(3.230.143.40) 您好!臺灣時間:2021/04/21 07:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱靖傑
研究生(外文):Jing-Jay Chiu
論文名稱:高靈敏度表面聲波一氧化氮感測元件之研發
論文名稱(外文):High Sensitivity Nitric Oxide Sensors Using Surface Acoustic Wave Devices
指導教授:沈季燕
指導教授(外文):Chi-Yen Shen
學位類別:碩士
校院名稱:義守大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:76
中文關鍵詞:表面聲波一氧化氮石墨烯聚吡咯氧化鎢
外文關鍵詞:surface acoustic wavenitric oxidegraphenepolypyrroletungsten oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:22
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氣喘是現今常見的氣道慢性炎症疾病,檢測呼吸疾病迄今都需要藉由繁複耗時的醫療儀器系統來進行肺功能檢查。因此,本論文使用具還原氧化石墨烯/聚吡咯/氧化鎢(rGO/PPy/WO3)奈米複合薄膜的表面聲波元件(Surface Acoustic Wave)為感測器,藉由氧化鎢的多孔性結構,與還原氧化石墨烯/聚吡咯在室溫的靈敏度與選擇性,研製可於室溫下操作並且快速偵測ppb等級的一氧化氮氣體感測器。本論文研製的表面聲波感測器在乾燥空氣下,偵測濃度1-110ppb的一氧化氮顯示的靈敏度為11 ppb/Hz,響應時間和恢復時間都在2分鐘以內,最小可偵測濃度估計約為0.3 ppb,並展現再現性、回復性、長期穩定性等良好的感測特性。此外,以二氧化氮、氨氣、二氧化碳為干擾性氣體時,此感測器亦具有極佳的選擇性。
Asthma is a common chronic inflammatory disease in the respiratory tract. Detection of respiratory diseases often uses the post-bronchodilator test, which requires complex medical instrument, and the detection process is usually time-consuming. Therefore, this study used a surface acoustic wave (SAW) device containing graphene/polypyrrole/tungsten trioxide (rGO/PPy/WO3) nanocomposite thin films as the basis to develop a nitric oxide sensor. Through the porous structure of WO3 and the sensitivity and selectivity of rGO/PPy, the sensor could rapidly detect nitric oxide in the ppb level at room temperature. The developed sensor detected nitric oxide of 1–110 ppb concentration in dry air with a sensitivity of 11 ppb/Hz. Both the response time and recovery time were shorter than 2 minutes. The minimum detectable concentration was approximately 0.3 ppb. The developed sensor demonstrated favorable sensor characteristics such as repeatability, reversibility, and long-term stability. Moreover, the sensor exhibited excellent selectivity when nitrogen dioxide, ammonia, and carbon dioxide were used as interfering gases.
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 IX
第一章 緒論 1
1-1 研究背景 1
1-2研究動機 2
1-3 論文架構 3
第二章 一氧化氮與化學介面 4
2-1一氧化氮來源與介紹 4
2-2 化學介面 5
2-2-1 高分子導電聚合物 5
2-2-2 半導體金屬氧化物 7
2-2-3 石墨烯 9
2-2-4 複合材料 11
2-3 含氮原子氣體感測器的種類與回顧 11
第三章 表面聲波元件特性模擬和量測 14
3-1 表面聲波元件設計與特性模擬 14
3-2 表面聲波元件製作與特性量測 16
3-3 電路阻抗匹配 19
3-4 振盪器電路與特性 21
第四章 感測器製作與感測實驗架構 24
4-1感測膜的配製 24
4-1-1 氧化石墨烯 (GO)的製備 24
4-1-2 還原氧化石墨烯(rGO)之製備 24
4-1-3 氧化鎢(WO3)凝膠之製備 25
4-1-4 還原氧化石墨烯/聚吡咯/氧化鎢(rGO/PPy/WO3) 奈米複合凝膠之製備 25
4-1-5 感測膜材料特性分析 26
4-2 感測膜的塗佈 28
4-3 感測腔設計與製作 30
4-4 實驗系統架構和方法 32
4-4-1 儀器設備 32
4-4-2 乾燥空氣環境下的實驗架構和實驗方法 34
4-4-3 乾燥空氣環境下的選擇性氣體實驗 36
第五章 結果與討論 37
5-1 rGO/PPy/WO3奈米複合薄膜材料分析 37
5-2 感測器特性分析 41
第六章 結論 48
參考文獻 49
[1]B. Buszewski, M. Kesy, T. Ligor and A. Amann, "Human exhaled air analytics: biomarkers of diseases," Biomedical Chromatography, vol. 21, pp. 553-566, 2007.
