(3.238.206.122) 您好!臺灣時間:2021/04/21 09:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何信諺
研究生(外文):Hsin-Yen He
論文名稱:洗腎患者血管通路的血流聲音之熵值分析及其應用
論文名稱(外文):Entropy Analysis of Blood Flow Sound in Vascular Access in Hemodialysis Patients and Its Application
指導教授:王家鍾王家鍾引用關係
指導教授(外文):Jia-Jung Wang
學位類別:碩士
校院名稱:義守大學
系所名稱:生物醫學工程學系
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:63
中文關鍵詞:血液透析自體瘻管人工瘻管血流聲音瘻管阻塞近似熵樣本熵多尺度熵
外文關鍵詞:HemodialysisArteriovenous fistulaArtificial fistulaBlood flow soundFistula stenosisApproximate entropySample entropyMultiscale entropy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:32
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
隨著國內肥胖、糖尿病、高血壓等慢性病以及老年人口增加之下,腎臟病患者也跟著大幅增加。另外,在國人不當的用藥習慣下,未依正規管道妥善醫治,使病情越加嚴重,加速了糖尿病、高血壓所引發之腎病變,而導致國內洗腎人口不斷攀升,同時血液透析瘻管狹窄與阻塞導致功能異常的情況也隨之增加,而經皮血管成形術為主要解決洗腎動靜脈瘻管功能異常的方法。不論是動靜脈自體瘻管或是人工瘻管,經使用一段時間後,均可能發生阻塞現象。因此,本論文的目的就是要以透析瘻管血流聲音擷取裝置,以非侵入的方式記錄手術前後瘻管的血流聲音訊號,並以熵值分析找出手術前後瘻管狹窄程度與血流聲音訊號之間的關係。
本論文中所測量之病人共119例,皆由高雄榮民總醫院心臟血管中心就診案例中篩選,利用已開發之裝置分別擷取透析瘻管動脈癒合端、瘻管中點及靜脈癒合端等三個位置約三十秒之血流聲音訊號,並分別利用近似熵、樣本熵及多尺度熵方法進行分析,以便觀察洗腎患者在進行血管擴張手術前後血流聲音熵值的差異。在近似熵分析結果顯示,手術後動脈癒合端(0.3359±0.3309 vs 0.2642±0.2673)及瘻管中央位置(0.2861±0.3267 vs 0.2291±0.2693)所測得血流聲音的熵值均顯著大於手術前(p<0.05);相似地,手術後動脈癒合端(0.3936±0.4961 vs 0.2627±0.3675)及瘻管中央位置(0.3601±0.5099 vs 0.2642±0.3678)所測得血流聲音的近似熵熵值也顯著大於手術前(p<0.05)。
總之,利用近似熵、樣本熵及多尺度熵方法進行分析瘻管血流聲音,能夠協助辨識瘻管是否發生狹窄或血栓阻塞的現象,以便早期發現早期進行疏通處置,預防透析瘻管完全阻塞,有效延長透析瘻管的使用壽命,降低健保支出。
As the number of patients with chronic diseases such as obesity, diabetes, high blood pressure and the elderly population are increasing, the number of people with kidney disease is also elevated. In addition, improper medication habits have made such disease more serious and accelerated. Since more people receive hemodialysis treatment due to severe kidney disease resulting from diabetes and high blood pressure, more incidences of hemodialysis access dysfunction occur. In either an arteriovenous fistula or an artificial fistula, stenosis or obstruction may take place after a period of use. Therefore, the purpose of this thesis was to measure the phonoangiogram (PAG) signals of the vascular access and to analyze them by using the approximate entropy, sample entropy, and multiscale entropy methods, respectively.
The study included 119 patients receiving hemodialysis. All of them were screened from the Cardiac Vascular Center of Kaohsiung Veterans General Hospital. Individual ten-second PAG signals originated from the healing end of the artery, the midpoint of the fistula and the healing end of the vein were measured by the developed device. In the approximate entropy analysis, entropy values of the PAG signals from the healing end of the artery (0.3359±0.3309 vs. 0.2642±0.2673) and from the midpoint of the fistula (0.2861±0.3267 vs. 0.2291±0.2693) were significantly larger after surgery than before surgery (p<0.05).
Similarly, in the sample entropy analysis, we found that entropy values of the PAG signals from the healing end of the artery (0.3936±0.4961 vs. 0.2627±0.3675) and from the midpoint of the fistula (0.3601±0.5099 vs. 0.2642±0.3678) were significantly greater after surgery, as compared with those before surgery (p<0.05).
In conclusion, the approximate, sample and multiscale entropy methods may be applied for identifying whether there is any stenosis phenomenon in the vascular access. This will be helpful in the detection of early stenosis in vascular access, and then subsequent medical treatment will probably prolong the usage life of the hemodialysis fistula.
