跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/27 18:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉家瑋
論文名稱:鑄造工廠環境重金屬特性分析之研究
論文名稱(外文):Study on the Analysis of Heavy Metal Characteristics in the Casting Plant Environment
指導教授:吳玉琛吳玉琛引用關係
指導教授(外文):WU, YU-CHEN
口試委員:方國權何澤宗
口試委員(外文):FANG, KUO-CHUANHO, TSE-TSUNG
口試日期:2019-06-17
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:101
中文關鍵詞:PM2.5土壤重金屬植物被動採樣鑄造
外文關鍵詞:PM2.5soilheavy metalspassive sampling with plantscasting
相關次數:
  • 被引用被引用:0
  • 點閱點閱:106
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鑄造(casting)因製作過程存在著噪音、金屬粉塵、高溫或有機溶劑等危害因子,工作環境相對惡劣,不僅容易造成職業傷害或職業疾病外,更對周邊環境造成污染。
本研究之目的是以鑄造業作業環境監測通過對人類和環境有影響的各種物質之含量、排放量進行檢測。進行環境監測,是開展一切環境管理的前提,從近年來城市土壤、城市道路粉塵、農田土壤地區研究中發現,鉻、鎳、銅、鉛、鋅、和鎘等重金屬的污染非常廣泛,以上三種研究的主要重金屬污染來源皆不相同。重金屬在城市土壤,城市道路粉塵當中主要來源是經由交通、工業來源;在農田地區主要來源是由、施肥、農藥噴灑等(Wei aN.D. Yang et al.,2010),因此本研究會檢測環境中之重金屬及廠中PM2.5之濃度變化。
研究結果分為三部份分別為PM2.5濃度變化、不同區域土壤中重金屬含量及利用植物被動採樣方式輔助空氣採樣,分析空氣中重金屬含量,綜合實驗結果歸納出出以下結論。PM2.5 8小時濃度採樣結果最高在4月測得濃度為1469 μg/m3,而最低之PM2.5 8小時濃度在12月測得濃度為104.2 μg/m3。不同區域土壤中重金屬含量鋁(Al)元素之最高濃度在鑄造廠周界之農地濃度為29406 mg/kg,最低在大安農地濃度為4101.3 mg/kg。鐵(Fe)元素之最高濃度在台中某公園濃度為16733 mg/kg,最低在大安農地濃度為2272.2 mg/kg。鎂(Mg)元素之最高濃度在鑄造廠周界之農地濃度為3963.6 mg/kg,最低在台中某公園濃度為599.19 mg/kg。其餘金屬元素濃度相當微量或小於儀器偵測極限。植物被動採樣鑄造廠周界植物葉片測得Mg金屬元素含量最高在11月份濃度為5.48 mg/kg、最低為Mn金屬元素含量最低在4月份濃度為0.04 mg/kg,其餘元素皆小於儀器偵測極限。綜合實驗結果在冬季時季風之風向為東北風,造成鑄造場內PM2.5 8小時濃度降低,而夏季時季風之風向為西南風,造成鑄造場內PM2.5 8小時濃度升高。影響PM2.5 8小時濃度之原因不僅是風向,室內外之通風也會影響當日之PM2.5 8小時濃度,室內外通風越是良好則PM2.5 8小時濃度就會降低,反之通風若是不良則PM2.5 8小時濃度就會升高。
土壤方面則是分為農業用地及一般用地,農業用地若是處於耕種時,重金屬會受到人們施放肥料、灌溉等方式影響。休耕時期土壤中重金屬變化只會受到氣候變化之影響。一般用地土壤中重金屬變化只有受到氣候之影響,其變化不明顯。植物被動採樣大部份是為了輔助空氣採樣,由結果得知,空氣中PM2.5重金屬含量相當微量,而植物葉片上之重金屬來源屬植物體本身。

As for casting, due to hazard factors such as noise, metal dust, high temperature or organic solvents in production process, its working environment is relatively tough, which not only causes occupational injury or occupational disease easily but also pollutes the surrounding environment.
