(18.204.2.190) 您好!臺灣時間:2021/04/22 08:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:潘安慶
研究生(外文):PAN, AN-CHING
論文名稱:多重分離閘極溝槽式金氧半場效電晶體研究與設計
論文名稱(外文):Design and Study of the Multi-Split-Gate Metal Oxide Semiconductor Field Effect Transistors
指導教授:林智玲林智玲引用關係
指導教授(外文):LIN, JYH-LING
口試委員:鄭晃忠張廖貴術林智玲林明璋
口試委員(外文):CHENG, HUANG-CHUNGCHANG-LIAO, KUEI-SHULIN, JYH-LINGLIN, MING-JANG
口試日期:2019-01-22
學位類別:碩士
校院名稱:華梵大學
系所名稱:電子工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:65
中文關鍵詞:溝槽分離式金氧半場效電晶體多重分離閘極溝槽式金氧半場效電晶體功率元件優化特徵導通電阻
外文關鍵詞:Split-Gate MOSFETMulti-Split-Gate MOSFETPower DeviceImprovementRon,sp
相關次數:
  • 被引用被引用:1
  • 點閱點閱:492
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
功率損耗一直是人類不斷探索的問題,尤其是在這講求高性能的時代。其中,如何降低電子產品的功率損耗是很重要的議題。在功率元件(Power Device)上,改善功率損耗,也是開發者們共同的目標。近年開發出一新型結構「溝槽分離式閘極金氧半場效電晶體(Split-Gate MOSFET)」,其元件改善了功率損耗以及可在高頻環境下工作。本論文利用SILVACO模擬軟體,模擬耐壓100伏的Split-Gate MOSFET功率元件,分析其元件特性,接著以降低元件特徵導通電阻為目的,對Split-Gate MOSFET進行元件優化,於優化過成中,前段所進行的是元件的尺寸微縮,利用元件尺寸的微縮降低元件的特徵導通電阻,而後半段進行的是改變元件的結構,提出「多重分離閘極溝槽式金氧半場效電晶體(Multi-Split-Gate)」,含2個Split-Gate,4個Split-Gate與6個Split-Gate。其中以4個Split-Gate 結構的元件特性較佳,所以再以此結構進行微縮元件尺寸的優化。經一系列優化過程後,Cell pitch為2.5 um的Split-Gate結構到新結構Cell pitch為2.0 um的Multiple Split-Gate 4,特徵導通電阻降低約55%的佳績,大幅降低了元件功率損耗,提升元件效能。
The power loss has always been a problem that humans continue to explore, especially in this high-performance era. In which how to reduce the power loss of electronic products is an important issue. Improving power loss on power devices is a common goal for developers. In recent years, a new structure, called "Split-Gate Metal Oxide Semiconductor Field Effect Transistor (Split-Gate MOSFET)", has been developed, which power loss has been improved, and can be operated in high frequency environments. In this thesis, SILVACO simulation software was used to simulate a 100-volt Split-Gate MOSFET and to study its characteristics. The Split-Gate MOSFETs were optimized by simulation for the purpose of reducing their on-resistance. First the size of the Split-Gate MOSFET was scaled. The purpose is to reduce the specific on-resistance (Ron,sp). Finally, we changed the structure of the device and proposed the Multi-Split-Gate MOSFET including 2 Split-Gate, 4 Split-Gate and 6 Split-Gate. The characteristics of 4 Split-Gate is better than others. Therefore, this structure had been further optimized for the miniature size finally. After a series optimization, compared with 2.5 um cell pitch Split-Gate, Ron,sp had reduced about 55% for new structure with 2.0 um cell pitch and 4 Split-Gate in this paper.
