|
1.Janda, J.M. and S.L. Abbott, The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev, 2010. 23(1): p. 35-73. 2.Hochedez, P., et al., Bacteremia caused by Aeromonas hydrophila complex in the Caribbean Islands of Martinique and Guadeloupe. The American journal of tropical medicine and hygiene, 2010. 83(5): p. 1123-1127. 3.Dong, J., et al., Morin Protects Channel Catfish From Aeromonas hydrophila Infection by Blocking Aerolysin Activity. Front Microbiol, 2018. 9: p. 2828. 4.Abreu, R.E., et al., Environmental factors on virulence of Aeromonas hydrophila. Aquaculture international, 2018. 26(2): p. 495-507. 5.Jiravanichpaisal, P., et al., A highly virulent pathogen, Aeromonas hydrophila, from the freshwater crayfish Pacifastacus leniusculus. J Invertebr Pathol, 2009. 101(1): p. 56-66. 6.Chauret, C., et al., Detection of Aeromonas hydrophila in a drinking-water distribution system: a field and pilot study. Can J Microbiol, 2001. 47(8): p. 782-6. 7.Shak, J.R., et al., Aminoglycoside-resistant Aeromonas hydrophila as part of a polymicrobial infection following a traumatic fall into freshwater. J Clin Microbiol, 2011. 49(3): p. 1169-70. 8.Tomas, J.M., The main Aeromonas pathogenic factors. ISRN Microbiol, 2012. 2012: p. 256261. 9.Rasmussen-Ivey, C.R., et al., Virulence Factors of Aeromonas hydrophila: In the Wake of Reclassification. Front Microbiol, 2016. 7: p. 1337. 10.Awan, F., et al., Comparative genome analysis provides deep insights into Aeromonas hydrophila taxonomy and virulence-related factors. BMC Genomics, 2018. 19(1): p. 712. 11.Romero, A., et al., The Animal Model Determines the Results of Aeromonas Virulence Factors. Front Microbiol, 2016. 7: p. 1574. 12.Silva, L., et al., Genetic diversity and virulence potential of clinical and environmental Aeromonas spp. isolates from a diarrhea outbreak. BMC Microbiol, 2017. 17(1): p. 179. 13.Rama Devi, K., et al., In vitro and in vivo efficacy of rosmarinic acid on quorum sensing mediated biofilm formation and virulence factor production in Aeromonas hydrophila. Biofouling, 2016. 32(10): p. 1171-1183. 14.Zhang, X., et al., Functional genomic analysis of bile salt resistance in Enterococcus faecium. BMC Genomics, 2013. 14: p. 299. 15.Esteller, A., Physiology of bile secretion. World J Gastroenterol, 2008. 14(37): p. 5641-9. 16.Ridlon, J.M., D.J. Kang, and P.B. Hylemon, Bile salt biotransformations by human intestinal bacteria. J Lipid Res, 2006. 47(2): p. 241-59. 17.Pumbwe, L., et al., Bile salts enhance bacterial co-aggregation, bacterial-intestinal epithelial cell adhesion, biofilm formation and antimicrobial resistance of Bacteroides fragilis. Microb Pathog, 2007. 43(2-3): p. 78-87. 18.Urdaneta, V. and J. Casadesus, Interactions between Bacteria and Bile Salts in the Gastrointestinal and Hepatobiliary Tracts. Front Med (Lausanne), 2017. 4: p. 163. 19.Merritt, M.E. and J.R. Donaldson, Effect of bile salts on the DNA and membrane integrity of enteric bacteria. J Med Microbiol, 2009. 58(Pt 12): p. 1533-41. 20.Xu, Q., et al., The MarR Family Regulator BmrR Is Involved in Bile Tolerance of Bifidobacterium longum BBMN68 via Controlling the Expression of an ABC Transporter. Appl Environ Microbiol, 2019. 85(3). 21.van Velkinburgh, J.C. and J.S. Gunn, PhoP-PhoQ-regulated loci are required for enhanced bile resistance in Salmonella spp. Infect Immun, 1999. 67(4): p. 1614-22. 22.Sievers, S., et al., Differential View on the Bile Acid Stress Response of Clostridioides difficile. Front Microbiol, 2019. 