跳到主要內容

臺灣博碩士論文加值系統

(44.200.168.16) 您好!臺灣時間:2023/03/31 18:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:紀貝蓉
研究生(外文):CHI,PEI-JUNG
論文名稱:精密機械作業環境有機溶劑暴露濃度之分析
論文名稱(外文):Analysis of Organic Compounds in the Precision of Machining Industry Environment
指導教授:吳玉琛吳玉琛引用關係
指導教授(外文):WU,YU-CHEN
口試委員:方國權陳秀玲吳玉琛
口試委員(外文):FANG,KUO-CHUANCHEN,HSIU-LINGWU,YU-CHEN
口試日期:2019-06-17
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:123
中文關鍵詞:個人採樣區域採樣
外文關鍵詞:personal samplingarea samplingGC/MSVOCs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
機械產業的發展,除了傳統的製造與產業設備,逐漸發展成更精密、更自動化的製造技術與更高階的產業設備,而現階段的機械自動化及資訊即時分析也逐漸取代傳統機械設備,為生產帶來了極大的轉變,也提升對光電、半導體等的需求。於精密機械產業製程中,其中相關製程如組裝、噴漆…等,皆會使用揮發性有機污染物(Volatile Organic Compounds, VOCs),而VOCs對人體造血機能危害極大,是誘發再生障礙性貧血和白血病的主要原因,亦會影響女性生殖能力,導致胎兒先天性缺陷。
本研究參考勞動部勞動及職業安全衛生研究所之分析方法進行採樣分析,依現場勞工作業環境、時間頻率進行作業環境採樣,藉由活性碳管吸附VOCs,爾後使用二硫化碳將其脫附成液態,並由GC/MS進行物質濃度之分析,利用分析結果評估揮發性有機物暴露濃度。分析物質包含乙醇、戊烷、異丙醇、正己烷、丁酮、丁醇、苯、正庚烷、甲苯、乙苯、對二甲苯、間二甲苯、鄰二甲苯,共13種物質。
研究結果顯示A廠區域VOCs總暴露量最大為油品區,其次為組裝區(C)>清洗區>鏟花區>組裝區(B)>行政區,廠內個人採樣則以清洗區暴露濃度為最大,其次為鏟花區>組裝區C;而B廠區域採樣暴露量最大為噴漆區,其次為4F切削區>4F組裝區>原料區>車床區>警衛室,而廠區個人採樣則以勞工作業的噴漆區為主要分析區域。
A廠區的區域採樣及個人採樣中以正庚烷濃度最高,濃度分別為油品區5.319 ppm及清洗區8.202 ppm,而B廠區的區域採樣及個人採樣中以噴漆區之甲苯濃度為最高,濃度分別為48.779 ppm及70.179 ppm,兩廠之分析結果均無超過八小時日時量平均濃度,B廠噴漆作業環境甲苯暴露濃度並未超出PEL-TWA,但長期暴露之下現場勞工應確實配戴個人防護具,藉此降低健康危害風險,維護自身健康。

With the development of machinery industry, in addition to traditional
manufacturing and industrial equipment, more precise and automated manufacturing technology and more advanced industrial equipment are gradually being developed. Furthermore, at this stage, mechanical automation and real-time information analysis are also gradually replacing the traditional mechanical equipment, which is greatly changing production and increasing demands for photoelectric products and semiconductors. In the process of precision machinery industry, volatile organic compounds (VOCs) are used in relevant processes such as assembly and paint spraying. Being greatly harmful to the hematopoietic function of human body, VOCs are the main cause inducing aplastic anemia and leukemia and also affect female reproductive ability, so as to lead to fetal congenital defects.