致謝 I
摘要 II
Abstract IV
目錄 VI
圖目錄 VIII
表目錄 IX
第一章、緒論 1
1-1、前言 1
1-2、相關文獻探討 4
1-3、研究動機與目的 6
第二章、血流聲音擷取裝置系統 7
2-1、透析瘻管血流聲音擷取裝置 7
2-2、擷取系統各組成裝置 9
2-2-1、電容式麥克風聽診器 9
2-2-2、血流聲音擷取裝置 10
2-2-3、血管血流聲音輸出裝置 11
2-2-4、心跳波形記錄裝置 12
2-2-5、生理訊號擷取裝置 13
2-2-6、資料分析軟體 14
第三章、瘻管血流聲音分析方法及實驗設計 15
3-1、血流聲音擷取方法 15
3-2、血流聲音擷取實驗設計 17
3-3、分析方法 19
3-3-1、訊號處理方法 19
3-3-2、近似熵 Approximate Entropy 22
3-3-3、樣本熵 Sample Entropy 23
3-3-4、多尺度熵 Multiscale entropy 24
3-4、統計分析 25
第四章、數據分析與統計結果 26
4-1、受測者基本資料 26
4-2、量測結果 27
4-3、近似熵分析結果 31
4-4、樣本熵分析結果 32
4-5、多尺度熵分析結果 34
4-6、多尺度熵雙因子變異數分析結果 39
第五章、討論 45
5-1、血流聲音量測系統之探討 45
5-2、受測者實驗設計之探討 46
5-3、實驗數據分析之探討 47
第六章、結論及未來展望 48
6-1、結論 48
6-2、未來展望 49
參考文獻 50
[1] Available:Moor Instrument https://www.azuravascularcare.com/medical-services/dialysis-access-management/av-fistula-creation/ https://www.azuravascularcare.com/medical-services/dialysis-access-management/av-graft-placement/
[2] Available:Moor Instrument http://www.chimei.org.tw/main/cmh_department/53000/nurse_epaper/nurse10409/menu1_4.html
[3] Available:Moor Instrument https://www.tsn.org.tw/UI/L/TWRD/ebook_2017%E5%B9%B4%E5%A0%B1.pdf (2017台灣腎病年報)
[4] Rabiner L.R., Schafer R.W., Digital Processing of speech Recognition Signal,Prentice Hall(1978).
[5] Mansy H. A., Hoxie S. J., Patel N. H., Sandler R.H., “Computerised analysis of auscultatory sounds associated with vascular patency of haemodialysis access,” Med Biol Eng Comput,43(1):56-62,2005.
[6] Kian K., Asif A., “Status of research in vascular access for dialysis,” Nephrol Dial Transplant, 25(11):3682-6, 2010.
[7] Lomonte C., Casucci F., Antonelli M., Giammaria B., Losurdo N., Marchio G., Basile C., “Is there a place for duplex screening of the brachial artery in the maturation of arteriovenous fistulas?,” Semin Dial, 18(3):243-6, 2005.
[8] Surlan M., Popovic P., “The role of interventional radiology in management of patients with end-stage renal disease,”Eur J Radiol, 46(2):96-114, 2003.
[9] Gibson K.D., Stehman-Breen C.O., Kohler T.R., “Use of vascular diagnostic laboratory in improving the success of angioaccess procedures,” Semin Vasc Surg, 14(3):222-6, 2001.
[10] Depner T.A., Krivitski N.M., MacGibbon D., “Hemodialysis access recirculation measured by ultrasound dilution,” ASAIO J, 41(3):M749-53, 1995.
[11] Vasquez P., Marco M.M., Mattsson E., Mandersson B., “Application of the Empirical Mode Decomposition in the study of murmurs from Arteriovenous fistula stenosis,” Conf Proc IEEE Eng Med Biol Soc, 2010:947-50, 2010.
[12] Mansy H.A., Hoxie S.J., Patel N.H., Sandler R.H., “Computerised analysis of auscultatory sounds associated with vascular patency of haemodialysis access,” Med Biol Eng Comput, 43(1):56-62, 2005.
[13] Campos R.P., Chula D.C., Perreto S., Riella M.C., Nascimento M. M., “Accuracy of stenosis in hemodialysis arteriovenous fistula,” Semin Dial, 21(3): 269-73, 2008.
[14] Trerotola S.O., Ponce P., Stavropoulos S.W., Clark T.W., Tuite C.M., Mondschein J.I., Shlansky-Goldberg R., Freiman D.B., Patel A.A., Soulen M.C., Cohen R., Wasserstein A., Chittams J.L., “Physical examination versus normalized pressure ratio for predicting outcomes of hemodialysis access interventions,” J Vasc Interv Radiol, 14(11): 1387-94, 2003.
[15] 長期血液透析瘻管失能的處置賴奇正 ; 葉同成 ; 林俊堯 ; 許智揚 ;蕭世宏 ; 馬光遠 ; 劉俊鵬 內科學誌 19:3 2008.06[民 97.06] 頁197-204
[16] 血液透析瘻管評估新趨勢 萬芳醫院 洗腎室 秦庭瑩 護理師 報告時間 2006年11月23日
[17] Munguia M.M., Vasquez P., Mattsson E., and Mandersson B., “Acoustical detection of venous stenosis in hemodialysis patients using principal component analysis,” Conf Proc IEEE Eng Med Biol Soc, 2010:3654-7, 2010.
[18] Pincus S.M., Approximate entropy as a measure of system complexity, Proc. Natl. Acad. Sci. U. S. A. 1991;88: 2297–2301.
[19] Richman J.S., Moorman J.R., Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol. 2000; 278: H2039–H2049.
[20] A Humeau-Heurtier., The Multiscale Entropy Algorithm and Its Variants: A Review.entropy.2015; 17, 3110-3123.
[21] Applying Contemporary Statistical Techniques 2003, Pages 329-360
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