10: p. 258. 23.Kandell, R.L. and C. Bernstein, Bile salt/acid induction of DNA damage in bacterial and mammalian cells: implications for colon cancer. Nutr Cancer, 1991. 16(3-4): p. 227-38. 24.Prieto, A.I., F. Ramos-Morales, and J. Casadesus, Bile-induced DNA damage in Salmonella enterica. Genetics, 2004. 168(4): p. 1787-94. 25.Leverrier, P., et al., Susceptibility and adaptive response to bile salts in Propionibacterium freudenreichii: physiological and proteomic analysis. Appl Environ Microbiol, 2003. 69(7): p. 3809-18. 26.Begley, M., C.G. Gahan, and C. Hill, The interaction between bacteria and bile. FEMS Microbiol Rev, 2005. 29(4): p. 625-51. 27.Prieto, A.I., F. Ramos-Morales, and J. Casadesus, Repair of DNA damage induced by bile salts in Salmonella enterica. Genetics, 2006. 174(2): p. 575-84. 28.Bernstein, C., et al., Bile salt activation of stress response promoters in Escherichia coli. Curr Microbiol, 1999. 39(2): p. 68-72. 29.Long, S.L., C.G.M. Gahan, and S.A. Joyce, Interactions between gut bacteria and bile in health and disease. Mol Aspects Med, 2017. 56: p. 54-65. 30.Parasar, B., et al., Chemoproteomic Profiling of Gut Microbiota-Associated Bile Salt Hydrolase Activity. ACS Cent Sci, 2019. 5(5): p. 867-873. 31.Boltz, J.P., et al., From biofilm ecology to reactors: a focused review. Water Sci Technol, 2017. 75(7-8): p. 1753-1760. 32.Venkatesan, N., G. Perumal, and M. Doble, Bacterial resistance in biofilm-associated bacteria. Future Microbiol, 2015. 10(11): p. 1743-50. 33.Subhadra, B., et al., Control of Biofilm Formation in Healthcare: Recent Advances Exploiting Quorum-Sensing Interference Strategies and Multidrug Efflux Pump Inhibitors. Materials (Basel), 2018. 11(9). 34.Chakraborty, P. and A. Kumar, The extracellular matrix of mycobacterial biofilms: could we shorten the treatment of mycobacterial infections? Microb Cell, 2019. 6(2): p. 105-122. 35.Rivera-Cancel, G. and K. Orth, Biochemical basis for activation of virulence genes by bile salts in Vibrio parahaemolyticus. Gut Microbes, 2017. 8(4): p. 366-373. 36.Ramli, N.S., et al., The effect of environmental conditions on biofilm formation of Burkholderia pseudomallei clinical isolates. PLoS One, 2012. 7(9): p. e44104. 37.Clinton, A. and T. Carter, Chronic Wound Biofilms: Pathogenesis and Potential Therapies. Lab Med, 2015. 46(4): p. 277-84. 38.Nickerson, K.P., et al., Analysis of Shigella flexneri Resistance, Biofilm Formation, and Transcriptional Profile in Response to Bile Salts. Infect Immun, 2017. 85(6). 39.Crawford, R.W., et al., Identification of a bile-induced exopolysaccharide required for Salmonella biofilm formation on gallstone surfaces. Infect Immun, 2008. 76(11): p. 5341-9. 40.Piddock, L.J., Multidrug-resistance efflux pumps - not just for resistance. Nat Rev Microbiol, 2006. 4(8): p. 629-36. 41.Li, X.Z., P. Plesiat, and H. Nikaido, The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev, 2015. 28(2): p. 337-418. 42.Ma, D., et al., Genes acrA and acrB encode a stress-induced efflux system of Escherichia coli. Mol Microbiol, 1995. 16(1): p. 45-55. 43.Li, X.Z., H. Nikaido, and K. Poole, Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa. Antimicrob Agents Chemother, 1995. 39(9): p. 1948-53. 44.Ferrer-Espada, R., et al., A permeability-increasing drug synergizes with bacterial efflux pump inhibitors and restores susceptibility to antibiotics in multi-drug resistant Pseudomonas aeruginosa strains. Sci Rep, 2019. 