跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/18 01:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳盈萱
研究生(外文):Chen,Ying-Hsuan
論文名稱:膽鹽對嗜水性產氣單胞桿菌抗藥機制的影響
論文名稱(外文):Effects of bile salts on the drug resistance mechanism of Aeromonas hydrophila
指導教授:羅宏仁羅宏仁引用關係
指導教授(外文):Horng,Ren-LO
口試委員:黃一修陳義元
口試委員(外文):Huang,I-HsiuChen,YI-YUAN
口試日期:2019-07-11
學位類別:碩士
校院名稱:輔英科技大學
系所名稱:醫學檢驗生物技術系碩士班
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:64
中文關鍵詞:嗜水氣單胞菌膽鹽生物膜耐藥性
外文關鍵詞:Aeromonas hydrophilaBile saltsBiofilmResistance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
嗜水性產氣單胞桿菌(Aeromonas hydrophila)是一種革蘭氏陰性的伺機性病原菌,廣泛分佈在各種水生環境中。此病原菌主要與淡水魚和兩棲動物中的疾病相關,對人類可能造成急性胃腸炎,蜂窩組織炎,腹膜炎和敗血症,患者多為免疫力低下的人。膽鹽是膽固醇的代謝產物,並且是膽汁的主要成分之一,膽鹽的主要作用是協助脂質乳化,增強其消化吸收。除此,膽鹽是有效的抗菌藥物,是腸內先天防禦的重要組成,可以保護免受微生物的侵害。因此,研究嗜水性產氣單胞桿菌和膽鹽之間的相互作用是理解其在宿主腸中定殖(colonization)能力的重要因素。生物膜是細菌生成的胞外聚合物(extracellular polymeric substances, EPS),具有保護細菌免於被抗菌劑殺死之作用。本研究之目的在探討嗜水性產氣單胞桿菌受到膽鹽處理時,抗藥機制之調控是否受到改變。我們利用結晶紫染色細胞外基質證實膽鹽明顯增加了細菌生物膜的形成,以定量反轉錄聚合酶連鎖反應(RT-qPCR)分析生物膜相關基因的轉錄活性,顯示膽鹽使嗜水性產氣單胞桿菌生物膜相關基因表現量增加。膽鹽同樣促使嗜水性產氣單胞桿菌的運動性降低,而細菌運動性的減少可能與抑制了運動相關因子flgE與motY的轉錄有關。我們也發現膽鹽加強了嗜水性產氣單胞桿菌藥物RND幫浦基因的表現以及藥物排出的能力。綜合以上實驗結果,我們證實了膽鹽可以提高嗜水性產氣單胞桿菌的生物膜合成以及藥物幫浦基因的表現,這可能加強此一病菌適應消
化道中的壓力環境以及建立菌叢的能力。

Aeromonas hydrophila is a Gram-negative opportunistic pathogen that is widely distributed in a variety of aquatic environments. This pathogen is usually associated with diseases in freshwater fish and amphibians; however it may also cause acute gastroenteritis, cellulitis, peritonitis and sepsis in immunocompromised people. Bile salts are metabolites of cholesterol and are one of the primary components of bile. The main function of bile acids is to aid in the digestion and absorption of lipids and lipid-soluble nutrients in the intestine. In addition, bile salts are potent antimicrobial agents and are an important component of innate defenses in the intestine, giving protection against invasive organisms. Commensal or pathogenic microorganisms must resist the deleterious actions of bile in order to survive in the human digestive tract. Thus investigating the interaction between A. hydrophila and bile salts is an important factor in understanding its ability to colonize in the host intestine. Biofilms are aggregated microbial cells embedded in a matrix of extracellular polymeric substances (EPS) that protect bacteria from killing by
antimicrobials, including bile salts. The purpose of this study was to investigate whether the drug resistance mechanisms of A. hydrophila were altered upon bile salts exposure. Crystal violet staining of bacterial EPS showed that bile salts significantly increased the formation of biofilms. We used quantitative reverse transcription polymerase chain reaction (RT-qPCR) to analyze the transcriptional activity of biofilm-related genes, and the results
showed that bile salts increased the expression of these genes. Bile salts also contribute to reduced the motility of A. hydrophila that may relate with the reduced transcription of flgE and motY. In addition, we also found that the transcription of RND efflux pump genes and the drug extrusion were increased by bile salts. Based on the above experimental results, we
confirmed that bile salts can improve the biofilm formation and efflux activity of A. hydrophila, which may enhance the ability of this pathogen to adapt to
the stressful condition and colonized in the digestive tract.