The purpose of this study is to detect contents and emissions of various substances affecting human and environment through operational environment monitoring of casting industry. Environment monitoring is the premise to develop all the tasks of environmental management. The studies on urban soil, urban road dust and farmland soil in recent years show that the pollution of chromium, nickel, copper, lead, zinc, cadmium and other heavy metals is widespread, and the pollution sources of the main heavy metals in the above three studies are different. The heavy metals are mainly sourced from transportation and industry in urban soil and urban road dust, and from fertilization and pesticide application in farmland area (Wei aN.D. Yang et al., 2010). Hence, this study detected the heavy metals in the environment and the changes of PM2.5 concentration in the plant. The study results were divided into three parts, respectively including the changes of PM2.5 concentration, heavy metal contents in soil of different areas and analysis on heavy metal contents in air based on air sampling assisted by passive sampling with plants, and the following conclusions are summarized from the synthesis of the experimental results. From the sampling results, the maximum and minimum monthly average concentration of PM2.5 is 1469μg/m3 measured in April and 156.3μg/m3 measured in September respectively. As for the heavy metal contents in soil of different areas, the maximum and minimum concentration of aluminum (Al) is 29406mg/kg measured in the farmland around the casting plant and 4101.3 mg/kg measured in Daan Farmland respectively. The maximum and minimum concentration of ferrum (Fe) is 16733mg/kg measured in X Park located in Shalu District and 2272.2mg/kg measured in Daan Farmland respectively. The maximum and minimum concentration of magnesium (Mg) is 3963.6mg/kg measured in the farmland around the casting plant and 599.19mg/kg measured in X Park located in Shalu District respectively. The concentration of other metal elements is incredibly low or lower than the detection limit of instruments. Through passive sampling with plants, the maximum content of magnesium (Mg) in the plant leaves around the casting plant is 5.48mg/kg measured in November, and the minimum concentration of magnesium (Mg) is 0.04mg/kg measured in April. The concentration of other elements is lower than the detection limit of instruments. The experimental results are synthesized and show that, the monsoon direction is northeast in winter, leading to decrease in daily PM2.5 concentration in the casting plant, and the monsoon direction is southwest in summer, leading to increase in daily PM2.5 concentration in the casting plant. Not only wind directions but also indoor and outdoor ventilation affects the daily PM2.5 concentration. The better the indoor and outdoor ventilation is, the lower the daily PM2.5 concentration will be. On the contrary, poor indoor and outdoor ventilation will increase the daily PM2.5 concentration.
In terms of soli, it is usually divided into agricultural land and general land. When the agricultural land is under cultivation, heavy metals are affected by fertilization, irrigation and other methods conducted by people. In fallow period, the changes of heavy metals in the soil are only affected by climatic variation. Being only affected by the climate, the changes of heavy metals in the soil of general land are unapparent. The main purpose of passive sampling with plants is to assist air sampling. From the results, the contents of PM2.5 and heavy metals in air are quite low, and the heavy metals on plant leaves are sourced from the plants.