致謝.....................................................................I
摘要....................................................................II
Abstract...............................................................III
目錄....................................................................IV
表錄....................................................................VI
圖錄...................................................................VII
第一章 序論..............................................................1
前言.....................................................................1
研究動機.................................................................1
論文架構.................................................................2
第二章 Power MOSFET 操作原理..............................................3
2-1 導通與耐壓機制........................................................3
2-2 崩潰機制.............................................................5
2-3 Split-Gate MOSFET 介紹...............................................6
2-4 Split-Gate MOSFET基本結構與操作原理...................................7
2-5 Split-Gate MOSFET文獻回顧............................................8
2-6 總結.................................................................9
第三章 元件模擬..........................................................18
3-1 磊晶層阻值模擬.......................................................19
3-2 T-Gate MOSFET與Split-Gate MOSFET溝槽深度模擬.........................20
3-3 T-Gate MOSFET與Split-Gate MOSFET耐壓氧化層(Bottom Oxide)厚度模擬.....21
3-4 Trench-Gate、T-Gate與Split-Gate元件寄生電容模擬......................22
3-5 總結................................................................24
第四章 Split-Gate MOSFET優化模擬與Multi-Split-Gate MOSFET................35
4-1 Split-Gate MOSFET微縮元件尺寸優化....................................36
4-2 Multi-Split-Gate結構介紹與模擬分析...................................38
4-3 Multi-Split-Gate 4微縮元件尺寸優化...................................43
4-4 總結................................................................43
第五章 未來展望..........................................................60
參考文獻.................................................................61

[1] 蕭宏,2014,<半導體製程技術導論>,新北市:全華圖書,pp. 2-12。
[2] 簡鳳佐,「功率金氧半電晶體(Power MOSFET)之簡介」,電子資訊專刊,第二十卷第一期2014年6月5-20頁。
[3] 李政逵,2012,<20奈米N型金氧半場效電晶體與多閘極絕緣層上金氧半場效電晶體臨限電壓變異性之討論>,國立東華大學電機工程學系電子工程碩士論文。
[4] 鄧傑文,2015,<高壓垂直雙擴散場效電晶體元件(VDMOSFET)V型溝槽終端結構設計>,東海大學電機工程學系碩士論文。
[5] 龔正、蔡坤霖、劉日新、陳家豪、苗新元,2011,<半導體元件在積體電路上的應用>,台北市:台灣培生教育出版股份有限公司,pp. 4-16-4-21。
[6] A. Teramoto, H. Umeda, K. Azamawari’, K. Kobayashi’, K. Shiga, J. Komori, Y. Ohno, and H. Miyashi, “Study of oxide breakdown under very low electric field,” in Proc. 37th IEEE Annual International Reliability Physics Symposium, San Diego, California, March 1999, pp. 66-71.
[7] C. F. Tong, I. Cortes, P. A. Mawby, J. A. Covington, and F. Morancho, “Static and dynamic analysis of split-gate RESURF stepped oxide (RSO) MOSFETs for 35 V applications” in Proc. The 2009 Spanish Conference on Electron Devices, Santiago de Compostela, Spain, February 2009, pp. 250-253.
[8] 黃永助,2006,<功率元件之不等電位場板終端結構設計>,國立交通大學電子工程學系電子研究所碩士論文。
[9] ROHM股份有限公司,<電源設計技術資訊網站>。
[10] P. Goarin, G. E. J. Koops, R. van Dalen, C. Le Cam, and J. Saby, “Split-gate RESURF stepped oxide (RSO) MOSFETs for 25V applications with record low gate-to-drain charge,” in Proc. 19th Int. Symp. Power Semiconductor Devices IC’s (ISPSD), Jeju, Korea, May 2007, pp. 61-64.
[11] R. K. Williams, M. N. Darwish, R. A. Blanchard, Ralf Siemieniec, Yusuke Kawaguchi, and Phil Rutter, “The trench power MOSFET: Part I—History, Technology, and Prospects,” IEEE Trans. Electron Devices, vol. 64, no.3, pp. 681-683, March 2017.
[12] Y. Wang, H. Lan, Z. Dou, and H. F. Hu, “Method to improve trade-off performance for split-gate power U-shape metal-oxide semiconductor field-effect transistor with compound trench dielectrics,” IET Power Electron., vol. 7, iss. 8, pp. 2030–2034, February 2014.
[13] Y. Wang, H. F. Hu, Z. Dou, and C. H. Yu, “Way of Operation to improve performance for advanced split-gate RESURF stepped oxide UMOSFET,” IET Power Electron., vol. 7, iss. 12, pp. 2964–2968, June 2014.
[14] W. Wang, R. Ning, and Z. J. Shen, “Numerical study of PN-Doped Poly-Silicon shield gate trench MOSFET with reduced output capacitance,” IEEE Electron. Device Lett., vol. 38, iss. 8, pp. 1-4, June 2017.
[15] J. Yedinak, R. Stokes, D. Probst, S. Kim, A. Challa, and S. Sapp, “Avalanche instability in oxide charge balanced power MOSFETS,” in Proc. 23th Int. Symp. Power Semiconductor Devices IC’s (ISPSD), San Diego, CA, May 2011, pp. 156-159.
[16] W. Wu, B. Zhang, J. Fang, and Z. J. Li, “High voltage SJ-LDMOS with charge-balanced pillar and N-buffer layer,” in Proc. 11th IEEE Solid-State and Integrated Circuit Technology, Xi'an, China, November 2012.
[17] Y. Wang, W. L. Jiao, H. F. Hu, Y. T. Liu, and J. Gao, “Split-gate-enhanced power UMOSFET with soft reverse recovery,” IEEE Trans. Electron Devices, vol. 60, no. 6, pp. 2084-2089, June 2013.
[18] Y. Wang, H. F. Hu, and W. I. Jiao, “Split-gate-enhanced UMOSFET with an optimized layout of trench surrounding mesa,” IEEE Trans. Electron Devices, vol. 59, no. 11, pp. 3037-3041, November 2012.
