臨床病理學特徵 29
三、比較腫瘤及非腫瘤組織之間標的性能量代謝質體指標 30
(一) 腫瘤vs. 配對非腫瘤組織間之特色代謝質 30
(二) 腫瘤組vs. 非腫瘤組間之特色代謝質 30
四、腫瘤特色代謝質乳酸與其它代謝質之相關性 31
五、不同期別腫瘤乳酸相關代謝質之差異性 32
六、比較不同期別血液乳酸及葉酸濃度之關係 32
(一) 不同期別肺癌血液乳酸及葉酸之差異性 32
(二) 比較血液乳酸與單碳營養狀態相關性 33
七、監測台灣非小細胞肺癌病人單碳營養狀態 33
第六章 結論 34
第七章 圖表 35
第八章 參考文獻 51
行政院衛生福利部 107 年國人死因統計統計結果。
潘文涵,陳冠如,林璧鳳,林以勤 (2009) 台灣十年來國人葉酸營養狀
況的變遷:由NASHIT 1993-1996 到 2005-2008,衛福部。行政院衛福部國民健康署 (2011) 國人膳食營養素參考攝取量第七版。
Bailey LB, Stover PJ, McNulty H, Fenech MF, Gregory JF, 3rd, Mills JL, et al. Biomarkers of Nutrition for Development-Folate Review. J Nutr. 2015;145:1636-1680.
Barrera-Rodriguez R, Morales-Fuentes J. Lung cancer in women. Lung Cancer (Auckl). 2012;3:79-89.
Blandin Knight S, Crosbie PA, Balata H, Chudziak J, Hussell T, Dive C.
Progress and prospects of early detection in lung cancer. Open Biol. 2017;7(9). pii:170070
Blom HJ, Shaw GM, den Heijer M, Finnell RH. Neural tube defects and folate: case far from closed. Nat Rev Neurosci. 2006;7:724-31.
Bodnar LM, Himes KP, Venkataramanan R, Chen JY, Evans RW, Meyer JL, Simhan HN. Maternal serum folate species in early pregnancy and risk of preterm birth. Am J Clin Nutr. 2010;92:864-71
Bonuccelli G, Tsirigos A, Whitaker-Menezes D, Pavlides S, Pestell RG,
Chiavarina B, et al. Ketones and lactate "fuel" tumor growth and metastasis: Evidence that epithelial cancer cells use oxidative mitochondrial metabolism. Cell Cycle. 2010;9:3506-14
Brasky TM, White E, Chen CL. Long-Term, Supplemental, One-Carbon
Metabolism-Related Vitamin B Use in Relation to Lung Cancer Risk in the Vitamins and Lifestyle (VITAL) Cohort. J Clin Oncol. 2017;35:3440-3448.
Chang JS, Chen LT, Shan YS, Lin SF, Hsiao SY, Tsai CR, Yu SJ, Tsai HJ. Comprehensive Analysis of the Incidence and Survival Patterns of Lung Cancer by Histologies, Including Rare Subtypes, in the Era of Molecular Medicine and Targeted Therapy: A Nation-Wide Cancer Registry-Based Study From Taiwan. Medicine (Baltimore). 2015;94:e969
Chen KJ, Pan WH, Yang FL, Wei IL, Shaw NS, Lin BF. Association of B vitamins status and homocysteine levels in elderly Taiwanese. Asia Pac J Clin Nutr. 2005;14:250-5.
Chen WJ, Huang RS. Low-folate stress reprograms cancer stem cell-like potentials and bioenergetics metabolism through activation of mTOR signaling pathway to promote in vitro invasion and in vivo tumorigenicity of lung cancers. J Nutr Biochem. 2018;53:28-38
Chian CF, Hwang YT, Terng HJ, Lee SC, Chao TY, Chang H, Ho CL, Wu YY, Perng WC. Panels of tumor-derived RNA markers in peripheral blood of patients with non-small cell lung cancer: their dependence on age, gender and clinical stages. Oncotarget. 2016;7:50582-95
Couraud S, Zalcman G, Milleron B, Morin F, Souquet PJ. Lung cancer in never smokers--a review. Eur J Cancer. 2012;48:1299-311.
Corominas-Faja B, Quirantes-Pine R, Oliveras-Ferraros C, Vazquez-Martin A, Cufi S, Martin-Castillo B, Micol V, Joven J, Segura-Carretero A, Menendez JA. Metabolomic fingerprint reveals that metformin impairs one-carbon metabolism in a manner similar to the antifolate class of chemotherapy drugs. Aging (Albany NY). 2012;4:480-98.
Cuyas E, Corominas-Faja B, Menendez JA. The nutritional phenome of EMT-induced cancer stem-like cells. Oncotarget. 2014;5:3970-82.
Da Cunha Santos G, Shepherd FA, Tsao MS. EGFR mutations and lung cancer. Annu Rev Pathol. 2011;6:49-69.
Detterbeck FC, Boffa DJ, Kim AW, Tanoue LT. The Eighth Edition Lung Cancer Stage Classification. Chest. 2017;51:193-203.