目錄
致謝 I
摘要 II
ABSTRACT IV
圖目錄 X
表目錄 XIII
第一章 緒論 1
1-1 研究緣起 1
1-2 研究目的 2
第二章 文獻回顧 4
2-1 空氣污染 4
2-2 PM2.5 5
2-3 鑄造 7
2-3-1 接種劑(Inoculant) 8
2-3-2 除渣劑 9
2-3-2 球化劑(Nodularizer) 10
2-4 重金屬 11
2-4-1 鋁(Aluminum,Al) 13
2-4-2 銅(Copper,Cu) 14
2-4-3 鉻(Chromium,Cr) 15
2-4-4 鎘(Cadmium,Cd) 16
2-4-5 鐵(Iron,Fe) 17
2-4-6 錳(Manganese,Mn) 18
2-4-7 鉛(Lead,Pb) 19
2-4-8 鎂(Magnesium,Mg) 20
2-5我國重金屬相關法規標準 21
第三章 研究方法 22
3-1 實驗流程 22
3-2 實驗設備與材料 28
3-3 採樣規劃 30
3-3-1 採樣地點 30
3-3-2 未燃燒地區(空白)採樣規劃 32
3-4 實驗方法 33
3-4-1 樣品前處理 35
3-4-2 實驗裝置 38
3-4-3 微波消化裝置 40
3-4-4感應耦合電漿原子發散光譜儀 41
3-5 QUALITY CONTROL 43
第四章 結果與討論 58
4-1 PM2.5之濃度 58
4-2 空氣中PM2.5重金屬之濃度 63
4-3土壤之重金屬濃度 65
4-4鑄造廠周界植物葉片之重金屬成分分析之結果 78
第五章 結論 81
參考文獻 84


1. 中文文獻
全國法規資料庫,2011,土壤管制標準。
行政院勞工委員會勞工安全衛生研究所, 鑄造業勞工稕金屬粉塵所產生之氧化性傷害評估,2009。
行政院農業委員會林務局, 平地綠化樹種對空氣懸浮微粒和重金屬的截留能力比較研究,2008。
卓榆豐, 環境粒狀物(PM10及PM2.5)中之多環芳香烃化合物(PAHs)特徵及分佈趨勢分析,碩士論文,弘光科技大學,2015。
林舜修, 中台灣地區不同植物體中重金屬分析之研究,碩士論文,弘光科技大學,2008。
洪偉城, 中部地區表土之特徵重金屬成分含量研究,碩士論文,弘光科技大學,2011。
張勝琅, 評估焊接作業粉塵粒徑分佈特性及重金屬濃度,碩士論文,弘光科技大學,2013。
廖文彬, 鑄造廠廢氣中捕集粒狀污染物改善成效之探討,碩士論文,中興大學,2014。
臺中市政府環境保護局, 106年度彰化縣土壤及地下水污染調查及查證計畫,2017a。
臺中市政府環境保護局, 106 年度臺中市土壤及地下水污染調查及應變措施工作計畫,2017b。
臺中市政府環境保護局, 106年度臺中市土壤及地下水污染調查及查證工作計畫,2017c。
臺中市政府環境保護局, 107 年度臺中市土壤及地下水污染調查及應變措施工作計畫,2018。
臺中市政府環境保護局, 臺中市農地污染控制場址適當措施改善計畫-大里、烏日、大甲等3區農地污染改善工作,2018。
趙倉達, 傳統鑄造工業勞工之作業場所PAH暴露及生物暴露指標之評估,碩士論文,弘光科技大學, 2010。
趙家賢, 台中與嘉義地區廟宇空氣中PM2.5及重金屬分析,碩士論文,弘光科技大學,2017。
盧素涵、陳仲宜, 金屬二次加工產業與自動化發展困境,財團法人金屬工業研究發展中心,2012。
戴郁涵, 參與民俗活動之民眾重金屬暴露與健康風險評估,碩士論文,弘光科技大學,2014。
謝仁傑, 中臺灣懸浮微粒與植物體樹葉中重金屬含量研究,碩士論文,弘光科技大學, 2006。
2. 英文文獻
Ashraf, S., et al., Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf, 2019. 174: p. 714-727.
ATSDR, Agency for Toxic Substances and Disease Registry. Toxicological Profile for Copper. Atlanta, GA: U.S. Department of Public Health and Human Services, Public Health Service. 2004.
ATSDR, Agency for Toxic Substances and Disease Registry. Toxicological Profile for Lead. Atlanta, GA: U.S. Department of Public Health and Human Services, Public Health Service. 2007.
ATSDR, Agency for Toxic Substances and Disease Registry. Toxicological Profile for Aluminum. Atlanta, GA: U.S. Department of Public Health and Human Services, Public Health Service. 2008a.