[19] Y. Tian, Z. Yang, J. Zhou, F. Bian, X. Tong, J. Zhu, W. Sun, L. Shi, Y. Zhu, and P. Ye, “A novel split-gate structure for 85V application with low output capacitance,” in Proc. IEEE Electron Devices and Solid-State Circuits (EDSSC), Hong Kong, China, August 2016, pp. 112-115.
[20] T. Tamaki, Y. Nakazawa, H. Kanai, Y. Abiko, Y. Ikegami, M. Ishikawa, E. Wakimoto, T. Yasuda, and S. Eguchi, “Vertical charge imbalance effect on 600 V-class trench-filling super-junction power MOSFETs,” in Proc. 23th Int. Symp. Power Semiconductor Devices IC’s (ISPSD), San Diego, CA, May 2011, pp. 308-311.
[21] Raghvendra S. Saxena and M. Jagadesh Kumar, “Dual-material-gate technique for enhanced transconductance and breakdown voltage of trench power MOSFETs,” IEEE Trans. Electron Devices, vol. 56, no. 3, pp. 517-522, March 2009.
[22] Raghvendra S. Saxena and M. Jagadesh Kumar, “A stepped oxide hetero-material gate trench power MOSFET for improved performance,” IEEE Trans. Electron Devices, vol. 56, no. 6, pp. 1355-1359, June 2009.
[23] Raghvendra S. Saxena and M. Jagadesh Kumar, “Polysilicon spacer gate technique to reduce gate charge of a trench power MOSFET,” IEEE Trans. Electron Devices, vol. 59, no. 3, pp. 738-744, March 2012.
[24] T. Sarkar, S. Sapp, A. Challa, “Enhanced shielded-gate trench MOSFETs for high-frequency, high-efficiency computing power supply applications,” in Proc. 28th Appl. Power Electron. Conf. (APEC), Long Beach, CA, USA, March 2013, pp. 507-511.
[25] K. Padmanabhan, M. Bobde, L. Guan, and J. S. Yuan, “Robust trench buried-guard-ring-based termination for charge balanced devices,” IEEE Trans. Electron Devices and Materials Reliability, vol. 16, no. 1, pp. 69-73, March 2016.
[26] H. Sharma, “A trench gate power MOSFET with reduced gate charge - A review,” International Journal of Science and Research (IJSR), vol. 5, iss. 6, pp. 677-679, June 2016.
[27] X. Luo, D. Ma, Q. Tan, J. Wei, J. Wu, K. Zhou, T. Sun, Q. Liu, B. Zhang, and Z. Li, “A split gate power FINFET with improved on-resistance and switching performance,” IEEE Electron Device Lett., vol. 37, iss. 9, pp. 1185-1188, July 2016.
[28] J. Lu, H. Liu, J. Luo, L. Wang, B. Li, B. Li, G. Zhang, and Z. Han, “Improved single-event hardness of trench power MOSFET with a widened split gate,” in Proc. 16th European Conference on Radiation and Its Effects on Components and Systems (RADECS), Bremen, Germany, September 2016.
[29] K. Kobayasi, T. Nishiguchi, S. Katoh, T. Kawano, and Y. Kawaguchi, “100 V class mutiple stepped oxide field plate trench MOSFET (MSO-FP-MOSFET) aimed to ultimate structure realization,” in Proc. 27th Int. Symp. Power Semiconductor Devices IC’s (ISPSD), Hong Kong, China, May 2015, pp. 141-144.
[30] Q. Jiang, M. Wang, and X. Chen, “A High-Speed Deep-Trench MOSFET with a Self-Biased Split Gate,” IEEE Trans. Electron Devices, vol. 57, no. 8, pp. 1972-1977, August 2009.
[31] L. Guan, M. Bobde, K. Padmanabhan, H. Yilmaz, A. Bhalla, L. Zhang, A. Chiu, J. Kim, and W. Li, “A Novel Trench Shielded MOSFET with Buried Field Ring for Tunable Switching and Improved Ruggedness,” in Proc. 27th Int. Symp. Power Semiconductor Devices IC’s (ISPSD), Hong Kong, China, May 2015, pp. 401-404.
[32] J. P. Fang, Y. Wang, Y. Hao, J. Liu, and L. L. Sun, “Hardening of Split-Gate Power UMOSFET Against High Power Microwave Radiation,” IEEE Electron Device Lett., vol. 38, iss. 8, pp. 1067-1070, August 2016.
[33] S. Deng, Z. Hossain, and T. Taniguchi, “Detailed Study on Dynamic Characteristics of a High-Performance SGT-MOSFET with Under-the-Trench Floating P-Pillar,” IEEE Trans. Electron Devices, vol. 64, iss. 3, pp. 735-740, March 2017.
[34] J. Yedinak, D. Probst, G. Dolny, A. Challa, and J. Andrews, “Optimizing Oxide Charge Balanced Devices for Unclamped Inductive Switching (UIS),” in Proc. 27th Int. Symp. Power Semiconductor Devices IC’s (ISPSD), Hiroshima, Japan, June 2010, pp. 333-336.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