[2]A. Mrzaei, S.S. Kim and H.W. Kim, "Resistance-based H2S gas sensors using metal oxide nanostructures: A review of recent advances," Journal of Hazardous Materials, vol. 357, pp.314-331, 2018.
[3]P.P. Zhang, H.W. Qin, H. Zhang, W. Lu and J.F. Hu, "CO2 gas sensors based on Yb1−xCaxFeO3 nanocrystalline powders," Journal of Rare Earths, vol 35,pp. 602-609, 2017.
[4]Z. Li, Z.J. Yao, A.A. Haidrya, T. Plecenik, L.J. Xie, L.C. Sun and Q. Fatimaa, "Resistive-type hydrogen gas sensor based on TiO2: A review," International Journal of Hydrogen Energy, vol. 43, pp. 21114-21132, 2018
[5]W. Junren, A. Jákli and J.L. West, "Liquid crystal/polymer fiber mats as sensitive chemical sensors," Journal of Molecular Liquids, vol. 267, pp.490-495, 2018.
[6]C.A. Rincóna, A.D. Guardiaa, A. Couvertb, S.L. Rouxa, I. Soutrelb, M. Daumoina and J.C. Benoist, "Chemical and odor characterization of gas emissions released during composting of solid wastes and digestates," Journal of Environmental Management, vol. 233, pp. 39-53, 2019.
[7]M.K. Alama, M.M. Rahmanb,M.M. Rahmanc, D. Kim, A.M. Asiric and F.A. Khan, "In-situ synthesis of gold nanocrystals anchored graphene oxide and its application in biosensor and chemical sensor." Journal of Electroanalytical Chemistry, vol. 835, pp. 329-337, 2019.
[8]E. Ehsan, A.S. Noce and F. Taghipour, "The effect of radiation parameters on the performance of photo-activated gas sensors," Journal of Photochemistry and Photobiology A: Chemistry, vol. 374, pp. 95-105, 2019.
[9]R. Kitture, D. Pawara, Ch.N. Rao, R.K. Choubey and S.N. Kale, "Nanocomposite modified optical fiber: A room temperature, selective H2S gas sensor: Studies using ZnO-PMMA," Journal of Alloys and Compounds, vol. 695, pp. 2091-2096, 2017.
[10]A.J. Corsoa, E. Tessaroloa, M. Guidolina, E.D. Gasperac, A. Martuccia, M. Angiolaa, A. Donazzana and M.G. Pelizzo, "Room-temperature optical detection of hydrogen gas using palladium nano-islands," International Journal of Hydrogen Energy, vol. 43, pp. 5783-5792, 2018.
[11]N. Abrahama, R.R. Krishnakumara, C. Unnib and D. Philip, "Simulation studies on the responses of ZnO-CuO/CNT nanocomposite based SAW sensor to various volatile organic chemicals," Journal of Science: Advanced Materials and Devices, vol. 4, pp. 125-131, 2019.
[12]S.Y. Wang, J.Y. Ma, Z.J. Li, H.Q. Su, N.R. Alkurd, W.L. Zhou,L. Wang, B. Du, Y.L. Tang, D.Y. Ao, S.C. Zhang, Q.K. Yu and X.T. Zu, "Surface acoustic wave ammonia sensor based on ZnO/SiO2 composite film," Journal of Hazardous Materials, vol. 285, pp. 368-374, 2015.
[13]B. Leea, J. Hong, J.W. Kim, Y.H. Kwak,K Kim, J.W. Lee and B.K. Ju, "Development of high-sensitivity ambient light sensor based on cadmium sulfide-deposited surface acoustic wave sensor," Sensors and Actuators A: Physical, vol. 293, pp. 145-149,2019.
[14]L. Rayleigh, "On waves propagated along the plane surface of an elastic solid," Proceedings of the London Mathematical Society, vol. 1, pp. 4-11, 1885.
[15]R.M. White and F.W. Voltmer, "Direct piezoelectric coupling to surface elastic waves," Applied physics letters, vol. 7, pp.314-316, 1965.
[16]G.M. Ma, Z. Wu, H.Y. Zhou, J. Jiang, W.X Chen, S.S. Zheng, C.R. Li, X. Li and Z.B. Wang, "A wireless and passive online temperature monitoring system for GIS based on surface-acoustic-wave sensor," IEEE Transactions on Power Delivery, vol.31, pp.1270-1280, 2016.
[17]Z. Ma, D. J. Collins and Y Ai, "Detachable acoustofluidic system for particle separation via a traveling surface acoustic wave," Analytical Chemistry, vol.88, pp. 5316-5323, 2016.