In this study, the sampling analysis was conducted by reference to the analysis method of the Institute of Labor, Occupational Safety and Health, the operating environment sampling was carried out according to the on-site labor environment and the temporal frequency. VOCs were adsorbed with active carbon tubes, and then the samples were desorbed to a liquid with the use of carbon disulfide. After that, the substance concentrations were analyzed with GC/MS, so as to estimate the exposure concentrations of volatile organic compounds. The analytes totally include 13 substances such as ethyl alcohol, pentane, isopropyl alcohol, n-hexane, 2-butanone, 1-butanol, benzene, n-heptane, toluene, ethylbenzene, p-xylene, m-xylene and o-xylene.
The study results show that, in Plant A, the oil area has the maximum total exposure of VOCs, followed by assembly area (C)> cleaning area > scarping area > assembly area (B)> administrative area. In the plant, the personal sampling of the cleaning area has the maximum exposure concentration, followed by scarping area > assembly area C. In Plant B, the paint spraying area has the maximum sampling exposure, followed by cutting area on 4F > assembly area on 4F > raw material area > lathe area > guard room, and for personal sampling, the paint spraying area where workers carried on operations was the main one to be analyzed.
The concentration of n-heptane is the highest in the area sampling and the personal sampling of Plant A, respectively 5.319 ppm in the oil area and 8.202 ppm in the cleaning area. In area sampling and personal sampling of Plant B, the concentration of toluene is the highest in the paint spraying area, respectively 48.779 ppm and 70.179 ppm. The analysis results of the two plants show that the eight-hour daily average concentrations are not exceeded. The exposure concentration of toluene does not exceed PEL-TWA in the paint spraying environment of Plant B, but under long-term exposure, the workers on site shall wear personal protective equipment to reduce the risks of health hazards and maintain health.

致謝 I
摘要 II
ABSTRACT IV
目錄 VI
表目錄 X
圖目錄 XII
第一章 前言 1
1-1 研究背景 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 揮發性有機物之概述 3
2-1-1揮發性有機物之定義 3
2-1-2揮發性有機物之來源 3
2-1-3揮發性有機物之特性 4
2-1-4 VOCs之危害 6
2-1-5 BTEX之健康危害敘述 7
2-2 去漬油種類介紹 9
2-2-1 一般去漬油 9
2-2-2 環保去漬油 10
2-3 VOCS採樣及分析方法比較 10
2-4 精密機械製造業常用之化合物 13
2-5 VOCS國內外法規標準 15
第三章 研究方法 17
3-1 研究流程 20
3-2 廠內相關資料 22
3-3 研究設備與材料 23
3-4 採樣方法 24
3-5 分析方法 27
3-5-1 樣本前處理 27
3-5-2 儀器原理介紹 29
3-5-3儀器分析設備 29
3-5-4 儀器分析條件 31
3-6 QUALITY CONTROL 33
3-6-1 採樣設備 33
3-6-2檢量線備製 33
3-6-3空白分析(Blank Test) 38
3-6-4 方法偵測極限(Method Detection Limit,MDL) 39
3-6-5 重複分析(CV%) 39
3-6-6 查核分析(Re%) 39
3-6-7 脫附效率分析 39
第四章 結果與討論 41
4-1 廠內作業環境 41
4-2 勞工作業環境 47
4-3 個人與作業環境監測暴露濃度之結果 49
4-4 廠內樣本定性分析 67
4-5 作業環境採樣之日時量平均濃度分析 70
4-5-1 A廠個人採樣測定結果 70
4-5-2 B廠個人採樣測定結果 75
4-5-3 A廠區域採樣測定結果 78
4-5-4 B廠區域採樣測定結果 81
4-4-4 短時間平均暴露濃度 85
4-6 濃度判定結果 87
4-7 廠內環測結果 90
4-8 本研究結果與其他國內外之職業暴露文獻比較 95
第五章 結論與建議 99
5-1結論 99
5-2建議 100
參考文獻 102

Amini, H., et al., 2017, “Spatiotemporal description of BTEX volatile organic compounds in a Middle Eastern megacity: Tehran Study of Exposure Prediction for Environmental Health Research (Tehran SEPEHR).” Environmental Pollution, Vol. 226, pp. 219-229.
