(3.235.41.241) 您好!臺灣時間:2021/04/15 03:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:班仁知
研究生(外文):Ren-Jy Ben
論文名稱:大白鼠頸動脈栓塞動物模型之磁振造影特性研究
論文名稱(外文):Imaging Features of Magnetic Resonance Imaging in Sprague-Dawley Rat’s Carotid Arterial Embolization Model
指導教授:陳博洲陳博洲引用關係
指導教授(外文):Po-Chou Chen
學位類別:博士
校院名稱:義守大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:82
中文關鍵詞:快速自旋回訊飛行時間磁振血管造影擴散加權磁振造影表觀擴散係數SD大白鼠中大腦動脈栓塞動物模型缺血性腦中風
外文關鍵詞:Turbo spin echo (TSE)Time of flight magnetic resonance angiography (TOF MRA)Diffusion weighted imaging (DWI)Apparent diffusion coefficient (ADC)Spray Dawley (SD) ratMiddle cerebral artery occlusion (MCAO) animal modelIschemic stroke
相關次數:
  • 被引用被引用:0
  • 點閱點閱:22
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
粥狀動脈栓塞症(atherothrombosis)是導致缺血性腦中風(ischemic stroke)的主要原因,也是造成心肌梗塞等缺血性心臟病的原因之一,為全世界最常見之死亡病因之一。目前,動脈數位減贅血管攝影(digital subtraction angiography, DSA)仍為臨床檢查動脈栓塞之黃金標準,此檢查具侵入性且風險相當高。本研究旨在以磁振造影技術探討經由顯微手術建立SD大白鼠中大腦動脈栓塞動物模型 (middle cerebral artery occlusion animal model, MCAO) 的縱向性評估中風的進展。藉由不同的磁振造影技術,包括快速自旋回訊 (turbo spin echo, TSE)、飛行時間磁振血管造影 (time of flight magnetic resonance angiography, TOF MRA) 與擴散加權磁振造影 (diffusion weighted imaging, DWI),探討大白鼠動脈栓塞後腦部的影像特徵,以評估動脈栓塞對顱內組織之損傷及恢復情形。同時,定量分析比較兩側大腦半球,即MCAO腦半球與對應側正常腦半球間顱內組織損傷之影像表徵及其間之相關性、靈敏性與專一性,期能提供臨床診斷之參考。另外,梗死或缺血受損的腦組織區域進行氯化三苯基四氮唑染色病理組織切片分析,以比較磁振影像與病理特徵。於顯微手術後每天,連續三天及每週一次持續四週 (即第1,2,3,7,14,21,28天) 定期進行快速自旋回訊、磁振血管造影與擴散加權磁振造影掃描的縱向追蹤觀察。21隻腦中風的SD大白鼠之存活時間將可分類為3組,第一組於2-3日內死亡 (n=2),第二組於第八-九日死亡 (n=9),第三組於第4週以後死亡 (n=10)。
TOF MRA影像顯示腦栓塞側動脈信號喪失,此即為動脈閉塞的證據。研究發現所有MRI技術之結果均顯示水腫於一週內逐漸消退,隨後即無顯著變化。各種磁振造影技術均顯示腦栓塞側高訊號區域之時變訊號強度隨時間有顯著變化,然而,對應側正常腦半球則無明顯變化。實驗結果發現SD大白鼠行為模式及磁振造影影像特徵與病理組織分析結果是一致的,可證實SD大白鼠中大腦動脈栓塞動物模型可造成腦中風。本研究成功使用顯微手術以評估建立SD大白鼠中大腦動脈栓塞動物模型之顱內腦組織之損傷情形。
Atherothrombosis is a major cause of ischemic stroke and is a cause of ischemic heart disease due to myocardial infarction, which is one of the most common causes of death in the world as well. Nowadays, digital subtraction angiography (DSA) is still the gold standard in clinical arterial embolization examinations. However, it is invasive and risky. This study aimed to setup a middle cerebral artery occlusion (MCAO) SD rat model via microsurgery to induce stroke and longitudinally assess the progression of stroke using magnetic resonance imaging (MRI) techniques. Various MRI techniques including turbo spin echo (TSE), time of flight magnetic resonance angiography (TOF MRA) and diffusion weighted magnetic resonance imaging (DWI) were used to evaluate the intracranial tissue injury and recovery by image characteristics of cerebral tissues after MCAO. In the meantime, the correlation, sensitivity and specificity and the imaging feature of intracranial tissue injury between MCAO hemisphere and contralateral normal hemisphere were quantitatively analyzed and compared. It is expected to provide a reference in clinical diagnosis. Furthermore, the pathological analysis of infarcted or ischemic injury brain tissue was performed using triphenyltetrazolium chloride (TTC) stain to compare the MR imaging features and pathological characteristics. Regular MRI scans including TSE, TOF MRA and DWI were scheduled at 1, 2, 3, 7, 14, 21 and 28 days after MCAO microsurgery on Spray Dawley (SD) rats for longitudinal investigations. Twenty-one MCAO SD rats were classified into three groups according to the survival time, Group I died at 2-3 days (n=2), Group II at 8-9 days (n=9), Group III survived for more than 4 weeks (n=10). TOF MRA images showed an evidence of artery occlusion with signal void in intracranial arteries at MCAO side. Experimental results of all MR imaging techniques showed that cerebral edema dissipated within one week and there was no significant change thereafter. The time-varying signal intensity of all MRI techniques in hyper signal region of MCAO hemisphere has significant changed, but there were no significant change in contralateral normal hemisphere. It was found that the SD rats’ activity and MRI features were consistent with pathological analysis. In conclusion, the adopted MCAO SD rat model in this study was demonstrated to induce stroke effectively. The MCAO animal model had been successfully established on SD rats using arterial embolization microsurgery to assess intracranial tissue injury.