[18]A. Mujahid, F. L. Dickert, "Surface acoustic wave (SAW) for chemical sensing applications of recognition layers," Sensors, vol. 17, p. 2716, 2017.
[19]A. Ayes, A. Maskay and M.P. Cunha, "Predicted and measured temperature compensated surface acoustic wave devices for high-temperature applications," Electronics Letters, vol. 53, pp. 699-700, 2017.
[20]P. Maurya, N. Mandal, "Design Analysis of Wireless Pressure Measurement by Integrating Surface Acoustic Wave Sensor With Bourdon Tube," IEEE Sensors Journal, vol. 18, pp. 8996-9004, 2018.
[21]A. Müller, G. Konstantinidis, I. Giangu, G.C. Adam, A. Stefanescu, A. Stavrinidis, G. Stavrinidis, A. Kostopoulos, G. Boldeiu and A. Dinescu, "GaN membrane supported SAW pressure sensors with embedded temperature sensing capability," IEEE Sensors Journal, vol. 17, pp. 7383-7393, 2017.
[22]Y. Liu, H. Huang, L.L. Wang, D.P. Cai, B. Liu, D.D. Wang, Q.H. Li and T.H. Wang "Electrospun CeO2 nanoparticles/PVP nanofibers based high-frequency surface acoustic wave humidity sensor," Sensors and Actuators B: Chemical, vol. 223, pp. 730-737, 2016.
[23]X.H. Le, X.Y. Wang, J.T. Pang, Y.J. Liu, B. Fang, Z. Xu, C. Gao, Y. Xu and J. Xie, "A high performance humidity sensor based on surface acoustic wave and graphene oxide on AlN/Si layered structure," Sensors and Actuators B: Chemical, vol. 255, pp. 2454-2461, 2018.
[24]程潔菡, 徐世達. "關於呼氣一氧化氮 (exhaled NO) 測量的臨床應用," 台灣氣喘衛教學會會刊, vol. 13, pp. 4-8, 2009.
[25]L.J. Ignarro, G.M. Buga, K.S. Wood, R.E. Byrns and G. Chaudhuri, "Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide," Proceedings of the National Academy of Sciences, vol. 84, pp. 9265-9269, 1987.
[26]R.M. J. Palmer , D.D. Rees, D.S.Ashton and S. Moncada, "L-arginine is the physiological precursor for the formation of nitric oxide in endothelium-dependent relaxation," Biochemical and Biophysical Research Communications,vol. 153, pp. 1251-1256, 1988.
[27]S.A. Kharitonova, D. Yates, R.A. Robbins, P.J. Barnes, R. Logan-Sinclair and E.A. Shinebourne "Increased nitric oxide in exhaled air of asthmatic patients," The Lancet ,vol. 343, pp. 133-135, 1994.
[28]Q. Hamid, D.R. Springall, J.M.Polak, V. Riveros-Moreno, P. Chanez, J. Bousquet, P. Godard, S. Holgate, P. Howarth and A..Redington "Induction of nitric oxide synthase in asthma, " The Lancet, vol. 342, pp. 1510-1513, 1993.
[29]R.A. Dweik, P.B. Boggs, S.C. Erzurum, C.G. Irvin, M.W. Leigh, J.O. Lundberg, A. Olin, A.L. Plummer and D. R. Taylor, "An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications," American Journal of Respiratory and Critical Care Medicine, vol. 184, pp.602-615, 2011.
[30]T.W. Guilbert, W.J. Morgan, R.S. Zeiger, D.T. Mauger, S.J. Boehmer, S.J. Szefler, L.B. Bacharier, R.F. Lemanske, R.C. Strunk, D.B. Allen, G.R. Bloomberg and G. Heldt, "Long-term inhaled corticosteroids in preschool children at high risk for asthma," New England Journal of Medicine, vol. 354, pp. 1985-1997, 2006.
[31]R.H. Green, C.E. Brightling, S. McKenna, B. Hargadon, D. Parker, P. Bradding, A.J. Wardlaw and I.D. Pavord "Asthma exacerbations and sputum eosinophil counts: a randomised controlled trial," The Lancet, vol.360, pp. 1715-1721, 2002.
[32]W.W. Li, X.M. Geng, Y.F. Guo, J.Z. Rong, Y.P. Gong, L.Q. Wu, X.M. Zhang, P. Li, J.B. Xu, G.S. Cheng, M.T. Sun and L. Liu, "Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection," ACS Nano, vol. 5, pp. 6955-6961, 2011.
[33]A.D. Smith, J.O. Cowan, K.P. Brassett, G.P. Herbison and D.R. Taylor, "Use of exhaled nitric oxide measurements to guide treatment in chronic asthma, " New England Journal of Medicine, vol. 352, pp. 2163-2173, 2005.