9(1): p. 3452. 45.Lin, J., et al., Critical role of multidrug efflux pump CmeABC in bile resistance and in vivo colonization of Campylobacter jejuni. Infect Immun, 2003. 71(8): p. 4250-9. 46.Sistrunk, J.R., et al., Survival of the Fittest: How Bacterial Pathogens Utilize Bile To Enhance Infection. Clin Microbiol Rev, 2016. 29(4): p. 819-36. 47.Kus, J.V., et al., Bile salts induce resistance to polymyxin in enterohemorrhagic Escherichia coli O157:H7. J Bacteriol, 2011. 193(17): p. 4509-15. 48.Hamner, S., et al., Bile salts affect expression of Escherichia coli O157:H7 genes for virulence and iron acquisition, and promote growth under iron limiting conditions. PLoS One, 2013. 8(9): p. e74647. 49.Joffre, E., et al., The bile salt glycocholate induces global changes in gene and protein expression and activates virulence in enterotoxigenic Escherichia coli. Sci Rep, 2019. 9(1): p. 108. 50.Prouty, A.M., W.H. Schwesinger, and J.S. Gunn, Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infect Immun, 2002. 70(5): p. 2640-9. 51.Letchumanan, V., et al., Bile Sensing: The Activation of Vibrio parahaemolyticus Virulence. Front Microbiol, 2017. 8: p. 728. 52.Patel, B., et al., Disruption of the quorum sensing regulated pathogenic traits of the biofilm-forming fish pathogen Aeromonas hydrophila by tannic acid, a potent quorum quencher. Biofouling, 2017. 33(7): p. 580-590. 53.Kwan, B.W., et al., The MqsR/MqsA toxin/antitoxin system protects Escherichia coli during bile acid stress. Environ Microbiol, 2015. 17(9): p. 3168-81. 54.Hay, A.J. and J. Zhu, Host intestinal signal-promoted biofilm dispersal induces Vibrio cholerae colonization. Infect Immun, 2015. 83(1): p. 317-23. 55.Guttenplan, S.B. and D.B. Kearns, Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev, 2013. 37(6): p. 849-71. 56.Shrout, J.D., et al., The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol, 2006. 62(5): p. 1264-77. 57.Rodriguez-Beltran, J., et al., The Escherichia coli SOS gene dinF protects against oxidative stress and bile salts. PLoS One, 2012. 7(4): p. e34791. 58.Zhou, Z., et al., Activation of EGFR-DNA-PKcs pathway by IGFBP2 protects esophageal adenocarcinoma cells from acidic bile salts-induced DNA damage. J Exp Clin Cancer Res, 2019. 38(1): p. 13. 59.Muchova, L., et al., Bile acids decrease intracellular bilirubin levels in the cholestatic liver: implications for bile acid-mediated oxidative stress. J Cell Mol Med, 2011. 15(5): p. 1156-65. 60.Walawalkar, Y.D., Y. Vaidya, and V. Nayak, Response of Salmonella Typhi to bile-generated oxidative stress: implication of quorum sensing and persister cell populations. Pathog Dis, 2016. 74(8). 61.Seshadri, R., et al., Genome sequence of Aeromonas hydrophila ATCC 7966T: jack of all trades. J Bacteriol, 2006. 188(23): p. 8272-82. 62.Misra, R., et al., Importance of Real-Time Assays To Distinguish Multidrug Efflux Pump-Inhibiting and Outer Membrane-Destabilizing Activities in Escherichia coli. J Bacteriol, 2015. 197(15): p. 2479-88. 63.Du, H., et al., Identification and Characterization of an Aeromonas hydrophila Oligopeptidase Gene pepF Negatively Related to Biofilm Formation. Front Microbiol, 2016. 7: p. 1497. 64.Qin, Y., et al., Flagellar motility contributes to the invasion and survival of Aeromonas hydrophila in Anguilla japonica macrophages. Fish Shellfish Immunol, 2014. 39(2): p. 273-9. 