誌謝 -------------------------------------------------------------------------- i
中文摘要 -------------------------------------------------------------------------- ii
英文摘要 -------------------------------------------------------------------------- iv
目錄 -------------------------------------------------------------------------- vi
表目錄 -------------------------------------------------------------------------- viii
圖目錄 -------------------------------------------------------------------------- ix
符號說明 -------------------------------------------------------------------------- x
第一章 文獻探討-------------------------------------------------------------- 1
第一節 嗜水性產氣單胞桿菌介紹----------------------------------------- 1
一 嗜水性產氣單胞桿菌(Aeromonas hydrophila)----------------- 1
二 感染性疾病----------------------------------------------------------- 1
三 預防及治療----------------------------------------------------------- 1
四 致病毒力因子-------------------------------------------------------- 2
第二節 細菌與膽鹽之間的交互作用-------------------------------------- 3
一 膽鹽的生成與功能-------------------------------------------------- 3
二 細菌與膽鹽之關係-------------------------------------------------- 3
1 細菌的傷害----------------------------------------------------------- 3
1.1 蛋白質變性----------------------------------------------------------- 4
1.2 DNA損傷------------------------------------------------------------- 4
1.3 細胞膜損傷----------------------------------------------------------- 4
1.4 氧化壓力-------------------------------------------------------------- 5
2 細菌對抗膽鹽的機制----------------------------------------------- 5
2.1 代謝-------------------------------------------------------------------- 5
2.2 生物膜----------------------------------------------------------------- 6
2.3 幫浦系統-------------------------------------------------------------- 6
2.4 孔洞蛋白-------------------------------------------------------------- 7
3 細菌毒力因子之影響----------------------------------------------- 8
三 膽鹽對細菌基因調控機制之影響(在致病性)----------------- 9
第三節 研究動機與目的----------------------------------------------------- 11
第二章 材料與方法----------------------------------------------------------- 12
第一節 實驗菌株來源及保存方式----------------------------------------- 12
一 實驗菌株-------------------------------------------------------------- 12
二 細菌培養-------------------------------------------------------------- 12
三 細菌保存-------------------------------------------------------------- 12
第二節 核酸萃取方法及核酸引子----------------------------------------- 12
一 小量純化質體DNA ------------------------------------------------ 12
二 核酸引子-------------------------------------------------------------- 13
三 聚合酶連鎖反應(Polymerase chain reaction)------------------- 13
四 膠體電泳分析-------------------------------------------------------- 14
五 細菌之RNA萃取(傳統法及套組) ------------------------------ 14
(1) 傳統法----------------------------------------------------------------- 14
(2) 套組-------------------------------------------------------------------- 15
六 RNA反轉錄聚合酶連鎖反應(reverse transcription-PCR) 16
七 即時聚合酶連鎖反應(Real-time PCR)----------------------- 16
第三節 菌株特性分析-------------------------------------------------------- 17
一 細菌生長抑制試驗-------------------------------------------------- 17
二 細菌存活率試驗 ---------------------------------------------------- 17
三 細菌對膽鹽的感受性試驗 ---------------------------------------- 17
四 生物膜定量試驗 ---------------------------------------------------- 18
五 運動性分析 ---------------------------------------------------------- 18
六 蛋白酶水解活性 ---------------------------------------------------- 18
七 溶血試驗 ------------------------------------------------------------- 18
八 外排幫浦活性(efflux activity)試驗------------------------------- 19
第四節 生物資訊分析-------------------------------------------------------- 19
第三章 研究結果-------------------------------------------------------------- 21
第一節 菌株特性分析-------------------------------------------------------- 21
一 藥物感受性試驗----------------------------------------------------- 21
二 生長能力試驗-------------------------------------------------------- 21
第二節 生物膜、運動性及RND轉運蛋白同源基因之分析--------- 21
一 生物資訊分析-------------------------------------------------------- 22
二 基因反轉錄聚合酶連鎖反應(reverse transcription-PCR)之分析----------------------------------------------------------------- 22
第三節 生物膜合成之能力-------------------------------------------------- 22
第四節 運動性試驗----------------------------------------------------------- 24
第五節 RND外排幫浦------------------------------------------------------- 24
一 RND外排幫浦基因之表現---------------------------------------- 25
二 外排幫浦活性(efflux activity)試驗------------------------------- 25
第六節 蛋白酶試驗----------------------------------------------------------- 25
第七節 溶血試驗-------------------------------------------------------------- 26
第四章 討論-------------------------------------------------------------------- 27
參考文獻 -------------------------------------------------------------------------- 31

1.Janda, J.M. and S.L. Abbott, The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev, 2010. 23(1): p. 35-73.