[34]A.D. Smith, J.O. Cowan, S. Filsell, C. McLachlan, G. Monti-Sheehan, P. Jacksonand and D.R. Taylor "Diagnosing asthma: comparisons between exhaled nitric oxide measurements and conventional tests," American Journal of Respiratory and Critical Care Medicine, vol. 169, pp. 473-478, 2004.
[35]J. Wojtas, Z. Bielecki, T. Stacewicz, J. Mikolajczyk, R. Medrzycki and B. Rutecka, "Application of quantum cascade lasers in nitric oxide and nitrous oxide detection," Acta Physica Polonica, A, vol. 120, pp. 794-797, 2011.
[36]U. Conrath, G. Amoroso, H. Köhleand and D.F. Sültemeyer, "Noninvasive online detection of nitric oxide from plants and some other organisms by mass spectrometry," The Plant Journal, vol. 38, pp. 1015-1022, 2004.
[37]A.J. Becker, S. Ückert, D. Tsikas, H. Noack, C.G. Stief, J.C. Frölich, G. Wolf and U. Jonas, "Determination of nitric oxide metabolites by means of the Griess assay and gas chromatography–mass spectrometry in the cavernous and systemic blood of healthy males and patients with erectile dysfunction during different functional conditions of the penis," Urological research, vol. 28, pp. 364-369, 2000.
[38]Y.Y. Woldmana, T.D. Eubankc, A.J. Mockb, N.C. Stevens, S. Varadharajc, J. Turcob, M.A. Gavrilinc, B.R. Branchinid and V.V. Khramtsov, "Detection of nitric oxide production in cell cultures by luciferin–luciferase chemiluminescence," Biochemical and Biophysical Research Communications, vol. 465, pp. 232-238, 2015.
[39]K. Arshak, G.M. Lyons, J. Harris and S. Clifford, "A review of gas sensors employed in electronic nose applications," Sensor Review, vol. 24, pp. 181-198, 2004.
[40]C. Nylander, M. Armgarth and I. Lundström, "An ammonia detector based on a conducting polymer," Anal. Chem. Symp. Ser, vol. 17, pp. 203-207, 1983.
[41]H. Bai and G. Shi, "Gas sensors based on conducting polymers." Sensors, vol. 7, pp.267-307, 2007.
[42]G. Chen, R.X. Liu, H.K. Shon, Y.Q. Wang, J.F. Song, X.M. Li and T. He, "Open porous hydrophilic supported thin-film composite forward osmosis membrane via co-casting for treatment of high-salinity wastewater," Desalination, vol. 405, pp. 76-84, 2017.
[43]I. Stassen, M. Styles, G. Grenci, H.V. Gorp, W. Vanderlinden, S.D. Feyter, P. Falcaro, D.D. Vos, P. Vereecken and R. Ameloot, "Chemical vapour deposition of zeolitic imidazolate framework thin films," Nature Materials, vol.15 , p. 304, 2016.
[44]K. Kaviyarasua, C. Maria Magdalanec, K. Kanimozhie, J. Kennedya, B. Siddhardhag, E. S. Reddyh, N. K. Rottei, C. S. Sharmai, F.T. Themaa, D. Letsholathebej, G. T. Molak and M. Maazaa, "Elucidation of photocatalysis, photoluminescence and antibacterial studies of ZnO thin films by spin coating method," Journal of Photochemistry and Photobiology B: Biology, vol. 173 , pp. 466-475, 2017.
[45]X.N. Luo, K. Ma, T.F. Jiao, R.R. Xing, L.X. Zhang, J.X. Zhou and B.B. Li, "Graphene oxide-polymer composite Langmuir films constructed by interfacial thiol-ene photopolymerization," Nanoscale research letters, vol. 12, p. 99, 2017.
[46]L. Tiggemanna, S. Ballena, C. Bocalona, A.M. Graboskia, A. Manzolib, P.S.P. Herrmannb, J. Steffensa, E. Valdugaa and C. Steffens, "Low-cost gas sensors with polyaniline film for aroma detection." Journal of Food Engineering, vol. 180, pp. 16-21, 2016.
[47]E.T. Zellers and M.W. Han, "Effects of temperature and humidity on the performance of polymer-coated surface acoustic wave vapor sensor arrays," Analytical Chemistry, vol. 68, pp. 2409-2418, 1996.
[48]G. Heiland, "Zum einfluß von wasserstoff auf die elektrische leitfähigkeit an der oberfläche von zinkoxydkristallen," Zeitschrift für Physik, vol. 148, pp.15-27, 1957.