Dong J, Su SY, Wang MY, Zhan Z. Shenqi fuzheng, an injection concocted from Chinese medicinal herbs, combined with platinum-based chemotherapy for advanced non-small cell lung cancer: a systematic review. J Exp Clin Cancer Res. 2010;29:137.
Durda K, Kaklewski K, Gupta S, Szydlowski M, Baszuk P, Jaworska-Bieniek K, et al. Serum folate concentration and the incidence of lung cancer. PLoS One. 2017;12:e0177441.
Duthie SJ. Folate and cancer: how DNA damage, repair and methylation impact on colon carcinogenesis. J Inherit Metab Dis. 2011;34:101-9.
Ehrlich M. DNA hypomethylation in cancer cells. Epigenomics. 2009;1:239-59.
Fan TW, Lane AN, Higashi RM, Farag MA, Gao H, Bousamra M, Miller DM. Altered regulation of metabolic pathways in human lung cancer discerned by (13)C stable isotope-resolved metabolomics (SIRM). Mol Cancer. 2009;8:41.
Farber S, Diamond LK. Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-aminopteroyl-glutamic acid. N Engl J Med. 1948;238:787-93.
Greenberg JA, Bell SJ, Guan Y, Yu YH. Folic Acid supplementation and pregnancy: more than just neural tube defect prevention. Rev Obstet Gynecol. 2011;4:52-9.
Guertin KA, Moore SC, Sampson JN, Huang WY, Xiao Q, Stolzenberg-
Solomon RZ, Sinha R, Cross AJ. Metabolomics in nutritional epidemiology: identifying metabolites associated with diet and quantifying their potential to uncover diet-disease relations in populations. Am J Clin Nutr. 2014;100:208-17.
Haugen A, Ryberg D, Mollerup S, Zienolddiny S, Skaug V, Svendsrud DH. Gene-environment interactions in human lung cancer. Toxicol Lett. 2000;112-113:233-7.
Hori SS, Gambhir SS. Mathematical model identifies blood biomarker-based early cancer detection strategies and limitations. Sci Transl Med. 2011;3:109ra16.
Hsu PP, Sabatini DM. Cancer cell metabolism: Warburg and beyond. Cell. 2008;134:703-7.
Huang F, Pan B, Wu J, Chen E, Chen L. Relationship between exposure to PM2.5 and lung cancer incidence and mortality: A meta-analysis. Oncotarget. 2017;8:43322-43331.
Huang JY, Jian ZH, Nfor ON, Ku WY, Ko PC, Lung CC, et al. The effects of pulmonary diseases on histologic types of lung cancer in both sexes: a population-based study in Taiwan. BMC Cancer. 2015;15:834.
Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W et al.,
Glucose feeds the TCA cycle via circulating lactate. Nature. 2017;
551:115-118.
Jordan KW, Adkins CB, Su L, Halpern EF, Mark EJ, Christiani DC, Cheng LL. Comparison of squamous cell carcinoma and adenocarcinoma of the lung by metabolomic analysis of tissue-serum pairs. Lung Cancer. 2010;68:44-50
Kami K, Fujimori T, Sato H, Sato M, Yamamoto H, Ohashi Y, et al. Metabolomic profiling of lung and prostate tumor tissues by capillary electrophoresis time-of-flight mass spectrometry. Metabolomics. 2013;9:444-53.
Kim YI. Nutritional epigenetics: impact of folate deficiency on DNA
methylation and colon cancer susceptibility. J Nutr. 2005;135:2703-9.
Lapa Fda R, Soares KC, Rattmann YD, Crestani S, Missau FC, Pizzolatti MG, Marques MC, Rieck L, Santos AR. Vasorelaxant and hypotensive effects of the extract and the isolated flavonoid rutin obtained from Polygala paniculata L. J Pharm Pharmacol. 2011;63:875-81.
Li Z, Vance DE. Phosphatidylcholine and choline homeostasis. J Lipid Res. 2008;49:1187-94.
Louis E, Adriaensens P, Guedens W, Bigirumurame T, Baeten K, Vanhove K, et al. Detection of Lung Cancer through Metabolic Changes Measured in Blood Plasma. J Thorac Oncol. 2016;11:516-23.
Maeda J, Higashiyama M, Imaizumi A, Nakayama T, Yamamoto H, Daimon T, Yamakado M, Imamura F, Kodama K. Possibility of multivariate function composed of plasma amino acid profiles as a novel screening index for non-small cell lung cancer: a case control study. BMC Cancer. 2010;10:690.
