1. 中文文獻
全國法規資料庫,2011,土壤管制標準。
行政院勞工委員會勞工安全衛生研究所, 鑄造業勞工稕金屬粉塵所產生之氧化性傷害評估,2009。
行政院農業委員會林務局, 平地綠化樹種對空氣懸浮微粒和重金屬的截留能力比較研究,2008。
卓榆豐, 環境粒狀物(PM10及PM2.5)中之多環芳香烃化合物(PAHs)特徵及分佈趨勢分析,碩士論文,弘光科技大學,2015。林舜修, 中台灣地區不同植物體中重金屬分析之研究,碩士論文,弘光科技大學,2008。洪偉城, 中部地區表土之特徵重金屬成分含量研究,碩士論文,弘光科技大學,2011。張勝琅, 評估焊接作業粉塵粒徑分佈特性及重金屬濃度,碩士論文,弘光科技大學,2013。廖文彬, 鑄造廠廢氣中捕集粒狀污染物改善成效之探討,碩士論文,中興大學,2014。
臺中市政府環境保護局, 106年度彰化縣土壤及地下水污染調查及查證計畫,2017a。
臺中市政府環境保護局, 106 年度臺中市土壤及地下水污染調查及應變措施工作計畫,2017b。
臺中市政府環境保護局, 106年度臺中市土壤及地下水污染調查及查證工作計畫,2017c。
臺中市政府環境保護局, 107 年度臺中市土壤及地下水污染調查及應變措施工作計畫,2018。
臺中市政府環境保護局, 臺中市農地污染控制場址適當措施改善計畫-大里、烏日、大甲等3區農地污染改善工作,2018。
趙倉達, 傳統鑄造工業勞工之作業場所PAH暴露及生物暴露指標之評估,碩士論文,弘光科技大學, 2010。趙家賢, 台中與嘉義地區廟宇空氣中PM2.5及重金屬分析,碩士論文,弘光科技大學,2017。盧素涵、陳仲宜, 金屬二次加工產業與自動化發展困境,財團法人金屬工業研究發展中心,2012。
戴郁涵, 參與民俗活動之民眾重金屬暴露與健康風險評估,碩士論文,弘光科技大學,2014。謝仁傑, 中臺灣懸浮微粒與植物體樹葉中重金屬含量研究,碩士論文,弘光科技大學, 2006。2. 英文文獻
Ashraf, S., et al., Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf, 2019. 174: p. 714-727.
ATSDR, Agency for Toxic Substances and Disease Registry. Toxicological Profile for Copper. Atlanta, GA: U.S. Department of Public Health and Human Services, Public Health Service. 2004.
ATSDR, Agency for Toxic Substances and Disease Registry. Toxicological Profile for Lead. Atlanta, GA: U.S. Department of Public Health and Human Services, Public Health Service. 2007.
ATSDR, Agency for Toxic Substances and Disease Registry. Toxicological Profile for Aluminum. Atlanta, GA: U.S. Department of Public Health and Human Services, Public Health Service. 2008a.
ATSDR, Agency for Toxic Substances and Disease Registry. Toxicological Profile for Cadmium. Atlanta, GA: U.S. Department of Public Health and Human Services, Public Health Service. 2008b.
ATSDR, Agency for Toxic Substances and Disease Registry. Toxicological Profile for Manganese. Atlanta, GA: U.S. Department of Public Health and Human Services, Public Health Service. 2012a.
ATSDR, Agency for Toxic Substances and Disease Registry. Toxicological Profile for Chromium. Atlanta, GA: U.S. Department of Public Health and Human Services, Public Health Service. 2012b.
Brokamp, C., et al., Does the elemental composition of indoor and outdoor PM2.5 accurately represent the elemental composition of personal PM2.5? Atmospheric Environment, 2015. 101: p. 226-234.
Brunekreef, B. and S.T. Holgate, Air pollution and health. The Lancet, 2002. 360(9341): p. 1233-1242.
Cheng, Y.H., Comparison of the TSI Model 8520 and Grimm Series 1.108 portable aerosol instruments used to monitor particulate matter in an iron foundry. J Occup Environ Hyg, 2008. 5(3): p. 157-68.
Dai, X., et al., Long-term monitoring of indoor CO2 and PM2.5 in Chinese homes: Concentrations and their relationships with outdoor environments. Building and Environment, 2018. 144: p. 238-247.
Gryparis, A., et al., Acute effects of ozone on mortality from the "air pollution and health: a European approach" project. Am J Respir Crit Care Med, 2004. 170(10): p. 1080-7.
Hleis, D., et al., Chemical profile identification of fugitive and confined particle emissions from an integrated iron and steelmaking plant. J Hazard Mater, 2013. 250-251: p. 246-55.
Ji, X., Y. Yao, and X. Long, What causes PM2.5 pollution? Cross-economy empirical analysis from socioeconomic perspective. Energy Policy, 2018. 119: p. 458-472.
Kelly, F.J. and J.C. Fussell, Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmospheric Environment, 2012. 60: p. 504-526.
Krishnaraj, R., Contemporary and futuristic views of pollution control devices in foundries. Ecotoxicol Environ Saf, 2015. 120: p. 130-5.
LEE, J.-T. and C.M. SHY, Respiratory function as measured by peak expiratory flow rate and PM10: six communities study. Journal ofExposure Analysis and Environmental Epidemiology, 1999. P.9: p. 293-299.
Liu, C., et al., Influence of natural ventilation rate on indoor PM2.5 deposition. Building and Environment, 2018. 144: p. 357-364.
M. El-Fadel, M.M., Particulate matter in urban areas: health-based economic assessment. The Science of the Total Environment, 2000. 257: p. 133-146.
Mao, C., et al., Human health risks of heavy metals in paddy rice based on transfer characteristics of heavy metals from soil to rice. Catena, 2019. 175: p. 339-348.
Martins, N.R. and G. Carrilho da Graça, Impact of PM2.5 in indoor urban environments: A review. Sustainable Cities and Society, 2018. 42: p. 259-275.
Mingorance, M.D., B. Valdes, and S.R. Oliva, Strategies of heavy metal uptake by plants growing under industrial emissions. Environ Int, 2007. 33(4): p. 514-20.
MohseniBandpi, A., et al., Physicochemical characterization of ambient PM2.5 in Tehran air and its potential cytotoxicity in human lung epithelial cells (A549). Sci Total Environ, 2017. 593-594: p. 182-190.
Oliva, S.R. and A.J.F. Espinosa, Monitoring of heavy metals in topsoils, atmospheric particles and plant leaves to identify possible contamination sources. Microchemical Journal, 2007. 86(1): p. 131-139.
Sun, L., et al., Levels, sources, and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan, China. Catena, 2019. 175: p. 101-109.
Viegi, G., et al., Indoor air pollution and airway disease. INT J TUBERC LUNG DIS, 2004. 8(12): p. 1401–1415.