[49]A. Bielański, J. Dereń and J. Haber, "Electric conductivity and catalytic activity of semiconducting oxide catalysts," Nature, vol. 179, p. 668, 1957.
[50]T. Seiyama, A. Kato, K. Fujiishi and M Nagatani, "A new detector for gaseous components using semiconductive thin films," Analytical Chemistry,vol. 34, pp. 1502-1503, 1962.
[51]G. Eranna, B. C. Joshi, D. P. Runthala and R. P. Gupta, "Oxide materials for development of integrated gas sensors—a comprehensive review," Critical Reviews in Solid State and Materials Sciences ,vol. 29, pp. 111-188, 2004.
[52]D. Kumar and R. C. Sharma, "Advances in conductive polymers," European polymer journal, vol. 34, pp. 1053-1060, 1998.
[53]J.K. Choi, I.S. Hwanga, S.J. Kima, J.S. Park, S.S. Park, U. Jeongc, Y.C. Kang, J.H. Lee, "Design of selective gas sensors using electrospun Pd-doped SnO2 hollow nanofibers," Sensors and Actuators B: Chemical ,vol. 150, pp. 191-199, 2010.
[54]L. Chaikarn, S. Phanichphant, "Effects of palladium loading on the response of thick film flame-made ZnO gas sensor for detection of ethanol vapor," Sensors,vol. 7, pp. 1159-1184, 2007.
[55]E. Schaller, J.O. Bosset, F. Escher, "‘Electronic noses’ and their application to food," LWT-Food Science and Technology, vol. 31, pp. 305-316, 1998.
[56]E. Kanazawa, G. Sakai, K. Shimanoe, Y. Kanmura, Y. Teraoka, N. Miura, N. Yamazoe, "Metal oxide semiconductor N2O sensor for medical use," Sensors and Actuators B: Chemical, vol. 77, pp. 72-77, 2007.
[57]N. Yamazoe, "New approaches for improving semiconductor gas sensors, " Sensors and Actuators B: Chemical, vol. 5, pp. 7-19, 1991.
[58]M. Drobek, J.H. Kim, M. Bechelany, C. Vallicari, A. Julbe and S.S. Kim, "MOF-based membrane encapsulated ZnO nanowires for enhanced gas sensor selectivity," ACS applied materials & interfaces,vol. 8, pp. 8323-8328, 2016.
[59]J.H. Kim, A. Katoch and S.S. Kim, "Optimum shell thickness and underlying sensing mechanism in p–n CuO–ZnO core–shell nanowires," Sensors and Actuators B: Chemical, vol. 222, pp. 249-256, 2016.
[60]W. Wei, S. Guo, C. Chen, L, Sun, Y. Chen, W.B.Guo and S.P. Ruan, "High sensitive and fast formaldehyde gas sensor based on Ag-doped LaFeO3 nanofibers," Journal of Alloys and Compounds,vol. 695, pp. 1122-1127, 2017.
[61]S. Yanga, Y.L. Liua, W. Chena, W. Jinb, J. Zhoua, H. Zhang and G. S. Zakharova "High sensitivity and good selectivity of ultralong MoO3 nanobelts for trimethylamine gas," Sensors and Actuators B: Chemical, vol. 226, pp. 478-485, 2016.
[62]H.L. Tian,H.Q. Fan,J.W. Ma,Z.Y. Liu,L.T. Ma, S.H. Lei,J.W. Fang and C.B. Long, "Pt-decorated zinc oxide nanorod arrays with graphitic carbon nitride nanosheets for highly efficient dual-functional gas sensing," Journal of hazardous materials, vol. 341, pp.102-111, 2018.
[63]K. Wetchakuna, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat,A. Tuantranont and S. Phanichphant, "Semiconducting metal oxides as sensors for environmentally hazardous gases," Sensors and Actuators B: Chemical, vol. 160, pp. 580-591, 2011.
[64]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, "Electric field effect in atomically thin carbon films," science vol. 306, pp.666-669, 2004.
[65]C. Lee, X. Wei, J.W. Kysar and J. Hone "Measurement of the elastic properties and intrinsic strength of monolayer graphene," science, vol. 321.5887, pp. 385-388, 2008.
[66]C. Soldano, A. Mahmood and E. Dujardin, "Production, properties and potential of graphene, " Carbon, vol. 48, pp.2127-2150, 2010.
[67]K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y Choi and B.H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes," nature,vol. 457,p. 706, 2009.
[68]K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim and A. K. Geim, "Room-temperature quantum Hall effect in graphene," Science, vol. 315, pp.1379-1379, 2007.