Baghani, A.N., et al., 2018, “BTEX in indoor air of beauty salons: Risk assessment, levels and factors influencing their concentrations” Ecotoxicology and Environmental Safety, Vol. 159, pp. 102-108.
Baghani, A.N., et al., 2019, “A case study of BTEX characteristics and health effects by major point sources of pollution during winter in Iran”, Environmental Pollution, Vol, 247, pp. 607-617.
Buczynska, A.J., et al., 2009, “Atmospheric BTEX-concentrations in an area with intensive street traffic”, Atmospheric Environment, Vol. 43, pp. 311-318.
Chan, C.C., Lin, S.H., Her, G.R., 1994. “Office workers exposure to volatile organic compounds while commuting and working in Taipei city. ”, Atmospheric Environment., 28: 2351-2359
Chan, C.C., Ozkaynak, H., Spengler, J.D., Sheldon., 1991, “Driver exposure to volatile organic compounds, CO, ozone and NO2 under different driving conditions”, Environmental Science & Technology, 25; 964-972
Chen, J., et al., 2018, “On the use of multicopters for sampling and analysis of volatile organic compounds in the air by adsorption/thermal desorption GC-MS” Air Quality, Atmosphere & Health, Vol. 11(7), pp. 835-842.
Cincinelli, A., et al., 2016, “Measurement of volatile organic compounds (VOCs) in libraries and archives in Florence (Italy)”, Science of the Total Environment, Vol. 572, pp. 333-339.
Colman Lerner, J.E., et al., 2012, “Characterization and health risk assessment of VOCs in occupational environments in Buenos Aires, Argentina”. Atmospheric Environment, Vol. 55, pp. 440-447.
Dai, H., et al., 2017, “VOC characteristics and inhalation health risks in newly renovated residences in Shanghai, China”. Science of the Total Environment, Vol. 577, pp. 73-83.
de Castro, B.P., et al., 2015, “Assessment of the BTEX concentrations and reactivity in a confined parking area in Rio de Janeiro, Brazil”, Atmospheric Environment, Vol. 104, pp. 22-26.
Dehghani, M., et al., 2018, “Characteristics and health effects of BTEX in a hot spot for urban pollution”, Ecotoxicology and Environmental Safety, Vol. 155, pp. 133-143.
Dumanoglu, Y., et al., 2014, “Spatial and seasonal variation and source apportionment of volatile organic compounds (VOCs) in a heavily industrialized region”, Atmospheric Environment, Vol. 98, pp. 168-178.
El-Hashemy, M.A. and H.M. Ali, 2018, “Characterization of BTEX group of VOCs and inhalation risks in indoor microenvironments at small enterprises”, Science of the Total Environment, Vol. 645, pp. 974-983.
Fan, G., et al., 2018, “Indoor environmental conditions in urban and rural homes with older people during heating season: A case in cold region, China”, Energy and Buildings, Vol. 167, pp. 334-346.
Hong, N., et al., 2018, “Modelling benzene series pollutants (BTEX) build-up loads on urban roads and their human health risks: Implications for stormwater reuse safety”, Ecotoxicology and Environmental Safety, Vol. 164, pp. 234-242.
Hu, R., et al., 2018, “Levels, characteristics and health risk assessment of VOCs in different functional zones of Hefei”, Ecotoxicology and Environmental Safety, Vol. 160, pp. 301-307.
Hun, D.E., et al., 2011, “Automobile proximity and indoor residential concentrations of BTEX and MTBE”, Building and Environment, Vol. 46(1), pp. 45-53.
Jimenez-Garza, O., et al., 2018, “Aberrant promoter methylation in genes related to hematopoietic malignancy in workers exposed to a VOC mixture”, Toxicology and Applied Pharmacology, Vol. 339, pp. 65-72.