2.Hochedez, P., et al., Bacteremia caused by Aeromonas hydrophila complex in the Caribbean Islands of Martinique and Guadeloupe. The American journal of tropical medicine and hygiene, 2010. 83(5): p. 1123-1127.
3.Dong, J., et al., Morin Protects Channel Catfish From Aeromonas hydrophila Infection by Blocking Aerolysin Activity. Front Microbiol, 2018. 9: p. 2828.
4.Abreu, R.E., et al., Environmental factors on virulence of Aeromonas hydrophila. Aquaculture international, 2018. 26(2): p. 495-507.
5.Jiravanichpaisal, P., et al., A highly virulent pathogen, Aeromonas hydrophila, from the freshwater crayfish Pacifastacus leniusculus. J Invertebr Pathol, 2009. 101(1): p. 56-66.
6.Chauret, C., et al., Detection of Aeromonas hydrophila in a drinking-water distribution system: a field and pilot study. Can J Microbiol, 2001. 47(8): p. 782-6.
7.Shak, J.R., et al., Aminoglycoside-resistant Aeromonas hydrophila as part of a polymicrobial infection following a traumatic fall into freshwater. J Clin Microbiol, 2011. 49(3): p. 1169-70.
8.Tomas, J.M., The main Aeromonas pathogenic factors. ISRN Microbiol, 2012. 2012: p. 256261.
9.Rasmussen-Ivey, C.R., et al., Virulence Factors of Aeromonas hydrophila: In the Wake of Reclassification. Front Microbiol, 2016. 7: p. 1337.
10.Awan, F., et al., Comparative genome analysis provides deep insights into Aeromonas hydrophila taxonomy and virulence-related factors. BMC Genomics, 2018. 19(1): p. 712.
11.Romero, A., et al., The Animal Model Determines the Results of Aeromonas Virulence Factors. Front Microbiol, 2016. 7: p. 1574.
12.Silva, L., et al., Genetic diversity and virulence potential of clinical and environmental Aeromonas spp. isolates from a diarrhea outbreak. BMC Microbiol, 2017. 17(1): p. 179.
13.Rama Devi, K., et al., In vitro and in vivo efficacy of rosmarinic acid on quorum sensing mediated biofilm formation and virulence factor production in Aeromonas hydrophila. Biofouling, 2016. 32(10): p. 1171-1183.
14.Zhang, X., et al., Functional genomic analysis of bile salt resistance in Enterococcus faecium. BMC Genomics, 2013. 14: p. 299.
15.Esteller, A., Physiology of bile secretion. World J Gastroenterol, 2008. 14(37): p. 5641-9.
16.Ridlon, J.M., D.J. Kang, and P.B. Hylemon, Bile salt biotransformations by human intestinal bacteria. J Lipid Res, 2006. 47(2): p. 241-59.
17.Pumbwe, L., et al., Bile salts enhance bacterial co-aggregation, bacterial-intestinal epithelial cell adhesion, biofilm formation and antimicrobial resistance of Bacteroides fragilis. Microb Pathog, 2007. 43(2-3): p. 78-87.
18.Urdaneta, V. and J. Casadesus, Interactions between Bacteria and Bile Salts in the Gastrointestinal and Hepatobiliary Tracts. Front Med (Lausanne), 2017. 4: p. 163.
19.Merritt, M.E. and J.R. Donaldson, Effect of bile salts on the DNA and membrane integrity of enteric bacteria. J Med Microbiol, 2009. 58(Pt 12): p. 1533-41.