[69]S. Basu, P. Bhattacharyya, "Recent developments on graphene and graphene oxide based solid state gas sensors," Sensors and Actuators B: Chemical, vol. 173, pp.1-21, 2017.
[70]L. G. D. Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson and C.W. Zhou, "Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics," ACS nano, vol. 4, pp. 2865-2873, 2010.
[71]Y. Dan, Y. Lu, N.J. Kybert, Z. Luo and A. T. C. Johnson "Intrinsic response of graphene vapor sensors," Nano letters,vol. 9, pp. 1472-1475, 2009.
[72]J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner and B. H. Weiller, "Practical chemical sensors from chemically derived graphene," ACS nano, vol. 3, pp. 301-306, 2009.
[73]R.K. Joshi, H. Gomez, F. Alvi and A. Kumar, "Graphene films and ribbons for sensing of O2, and 100 ppm of CO and NO2 in practical conditions," The Journal of Physical Chemistry C, vol. 114, pp. 6610-6613, 2010.
[74]J. T. Robinson, F. K. Perkins, E. S. Snow, Z.Q. Wei and P. E. Sheehan, "Reduced graphene oxide molecular sensors," Nano letters , vol. 8, pp. 3137-3140, 2008.
[75]X. Zhou, X. Wang, B. Wang, Z. Chen, C. He and Y.Wu, "Preparation, characterization and NH3-sensing properties of reduced graphene oxide/copper phthalocyanine hybrid material," Sensors and actuators B: chemical, vol. 193, pp. 340-348, 2014.
[76]S. Novikov, N. Lebedeva, A. Satrapinski, J. Walden, V. Davydov and A.Lebedev, "Graphene based sensor for environmental monitoring of NO2," Sensors and Actuators B: Chemical, vol. 236, pp. 1054-1060, 2016.
[77]I. Karaduman, E. Er, H. Çelikkan, N. Erk and S. Acar, "Room-temperature ammonia gas sensor based on reduced graphene oxide nanocomposites decorated by Ag, Au and Pt nanoparticles," Journal of Alloys and Compounds, vol. 722, pp. 569-578, 2017.
[78]L. Kumar, I. Rawal, A. Kaur and S. Annapoorni, "Flexible room temperature ammonia sensor based on polyaniline," Sensors and Actuators B: Chemical, vol. 240, pp. 408-416, 2017.
[79]K. Crowley, A. Morrin, A. Hernandez, E. O’Malley, P. G.Whitten, G. G.Wallaceb, M. R.Smyth and A. J. Killarda, "Fabrication of an ammonia gas sensor using inkjet-printed polyaniline nanoparticles," Talanta, vol. 77, pp. 710-717, 2008.
[80]D. Xie, Y. Jiang, W. Pan, D. Li, Z. Wu and Y. Li, "Fabrication and characterization of polyaniline-based gas sensor by ultra-thin film technology," Sensors and Actuators B: Chemical, vol. 81, pp. 158-164, 2002.
[81]S.T. Navale, A.T. Mane, M.A. Chougule, R.D. Sakhare, S.R. Nalage and V.B. Patil, "Highly selective and sensitive room temperature NO2 gas sensor based on polypyrrole thin films," Synthetic Metals, vol. 189, pp. 94-99, 2014.
[82]L. Zhang, F. Meng, Y. Chen, J. Liu, Y. Sun, T. Luo, M. Li and J. Liu, "A novel ammonia sensor based on high density, small diameter polypyrrole nanowire arrays," Sensors and Actuators B: Chemical, vol. 142, pp. 204-209, 2009.
[83]M.A. Chougule, S.G. Pawar, S.L. Patil, B.T. Raut, P.R. Godse, S. Sen and V.B. Patil, "Polypyrrole thin film: room temperature ammonia gas sensor," IEEE Sensors Journal, vol. 11, pp. 2137-2141, 2011.
[84]S. T. Navale, A. T. Mane, G. D. Khuspe, M. A. Chougule and V. B. Patil, "Room temperature NO2 sensing properties of polythiophene films," Synthetic Metals, vol. 195, pp. 228-233, 2014.
[85]D.B. Kamble, A.K. Sharma, J.B. Yadav, V.B. Patil, R.S. Devan, A.A. Jatratkar, M.A. Yewale, V.V. Ganbavle and S.D. Pawar, "Facile chemical bath deposition method for interconnected nanofibrous polythiophene thin films and their use for highly efficient room temperature NO2 sensor application," Sensors and Actuators B: Chemical, vol. 244, pp. 522-530, 2017.
[86]J. Zeng, M. Hu, W. Wang, H. Chen and Y. Qin, "NO2-sensing properties of porous WO3 gas sensor based on anodized sputtered tungsten thin film," Sensors and Actuators B: Chemical, vol. 161, pp. 447-452, 2012.