Marien E, Meister M, Muley T, Fieuws S, Bordel S, Derua R, et al. Non-small cell lung cancer is characterized by dramatic changes in phospholipid profiles. Int J Cancer. 2015;137:1539-48
Menendez JA, Joven J, Cufi S, Corominas-Faja B, Oliveras-Ferraros C, Cuyas E, Martin-Castillo B, Lopez-Bonet E, Alarcon T, Vazquez-Martin A. The Warburg effect version 2.0: metabolic reprogramming of cancer stem cells. Cell Cycle. 2013;12:1166-79
Miwa M, Tsuboi M, Noguchi Y, Enokishima A, Nabeshima T, Hiramatsu M. Effects of betaine on lipopolysaccharide-induced memory impairment in mice and the involvement of GABA transporter 2. J Neuroinflammation. 2011;8:153.
Moreno P, Jimenez JC, Garrido RM, Calderon SM, Molina S, Lara CM, Priego CF, Salvatierra A, Munoz E, Calzado MA. Metabolomic profiling of human lung tumor tissues - nucleotide metabolism as a candidate for therapeutic interventions and biomarkers. Mol Oncol. 2018;12:1778-1796
Moreno P, Jiménez-Jiménez C, Garrido-Rodríguez M, Calderón-Santiago
M, Molina S, Lara-Chica M et al., Mol Oncol. 2018;12:1778-1796.
Musharraf SG, Mazhar S, Choudhary MI, Rizi N, Atta ur R. Plasma metabolite profiling and chemometric analyses of lung cancer along with three controls through gas chromatography-mass spectrometry. Sci Rep. 2015;5:8607.
Musharraf SG, Mazhar S, Choudhary MI, Rizi N, Atta-ur-Rahman. Plasma metabolite profiling and chemometric analyses of lung cancer along with three controls through gas chromatography-mass spectrometry. Sci Rep. 2015;5:8607.
Rycaj K, Tang DG. Cancer stem cells and radioresistance. Int J Radiat Biol. 2014;90:615-21.
Spies TD. Relief of pellagrous glossitis with synthetic folic acid. Am J Med. 1946;1:473-5.
Stern LL, Mason JB, Selhub J, Choi SW. Genomic DNA hypomethylation, a characteristic of most cancers, is present in peripheral leukocytes of individuals who are homozygous for the C677T polymorphism in the methylenetetrahydrofolate reductase gene. Cancer Epidemiol Biomarkers Prev. 2000;9:849-53.
Tanoue LT, Detterbeck FC. New TNM classification for non-small-cell lung cancer. Expert Rev Anticancer Ther. 2009;9:413-23
Tedeschi PM, Markert EK, Gounder M, Lin H, Dvorzhinski D, Dolfi SC, et al. Contribution of serine, folate and glycine metabolism to the ATP, NADPH and purine requirements of cancer cells. Cell Death Dis. 2013;4:e877.
Wen CP, Zhang F, Liang D, Wen C, Gu J, Skinner H, et al. The ability of bilirubin in identifying smokers with higher risk of lung cancer: a large cohort study in conjunction with global metabolomic profiling. Clin Cancer Res. 2015;21:193-200.
Wills L. Treatment of "pernicious anaemia of pregnancy" and "tropical anaemia" with special reference to yeast extract as a curative agent. Nutrition.1991;7:323-327.
Ying J, Rahbar MH, Hallman DM, Hernandez LM, Spitz MR, Forman MR, Gorlova OY. Associations between dietary intake of choline and betaine and lung cancer risk. PLoS One. 2013;8:e54561.
Zeisel SH. A brief history of choline. Ann Nutr Metab. 2012;61:254-8.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 高葉酸補充調轉乳酸能量代謝微細環境促進非小細胞肺癌惡性轉移之分子機轉
2. 低葉酸經由活化mTOR- HIF1a傳訊路徑誘發肺癌幹性和重新編程 乳酸能量代謝以促進肺癌轉移
3. 台灣非小細胞肺癌病人甲基營養狀態調轉肺癌腫瘤微細環境乳酸能量代謝指標與肺癌腫瘤惡性進展
4. 第一孕期孕婦甲基營養狀態與胎兒生長的相關性與表觀遺傳調控:台灣孕婦與新生兒表觀遺傳學世代研究
5. 葉酸營養與代謝抑制藥物相互作用調節乳酸能量代謝及肺癌轉移之分子機制
6. 單碳營養狀態與血液失智症病理指標及認知功能障礙進展之相關性
7. 咖啡豆價格預測:運用時間序列與機器學習建模方法之比較
8. 個體觀光目的地意象形成之探討--以九份聚落遊客為例
9. 甲基營養素攝取量與肥胖相關非酒精性脂肪肝風險
10. 肝細胞癌患者的葉酸營養狀態及單碳代謝酵素基因多型性與肝細胞癌風險之相關性
11. 台灣市售食品質地分級評析與餐食質地調整製備程序規劃
12. 葉酸和膽鹼營養狀態對腸炎性結腸癌的腫瘤微細環境與細胞能量代謝之影響
13. 集成學習應用於多分類產前胎兒檢測
14. 以國際股價指數與技術指標預測原油期貨價格趨勢之準確度比較-LSTM模型之應用
15. 不良葉酸營養微細環境調轉生物能量代謝誘導 結腸癌幹細胞惡性特質之蛋白質體指標檢定