20.Xu, Q., et al., The MarR Family Regulator BmrR Is Involved in Bile Tolerance of Bifidobacterium longum BBMN68 via Controlling the Expression of an ABC Transporter. Appl Environ Microbiol, 2019. 85(3).
21.van Velkinburgh, J.C. and J.S. Gunn, PhoP-PhoQ-regulated loci are required for enhanced bile resistance in Salmonella spp. Infect Immun, 1999. 67(4): p. 1614-22.
22.Sievers, S., et al., Differential View on the Bile Acid Stress Response of Clostridioides difficile. Front Microbiol, 2019. 10: p. 258.
23.Kandell, R.L. and C. Bernstein, Bile salt/acid induction of DNA damage in bacterial and mammalian cells: implications for colon cancer. Nutr Cancer, 1991. 16(3-4): p. 227-38.
24.Prieto, A.I., F. Ramos-Morales, and J. Casadesus, Bile-induced DNA damage in Salmonella enterica. Genetics, 2004. 168(4): p. 1787-94.
25.Leverrier, P., et al., Susceptibility and adaptive response to bile salts in Propionibacterium freudenreichii: physiological and proteomic analysis. Appl Environ Microbiol, 2003. 69(7): p. 3809-18.
26.Begley, M., C.G. Gahan, and C. Hill, The interaction between bacteria and bile. FEMS Microbiol Rev, 2005. 29(4): p. 625-51.
27.Prieto, A.I., F. Ramos-Morales, and J. Casadesus, Repair of DNA damage induced by bile salts in Salmonella enterica. Genetics, 2006. 174(2): p. 575-84.
28.Bernstein, C., et al., Bile salt activation of stress response promoters in Escherichia coli. Curr Microbiol, 1999. 39(2): p. 68-72.
29.Long, S.L., C.G.M. Gahan, and S.A. Joyce, Interactions between gut bacteria and bile in health and disease. Mol Aspects Med, 2017. 56: p. 54-65.
30.Parasar, B., et al., Chemoproteomic Profiling of Gut Microbiota-Associated Bile Salt Hydrolase Activity. ACS Cent Sci, 2019. 5(5): p. 867-873.
31.Boltz, J.P., et al., From biofilm ecology to reactors: a focused review. Water Sci Technol, 2017. 75(7-8): p. 1753-1760.
32.Venkatesan, N., G. Perumal, and M. Doble, Bacterial resistance in biofilm-associated bacteria. Future Microbiol, 2015. 10(11): p. 1743-50.
33.Subhadra, B., et al., Control of Biofilm Formation in Healthcare: Recent Advances Exploiting Quorum-Sensing Interference Strategies and Multidrug Efflux Pump Inhibitors. Materials (Basel), 2018. 11(9).
34.Chakraborty, P. and A. Kumar, The extracellular matrix of mycobacterial biofilms: could we shorten the treatment of mycobacterial infections? Microb Cell, 2019. 6(2): p. 105-122.
35.Rivera-Cancel, G. and K. Orth, Biochemical basis for activation of virulence genes by bile salts in Vibrio parahaemolyticus. Gut Microbes, 2017. 8(4): p. 366-373.
36.Ramli, N.S., et al., The effect of environmental conditions on biofilm formation of Burkholderia pseudomallei clinical isolates. PLoS One, 2012. 7(9): p. e44104.
37.Clinton, A. and T. Carter, Chronic Wound Biofilms: Pathogenesis and Potential Therapies. Lab Med, 2015. 46(4): p. 277-84.
38.Nickerson, K.P., et al., Analysis of Shigella flexneri Resistance, Biofilm Formation, and Transcriptional Profile in Response to Bile Salts. Infect Immun, 2017. 85(6).
39.Crawford, R.W., et al., Identification of a bile-induced exopolysaccharide required for Salmonella biofilm formation on gallstone surfaces. Infect Immun, 2008. 76(11): p. 5341-9.
40.Piddock, L.J., Multidrug-resistance efflux pumps - not just for resistance. Nat Rev Microbiol, 2006. 4(8): p. 629-36.
41.Li, X.Z., P. Plesiat, and H. Nikaido, The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev, 2015. 28(2): p. 337-418.