[87]S.S. Shendage, V.L. Patil, S.A. Vanalakar, S.P. Patil, N.S. Harale, J.L. Bhosale, J.H. Kim and P.S. Patil, "Sensitive and selective NO2 gas sensor based on WO3 nanoplates," Sensors and Actuators B: Chemical, vol. 240, pp. 426-433, 2017.
[88]T. Akamatsu, T. Itoh, N. Izu and W. Shin, "NO and NO2 sensing properties of WO3 and Co3O4 based gas sensors," Sensors, vol. 13, pp. 12467-12481, 2013.
[89]Z.X. Cai, H.Y. Li, X.N. Yang and X. Guo, "NO sensing by single crystalline WO3 nanowires," Sensors and Actuators B: Chemical, vol. 219, pp. 346-353, 2015.
[90]S. Anjali, M. Tomar and V. Gupta, "Enhanced response characteristics of SnO2 thin film based NO2 gas sensor integrated with nanoscaled metal oxide clusters," Sensors and Actuators B: Chemical, vol. 181, pp. 735-742, 2013.
[91]J. Zhang, S. Wang, Y. Wang, Y. Wang, B. Zhu, H. Xia, X. Guo, S. Zhang, W. Huang and S. Wu, "NO2 sensing performance of SnO2 hollow-sphere sensor." Sensors and Actuators B: Chemical, vol. 135, pp. 610-617, 2009.
[92]G.C. Nam, J.Y Dae, M.J. Jin, G.K. Ho, L.T. Harry and I.D. Kim, "Highly sensitive SnO2 hollow nanofiber-based NO2 gas sensors," Sensors and Actuators B: Chemical, vol. 160, pp. 1468-1472, 2011.
[93]Y. Şahin, S. Öztürk, N. Kılınç, A. Kösemen, M. Erkovan and Z.Z. Öztürk, "Electrical conduction and NO2 gas sensing properties of ZnO nanorods," Applied Surface Science, vol. 303, pp. 90-96, 2014.
[94]M.A. Chougule, S. Sen and V. B. Patil, "Fabrication of nanostructured ZnO thin film sensor for NO2 monitoring," Ceramics International, vol. 38, pp. 2685-2692, 2012.
[95]P.G. Su and H.C. Shieh, "Flexible NO2 sensors fabricated by layer-by-layer covalent anchoring and in situ reduction of graphene oxide." Sensors and Actuators B: Chemical, vol. 190, pp. 865-872, 2014.
[96]H. Peng, F. Li, Z. Hua, K. Yang, F. Yin and W. Yuan, "Highly sensitive and selective room-temperature nitrogen dioxide sensors based on porous graphene," Sensors and Actuators B: Chemical, vol. 275, pp. 78-85, 2018.
[97]H.J. Park, W.J. Kim, H.K. Lee, D.S. Lee, J.H. Shin, Y. Jun and Y.J. Yun, "Highly flexible, mechanically stable, and sensitive NO2 gas sensors based on reduced graphene oxide nanofibrous mesh fabric for flexible electronics," Sensors and Actuators B: Chemical, vol. 257, pp. 846-852, 2018.
[98]A.T. Mane, S.T. Navale and V. B. Patil, "Room temperature NO2 gas sensing properties of DBSA doped PPy–WO3 hybrid nanocomposite sensor," Organic Electronics, vol. 19, pp. 15-25, 2015.
[99]A.T. Mane, S.T. Navale, S. Sen, D.K. Aswal, S.K. Gupta and V.B. Patil, "Nitrogen dioxide (NO2) sensing performance of p-polypyrrole/n-tungsten oxide hybrid nanocomposites at room temperature," Organic Electronics, vol. 16, pp. 195-204, 2015.
[100]S.B. Kulkarni, Y.H. Navale, S.T. Navale, F.J. Stadler, N.S. Ramgir and V.B. Patil, "Hybrid polyaniline-WO3 flexible sensor: A room temperature competence towards NH3 gas," Sensors and Actuators B: Chemical, vol. 288, pp. 279-288, 2019.
[101]S. Bai, Y. Tian, M. Cui, J. Sun, Y. Tian, R. Luo, A. Chen and D. Li, "Polyaniline@ SnO2 heterojunction loading on flexible PET thin film for detection of NH3 at room temperature," Sensors and Actuators B: Chemical, vol. 226, pp. 540-547, 2016.
[102]H. Xu, D. Ju, W. Li, H. Gong, J. Zhang, J. Wang and B. Cao, "Low-working-temperature, fast-response-speed NO2 sensor with nanoporous-SnO2/polyaniline double-layered film," Sensors and Actuators B: Chemical, vol. 224, pp. 654-660, 2016.