Kamarulzaman, N.H., et al., 2019, “Quantification of VOCs and the development of odour wheels for rubber processing”, Science of the Total Environment, Vol. 657, pp. 154-168.
Khan, A., et al., 2019, “The potential of biochar as sorptive media for removal of hazardous benzene in air”, Chemical Engineering Journal, Vol. 361, pp. 1576-1585.
Lai, H.K., et al., 2004, “Personal exposures and microenvironment concentrations of PM2.5, VOC, NO2 and CO in Oxford, UK”, Atmospheric Environment, Vol. 38(37), pp. 6399-6410.
Li, G., et al., 2018, “A comprehensive classification method for VOC emission sources to tackle air pollution based on VOC species reactivity and emission amounts”, Environmental Sciences, Vol. 67, pp. 78-88.
Liu, Q., Y. Liu, and M. Zhang, 2013, “Personal exposure and source characteristics of carbonyl compounds and BTEXs within homes in Beijing, China”, Building and Environment, Vol. 61, pp. 210-216.
Lu, H., et al., 2006, “Indoor and outdoor carbonyl compounds and BTEX in the hospitals of Guangzhou, China”, Science of the Total Environment, Vol. 368(2-3), pp. 574-84.
Kuo, H.W., et al., 2000, “Exposure to volatile organic compounds while commuting in Taichung Taiwan”, Atmospheric Environment, 34: 3331-3336
Maceira, A., et al., 2017, “New approach to resolve the humidity problem in VOC determination in outdoor air samples using solid adsorbent tubes followed by TD-GC-MS”, Science of the Total Environment, Vol. 599-600, pp. 1718-1727.
Maisey, S.J., et al., 2013, “An extended baseline examination of indoor VOCs in a city of low ambient pollution: Perth, Western Australia”, Atmospheric Environment, Vol. 81, pp. 546-553.
Matysik, S., A.B. Ramadan, and U. Schlink, 2010, “Spatial and temporal variation of outdoor and indoor exposure of volatile organic compounds in Greater Cairo” Atmospheric Pollution Research, Vol. 1(2), pp. 94-101.
Mo, Z., et al., 2015, “Process-specific emission characteristics of volatile organic compounds (VOCs) from petrochemical facilities in the Yangtze River Delta, China” Science of the Total Environment, Vol. 533, pp. 422-31.
Pérez-Rial, D., P. López-Mahía, and R. Tauler, 2010, “Investigation of the source composition and temporal distribution of volatile organic compounds (VOCs) in a suburban area of the northwest of Spain using chemometric methods” Atmospheric Environment, Vol. 44(39), pp. 5122-5132.
Qi, Y., et al., 2019, “Species and release characteristics of VOCs in furniture coating process” Environmental Pollution, Vol. 245, pp. 810-819.
Ramirez, N., et al., 2012, “Chronic risk assessment of exposure to volatile organic compounds in the atmosphere near the largest Mediterranean industrial site” Environment International, Vol. 39(1), pp. 200-9.
Raysoni, A.U., et al., 2017, “Evaluation of VOC concentrations in indoor and outdoor microenvironments at near-road schools”, Environmental Pollution, Vol. 231, pp. 681-693.
Saraga, D., et al., 2011, “Studying the indoor air quality in three non-residential environments of different use: A museum, a printery industry and an office” Building and Environment, Vol. 46(11), pp. 2333-2341.
Singh, D., et al., 2016, “Statistical modeling of O3, NOx, CO, PM2.5, VOCs and noise levels in commercial complex and associated health risk assessment in an academic institution”, Science of the Total Environment, Vol. 572, pp. 586-594.
Tohid, L., et al., 2019, “Spatiotemporal variation, ozone formation potential and health risk assessment of ambient air VOCs in an industrialized city in Iran” Atmospheric Pollution Research, Vol. 10(2), pp. 556-563.