42.Ma, D., et al., Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol Microbiol, 1995. 16(1): p. 45-55.
43.Li, X.Z., H. Nikaido, and K. Poole, Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother, 1995. 39(9): p. 1948-53.
44.Ferrer-Espada, R., et al., A permeability-increasing drug synergizes with bacterial efflux pump inhibitors and restores susceptibility to antibiotics in multi-drug resistant Pseudomonas aeruginosa strains. Sci Rep, 2019. 9(1): p. 3452.
45.Lin, J., et al., Critical role of multidrug efflux pump CmeABC in bile resistance and in vivo colonization of Campylobacter jejuni. Infect Immun, 2003. 71(8): p. 4250-9.
46.Sistrunk, J.R., et al., Survival of the Fittest: How Bacterial Pathogens Utilize Bile To Enhance Infection. Clin Microbiol Rev, 2016. 29(4): p. 819-36.
47.Kus, J.V., et al., Bile salts induce resistance to polymyxin in enterohemorrhagic Escherichia coli O157:H7. J Bacteriol, 2011. 193(17): p. 4509-15.
48.Hamner, S., et al., Bile salts affect expression of Escherichia coli O157:H7 genes for virulence and iron acquisition, and promote growth under iron limiting conditions. PLoS One, 2013. 8(9): p. e74647.
49.Joffre, E., et al., The bile salt glycocholate induces global changes in gene and protein expression and activates virulence in enterotoxigenic Escherichia coli. Sci Rep, 2019. 9(1): p. 108.
50.Prouty, A.M., W.H. Schwesinger, and J.S. Gunn, Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infect Immun, 2002. 70(5): p. 2640-9.
51.Letchumanan, V., et al., Bile Sensing: The Activation of Vibrio parahaemolyticus Virulence. Front Microbiol, 2017. 8: p. 728.
52.Patel, B., et al., Disruption of the quorum sensing regulated pathogenic traits of the biofilm-forming fish pathogen Aeromonas hydrophila by tannic acid, a potent quorum quencher. Biofouling, 2017. 33(7): p. 580-590.
53.Kwan, B.W., et al., The MqsR/MqsA toxin/antitoxin system protects Escherichia coli during bile acid stress. Environ Microbiol, 2015. 17(9): p. 3168-81.
54.Hay, A.J. and J. Zhu, Host intestinal signal-promoted biofilm dispersal induces Vibrio cholerae colonization. Infect Immun, 2015. 83(1): p. 317-23.
55.Guttenplan, S.B. and D.B. Kearns, Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev, 2013. 37(6): p. 849-71.
56.Shrout, J.D., et al., The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol, 2006. 62(5): p. 1264-77.
57.Rodriguez-Beltran, J., et al., The Escherichia coli SOS gene dinF protects against oxidative stress and bile salts. PLoS One, 2012. 7(4): p. e34791.
58.Zhou, Z., et al., Activation of EGFR-DNA-PKcs pathway by IGFBP2 protects esophageal adenocarcinoma cells from acidic bile salts-induced DNA damage. J Exp Clin Cancer Res, 2019. 38(1): p. 13.
59.Muchova, L., et al., Bile acids decrease intracellular bilirubin levels in the cholestatic liver: implications for bile acid-mediated oxidative stress. J Cell Mol Med, 2011. 15(5): p. 1156-65.
60.Walawalkar, Y.D., Y. Vaidya, and V. Nayak, Response of Salmonella Typhi to bile-generated oxidative stress: implication of quorum sensing and persister cell populations. Pathog Dis, 2016. 74(8).
61.Seshadri, R., et al., Genome sequence of Aeromonas hydrophila ATCC 7966T: jack of all trades. J Bacteriol, 2006. 188(23): p. 8272-82.
62.Misra, R., et al., Importance of Real-Time Assays To Distinguish Multidrug Efflux Pump-Inhibiting and Outer Membrane-Destabilizing Activities in Escherichia coli. J Bacteriol, 2015. 197(15): p. 2479-88.
63.Du, H., et al., Identification and Characterization of an Aeromonas hydrophila Oligopeptidase Gene pepF Negatively Related to Biofilm Formation. Front Microbiol, 2016. 7: p. 1497.