ATSDR, Agency for Toxic Substances and Disease Registry. Toxicological Profile for Cadmium. Atlanta, GA: U.S. Department of Public Health and Human Services, Public Health Service. 2008b.
ATSDR, Agency for Toxic Substances and Disease Registry. Toxicological Profile for Manganese. Atlanta, GA: U.S. Department of Public Health and Human Services, Public Health Service. 2012a.
ATSDR, Agency for Toxic Substances and Disease Registry. Toxicological Profile for Chromium. Atlanta, GA: U.S. Department of Public Health and Human Services, Public Health Service. 2012b.
Brokamp, C., et al., Does the elemental composition of indoor and outdoor PM2.5 accurately represent the elemental composition of personal PM2.5? Atmospheric Environment, 2015. 101: p. 226-234.
Brunekreef, B. and S.T. Holgate, Air pollution and health. The Lancet, 2002. 360(9341): p. 1233-1242.
Cheng, Y.H., Comparison of the TSI Model 8520 and Grimm Series 1.108 portable aerosol instruments used to monitor particulate matter in an iron foundry. J Occup Environ Hyg, 2008. 5(3): p. 157-68.
Dai, X., et al., Long-term monitoring of indoor CO2 and PM2.5 in Chinese homes: Concentrations and their relationships with outdoor environments. Building and Environment, 2018. 144: p. 238-247.
Gryparis, A., et al., Acute effects of ozone on mortality from the "air pollution and health: a European approach" project. Am J Respir Crit Care Med, 2004. 170(10): p. 1080-7.
Hleis, D., et al., Chemical profile identification of fugitive and confined particle emissions from an integrated iron and steelmaking plant. J Hazard Mater, 2013. 250-251: p. 246-55.
Ji, X., Y. Yao, and X. Long, What causes PM2.5 pollution? Cross-economy empirical analysis from socioeconomic perspective. Energy Policy, 2018. 119: p. 458-472.
Kelly, F.J. and J.C. Fussell, Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmospheric Environment, 2012. 60: p. 504-526.
Krishnaraj, R., Contemporary and futuristic views of pollution control devices in foundries. Ecotoxicol Environ Saf, 2015. 120: p. 130-5.
LEE, J.-T. and C.M. SHY, Respiratory function as measured by peak expiratory flow rate and PM10: six communities study. Journal ofExposure Analysis and Environmental Epidemiology, 1999. P.9: p. 293-299.
Liu, C., et al., Influence of natural ventilation rate on indoor PM2.5 deposition. Building and Environment, 2018. 144: p. 357-364.
M. El-Fadel, M.M., Particulate matter in urban areas: health-based economic assessment. The Science of the Total Environment, 2000. 257: p. 133-146.
Mao, C., et al., Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice. Catena, 2019. 175: p. 339-348.
Martins, N.R. and G. Carrilho da Graça, Impact of PM2.5 in indoor urban environments: A review. Sustainable Cities and Society, 2018. 42: p. 259-275.
Mingorance, M.D., B. Valdes, and S.R. Oliva, Strategies of heavy metal uptake by plants growing under industrial emissions. Environ Int, 2007. 33(4): p. 514-20.
MohseniBandpi, A., et al., Physicochemical characterization of ambient PM2.5 in Tehran air and its potential cytotoxicity in human lung epithelial cells (A549). Sci Total Environ, 2017. 593-594: p. 182-190.
Oliva, S.R. and A.J.F. Espinosa, Monitoring of heavy metals in topsoils, atmospheric particles and plant leaves to identify possible contamination sources. Microchemical Journal, 2007. 86(1): p. 131-139.
Sun, L., et al., Levels, sources, and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan, China. Catena, 2019. 175: p. 101-109.
Viegi, G., et al., Indoor air pollution and airway disease. INT J TUBERC LUNG DIS, 2004. 8(12): p. 1401–1415.

電子全文 電子全文(網際網路公開日期:20240628)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