Wang, D., et al., 2018, “Direct and potential risk assessment of exposure to volatile organic compounds for primary receptor associated with solvent consumption”, Environmental Pollution, Vol. 233, pp. 501-509.
Wei, W., et al., 2018, “Characteristics of VOCs during haze and non-haze days in Beijing, China: Concentration, chemical degradation and regional transport impact”, Atmospheric Environment, Vol. 194, pp. 134-145.
Zheng, J., et al., 2013, “Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China”, Science of the Total Environment, Vol. 456-457, pp. 127-36.
Zhong, Z., et al., 2017, “Sector-based VOCs emission factors and source profiles for the surface coating industry in the Pearl River Delta region of China”, Science of the Total Environment, Vol. 583, pp. 19-28.

丁立耕,2016,「甲苯中毒之認定參考指引」,勞動部職業安全衛生署
行政院環境保護署,2013,「揮發性有機物空氣污染管制及排放標準」
行政院勞工委員會勞工安全衛生研究所,2011,「作業環境有害物採樣分析參考方法驗證程序-第三版」
宋宗信,2010,「以GCMS偵測高科技工業區內空氣中揮發性有機物濃度之研究」,碩士論文,國立交通大學工學院永續環境科技學程,新竹
李金龍,2013,「應用萃選離子與標的化合物分析技術進行去漬油、柴油縱火劑殘跡鑑析之研究」,碩士論文,中央警察大學消防科學研究所,桃園
卓榆豐,2015,「環境粒狀物(PM10及PM2.5)中之多環芳香烴化合物(PAHs)特徵及分佈趨勢分析」,碩士論文,弘光科技大學環境工程研究所,台中
周忠義,2002,「室外中氣中揮發性有機物質之毒性探討」,碩士論文,國立成功大學環境工程學系,台南
林霧霆,2005,「常見天花板建材之揮發性有機物易散研究」,內政部建築研究所自行研究報告
高雄市環保局,2012,「揮發性有機物防制策略與防制技術」
張承明、賈台寶,2011,「機械廠化學性作業危害預防措施研究」,勞動部勞動及職業安全衛生研究所
張宥貞,2016,「以固相微萃取採樣技術進行營建工程噴漆作業揮發性有機物逸散調查」,碩士論文,國立中山大學環境工程研究所,高雄
陳丁于,2002,「台灣地區室內環境因子對建材揮發有機性物質易散行為影響之研究」,碩士論文, 國立成功大學建築研究所,台南
陳美如,2002,「高速公路收費站人員及加油站作業員工揮發性有機物質之暴露危害評估」,碩士論文,國立成功大學環境醫學研究所,台南
陳清涼,2005,「空氣中VOC分析及其在石化廠的應用」,博士論文,國立雲林科技大學工程科技研究所博士班,雲林
陳裕政,2004,「航空引擎PAHs及VOCs排放特徵與維修及測試期間勞工暴露評估」,碩士論文,國立成功大學醫學院環境醫學研究所,台南
陳鈺茹,2017,「固定污染源揮發性有機物(VOCs)自廠係數建置-以某矽晶圓製造廠為例」,碩士論文,國立中央大學環境工程研究所,桃園
勞動部,2018,「勞工作業場所容許暴露標準修正條文」
劉惠銘、吳玉琛、陳順基,2017,「儀器分析」,東華書局,台北,第272-300頁
蔡明道,2016,「解析室內不同場所空氣中揮發性有機物特徵成份之研究」,碩士論文,嘉南藥理大學環境工程與科學系,台南
顏廷羽,2015,「噴漆作業勞工之有機溶劑及重金屬危害暴露調查」,碩士論文,中臺科技大學環境與安全衛生工程系,台中
羅時麒、姚志廷,2007,「室內裝修材料對辦公室建築空氣品質相關性之研究-以甲醛及TVOC為例」,內政部建築研究自行研究報告

電子全文 電子全文(網際網路公開日期:20240620)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