64.Qin, Y., et al., Flagellar motility contributes to the invasion and survival of Aeromonas hydrophila in Anguilla japonica macrophages. Fish Shellfish Immunol, 2014. 39(2): p. 273-9.
65.Molero, R., et al., Aeromonas hydrophila motY is essential for polar flagellum function, and requires coordinate expression of motX and Pom proteins. Microbiology, 2011. 157(Pt 10): p. 2772-84.
66.Hung, D.T., et al., Bile acids stimulate biofilm formation in Vibrio cholerae. Mol Microbiol, 2006. 59(1): p. 193-201.
67.McKenney, P.T., et al., Intestinal Bile Acids Induce a Morphotype Switch in Vancomycin-Resistant Enterococcus that Facilitates Intestinal Colonization. Cell Host Microbe, 2019. 25(5): p. 695-705 e5.
68.Paul, S., et al., A single-component multidrug transporter of the major facilitator superfamily is part of a network that protects Escherichia coli from bile salt stress. Mol Microbiol, 2014. 92(4): p. 872-84.
69.Hung, R.J., et al., Comparative analysis of two UDP-glucose dehydrogenases in Pseudomonas aeruginosa PAO1. J Biol Chem, 2007. 282(24): p. 17738-48.
70.Nucleo, E., et al., Growth in glucose-based medium and exposure to subinhibitory concentrations of imipenem induce biofilm formation in a multidrug-resistant clinical isolate of Acinetobacter baumannii. BMC Microbiol, 2009. 9: p. 270.
71.Reen, F.J., et al., Respiratory pathogens adopt a chronic lifestyle in response to bile. PLoS One, 2012. 7(9): p. e45978.
72.Prouty, A.M., et al., Transcriptional regulation of Salmonella enterica serovar Typhimurium genes by bile. FEMS Immunol Med Microbiol, 2004. 41(2): p. 177-85.
73.Gupta, S. and R. Chowdhury, Bile affects production of virulence factors and motility of Vibrio cholerae. Infect Immun, 1997. 65(3): p. 1131-4.
74.Svensson, S.L., M. Pryjma, and E.C. Gaynor, Flagella-mediated adhesion and extracellular DNA release contribute to biofilm formation and stress tolerance of Campylobacter jejuni. PLoS One, 2014. 9(8): p. e106063.
75.Klausen, M., et al., Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol, 2003. 48(6): p. 1511-24.
76.Baucheron, S., et al., Bile-mediated activation of the acrAB and tolC multidrug efflux genes occurs mainly through transcriptional derepression of ramA in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother, 2014. 69(9): p. 2400-6.
77.Chatterjee, A., et al., Effect of bile on the cell surface permeability barrier and efflux system of Vibrio cholerae. J Bacteriol, 2004. 186(20): p. 6809-14.
78.Knight, D.B., et al., Acinetobacter nosocomialis: Defining the Role of Efflux Pumps in Resistance to Antimicrobial Therapy, Surface Motility, and Biofilm Formation. Front Microbiol, 2018. 9: p. 1902.
79.Matsumura, K., et al., Roles of multidrug efflux pumps on the biofilm formation of Escherichia coli K-12. Biocontrol Sci, 2011. 16(2): p. 69-72.
80.Alav, I., J.M. Sutton, and K.M. Rahman, Role of bacterial efflux pumps in biofilm formation. J Antimicrob Chemother, 2018. 73(8): p. 2003-2020.
81.Freire, N.B., et al., Nutritional interference for phenotypic biofilm quantification in Aeromonas spp. isolates containing the fla gene. Microb Pathog, 2019. 127: p. 198-201.
82.Holscher, T., et al., Motility, Chemotaxis and Aerotaxis Contribute to Competitiveness during Bacterial Pellicle Biofilm Development. J Mol Biol, 2015. 427(23): p. 3695-3708.
83.Yoon, Y. and J.N. Sofos, Autoinducer-2 activity of gram-negative foodborne pathogenic bacteria and its influence on biofilm formation. J Food Sci, 2008. 73(3): p. M140-7.
84.Grinnage-Pulley, T., et al., Dual Repression of the Multidrug Efflux Pump CmeABC by CosR and CmeR in Campylobacter jejuni. Front Microbiol, 2016. 7: p. 1097.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top