[103]L. Yang, M. Jiao, and M. Yang, "In-situ grown nanostructured ZnO via a green approach and gas sensing properties of polypyrrole/ZnO nanohybrids," Sensors and Actuators B: Chemical, vol. 238, pp. 596-604, 2017.
[104]Y. Li, M. Jiao, H. Zhao and M. Yang, "High performance gas sensors based on in-situ fabricated ZnO/polyaniline nanocomposite: the effect of morphology on the sensing properties," Sensors and Actuators B: Chemical, vol. 264, pp. 285-295, 2018.
[105]D. Mausumi and D. Sarkar, "One-pot synthesis of zinc oxide-polyaniline nanocomposite for fabrication of efficient room temperature ammonia gas sensor," Ceramics International, vol. 43, pp. 11123-11131, 2017.
[106]C.T. Lee and Y.S. Wang, "High-performance room temperature NH3 gas sensors based on polyaniline-reduced graphene oxide nanocomposite sensitive membrane," Journal of Alloys and Compounds, vol. 789, pp. 693-696, 2019.
[107]J. Sun, X. Shu, Y. Tian, Z. Tong, S. Bai, R. Luo, D. Li and C. ChiunLiu, "Facile preparation of polypyrrole-reduced graphene oxide hybrid for enhancing NH3 sensing at room temperature," Sensors and Actuators B: Chemical, vol. 241, pp. 658-664, 2017.
[108]P.G. Su and S.L. Peng, "Fabrication and NO2 gas-sensing properties of reduced graphene oxide/WO3 nanocomposite films," Talanta, vol. 132, pp. 398-405, 2015.
[109]X. Jie, D. Zeng, J. Zhang, K. Xu, J. Wu, B. Zhu and C. Xie, "Graphene-wrapped WO3 nanospheres with room-temperature NO2 sensing induced by interface charge transfer," Sensors and Actuators B: Chemical, vol. 220, pp. 201-209, 2015.
[110]T. Wang, J. Hao, S. Zheng, Q. Sun, D. Zheng and Y. Wang, "Highly sensitive and rapidly responding room-temperature NO2 gas sensors based on WO3 nanorods/sulfonated graphene nanocomposites," Nano Research, vol. 11, pp. 791-803, 2018.
[111]Z. Wang, C. Zhao, T. Han, Y. Zhang, S. Liu, T. Fei, G. Lu and T. Zhang, "High-performance reduced graphene oxide-based room-temperature NO2 sensors: a combined surface modification of SnO2 nanoparticles and nitrogen doping approach," Sensors and Actuators B: Chemical, vol. 242, pp.269-279, 2017.
[112]X. Zhu, Y. Guo, H. Ren, C. Gao and YongZhou, "Enhancing the NO2 gas sensing properties of rGO/SnO2 nanocomposite films by using microporous substrates," Sensors and Actuators B: Chemical, vol. 248, pp. 560-570, 2017.
[113]Z. Wang, T. Zhang, T. Han, T. Fei, S. Liu and G. Lu, "Oxygen vacancy engineering for enhanced sensing performances: A case of SnO2 nanoparticles-reduced graphene oxide hybrids for ultrasensitive ppb-level room-temperature NO2 sensing," Sensors and Actuators B: Chemical, vol. 266, pp. 812-822, 2018.
[114]Y. Xia, J. Wang, J.L. Xu, X. Li, D. Xie, L. Xiang and S. Komarneni "Confined formation of ultrathin ZnO nanorods/reduced graphene oxide mesoporous nanocomposites for high-performance room-temperature NO2 sensors," ACS applied materials & interfaces, vol. 8, pp. 35454-35463, 2016.
[115]鍾美惠, "表面聲波元件模擬技術之研究," 義守大學電機工程學系學位論文, 2007.
[116]沈季燕, 邱靖傑, 楊閔文, "以表面聲波即時偵測ppb等級一氧化氮之整合型系統研發," MOST106-2221-E-214-028, 2018.
[117]H. Wang, X.H. Yuan, Y. Wu, X.H. Chen, L.J. Leng, H. Wang, H. Li and G.M. Zeng, "Facile synthesis of polypyrrole decorated reduced graphene oxide–Fe3O4 magnetic composites and its application for the Cr (VI) removal." Chemical Engineering Journal, vol. 262, pp. 597-606, 2015.
[118]連致傑, "結合 Cu2+/PANI/WO3 複合薄膜之高靈敏性表面聲波一氧化氮感測器," 義守大學電機工程學系學位論文, 2017.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