65.Molero, R., et al., Aeromonas hydrophila motY is essential for polar flagellum function, and requires coordinate expression of motX and Pom proteins. Microbiology, 2011. 157(Pt 10): p. 2772-84. 66.Hung, D.T., et al., Bile acids stimulate biofilm formation in Vibrio cholerae. Mol Microbiol, 2006. 59(1): p. 193-201. 67.McKenney, P.T., et al., Intestinal Bile Acids Induce a Morphotype Switch in Vancomycin-Resistant Enterococcus that Facilitates Intestinal Colonization. Cell Host Microbe, 2019. 25(5): p. 695-705 e5. 68.Paul, S., et al., A single-component multidrug transporter of the major facilitator superfamily is part of a network that protects Escherichia coli from bile salt stress. Mol Microbiol, 2014. 92(4): p. 872-84. 69.Hung, R.J., et al., Comparative analysis of two UDP-glucose dehydrogenases in Pseudomonas aeruginosa PAO1. J Biol Chem, 2007. 282(24): p. 17738-48. 70.Nucleo, E., et al., Growth in glucose-based medium and exposure to subinhibitory concentrations of imipenem induce biofilm formation in a multidrug-resistant clinical isolate of Acinetobacter baumannii. BMC Microbiol, 2009. 9: p. 270. 71.Reen, F.J., et al., Respiratory pathogens adopt a chronic lifestyle in response to bile. PLoS One, 2012. 7(9): p. e45978. 72.Prouty, A.M., et al., Transcriptional regulation of Salmonella enterica serovar Typhimurium genes by bile. FEMS Immunol Med Microbiol, 2004. 41(2): p. 177-85. 73.Gupta, S. and R. Chowdhury, Bile affects production of virulence factors and motility of Vibrio cholerae. Infect Immun, 1997. 65(3): p. 1131-4. 74.Svensson, S.L., M. Pryjma, and E.C. Gaynor, Flagella-mediated adhesion and extracellular DNA release contribute to biofilm formation and stress tolerance of Campylobacter jejuni. PLoS One, 2014. 9(8): p. e106063. 75.Klausen, M., et al., Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol, 2003. 48(6): p. 1511-24. 76.Baucheron, S., et al., Bile-mediated activation of the acrAB and tolC multidrug efflux genes occurs mainly through transcriptional derepression of ramA in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother, 2014. 69(9): p. 2400-6. 77.Chatterjee, A., et al., Effect of bile on the cell surface permeability barrier and efflux system of Vibrio cholerae. J Bacteriol, 2004. 186(20): p. 6809-14. 78.Knight, D.B., et al., Acinetobacter nosocomialis: Defining the Role of Efflux Pumps in Resistance to Antimicrobial Therapy, Surface Motility, and Biofilm Formation. Front Microbiol, 2018. 9: p. 1902. 79.Matsumura, K., et al., Roles of multidrug efflux pumps on the biofilm formation of Escherichia coli K-12. Biocontrol Sci, 2011. 16(2): p. 69-72. 80.Alav, I., J.M. Sutton, and K.M. Rahman, Role of bacterial efflux pumps in biofilm formation. J Antimicrob Chemother, 2018. 73(8): p. 2003-2020. 81.Freire, N.B., et al., Nutritional interference for phenotypic biofilm quantification in Aeromonas spp. isolates containing the fla gene. Microb Pathog, 2019. 127: p. 198-201. 82.Holscher, T., et al., Motility, Chemotaxis and Aerotaxis Contribute to Competitiveness during Bacterial Pellicle Biofilm Development. J Mol Biol, 2015. 427(23): p. 3695-3708. 83.Yoon, Y. and J.N. Sofos, Autoinducer-2 activity of gram-negative foodborne pathogenic bacteria and its influence on biofilm formation. J Food Sci, 2008. 73(3): p. M140-7. 84.Grinnage-Pulley, T., et al., Dual Repression of the Multidrug Efflux Pump CmeABC by CosR and CmeR in Campylobacter jejuni. Front Microbiol, 2016. 7: p. 1097.
|