摘 要 vi
ABSTRACT ix
表目錄 xii
圖目錄 xiii
第一章 緒論 1
1.1研究動機及背景 1
1.2 研究目的 2
1.3 文獻回顧與探討 4
第二章 磁振造影的原理與應用 10
2.1 磁振造影 10
2.2 快速自旋回訊 11
2.3 磁振血管造影 15
2.4 飛行時間磁振血管造影 17
2.5 擴散加權磁振造影 20
第三章 研究材料與方法 23
3.1 大白鼠中大腦動脈栓塞動物模型之建立 23
3.1.1中大腦動脈栓塞動物模型 23
3.2 進行步驟 32
3.2.1 頸動脈栓塞動物模型 32
3.2.2 實驗動物與麻醉 32
3.2.3 MRI protocol 32
3.2.4 使用脈衝序列(Pulse sequences) 32
3.2.5 掃描波序參數最佳化 33
3.2.6 影像資料處理分析 37
3.2.7 病理分析 37
第四章 研究結果 39
第五章 討論 59
第六章 結論 62
第七章 參考文獻 63
[1]GBD 2015 Mortality and Causes of Death Collaborators, Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015, Lancet 2016; 388(10053), 1459-1544.
[2]Donnan GA, Fisher M, Macleod M, and S.M. Davis, Stroke, Lancet 2008; 371(9624): 1612-23.
[3]Schubert T, Takes M, Aschwanden M, et al., Non-enhanced, ECG-gated MR angiography of the pedal vasculature: comparison with contrast-enhanced MR angiography and digital subtraction angiography in peripheral arterial occlusive disease, Eur Radiol 2016; 26(8): 2705-13.
[4]Partovi S, Rasmus M, Schulte AC, et al., ECG-triggered non-enhanced MR angiography of peripheral arteries in comparison to DSA in patients with peripheral artery occlusive disease, MAGMA 2013; 26(3): 271-80.
[5]McBride DW and Zhang JH, Precision Stroke Animal Models: the Permanent MCAO Model Should Be the Primary Model, Not Transient MCAO, Transl Stroke Res 2017; 8: 397-404.
[6]Koizumi J, Yoshida Y, Nakazawa T and Ooneda G, Experimental studies of ischemic brain edema. I: a new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area, Jpn J Stroke 1986; 8: 1-8.
[7]Ministry of Health and Welfare, www.mohw.gov.tw
[8]Giles MF, Rothwell PM, Risk of stroke early after transient ischaemic attack: a systematic review and meta-analysis, Lancet Neurol 2007; 6: 1063-1072.
[9]Hackam DG, Spence JD, Combining multiple approaches for the secondary prevention of vascular events after stroke: a quantitative modeling study, Stroke 2007; 38: 1881-1885.
[10]Davis SM, Donnan GA. Secondary prevention after ischemic stroke or transient ischemic attack, N Engl J Med 2012; 366: 1914-1922.
[11]Gleason S, Furie KL, Lev MH et al., Potential influence of acute CT on inpatient costs in patients with ischemic stroke, Acad Radiol 2001; 8: 955-964.
[12]Van Lammeren GW, Reichmann B:,Moll FL et al., Atherosclerotic plaque vulnerability as an explanation for the increased risk of stroke in elderly undergoing carotid artery stenting, Stroke 2011; 42: 2550-2555.
[13]Park JH, Pazuk A, Saad PF, et al., Carotid stenosis: what is the high-risk population? Clinics 2012; 67: 865-70.
[14]Guo Y, Li P, Guo Q et al., Pathophysiology and biomarker in acute ischemic stroke-a review, Trop J Pharm Res 2013; 12: 1097-1105.
[15]Heiss WD, Malignant MCA infarction: pathophysiology and imaging for early diagnosis and management decision, Cerebrovasc Dis 2016; 41: 1–7 DOI: 10.1159/000441627.
[16]Hauer EM, Stark D, Staykov D, et al., Early continuous hypertonic saline infusion in patients with severe cerebrovascular disease, Crit Care Med 2011; 39: 1766–1772.
[17]Karibe H, Zarow GJ, Graham SH, et al., Mild intraischemia hypothermia reduces postischemic hyperperfusion, delayed postischemic hypoperfusion, blood-brain barrier disruption, brain edema, and neuronal damage volume after temporary focal cerebral ischemia in rats, J Cereb Blood Flow Metab 1994; 14: 620-627.
[18]Vahedi K, Vicaut E, Mateo J, et al., DECIMAL Investigators: Sequential-design, multicenter, randomized, controlled trial of early decompressive craniectomy in malignant middle cerebral artery infarction (DECIMAL trial), Stroke 2007; 38: 2506–2517.
[19]Romero JR, Pikula A, Nguyen TN, et al., Cerebral collateral circulation in carotid artery disease, Current Cardiol Reviews 2009; 5: 279-88.
[20]Davis CH, Symon L, The management of cerebral arteriovenous malformations, Acta Neurochir (Wien) 1985; 74: 4-11.
[21]Chin LS, Raffel C, Gonzalez-Gomez I, et al., Diffuse arteriovenous malformations: A clinical, radiological and pathological description, Neurosurgery 1992; 31, 863-8.
[22]Ogilvy CS, Radiation therapy for arteriovenous malformation: a review, Neurosurgery 1990; 26: 725-35.
[23]Colombo F, Benedetti A, Pozza F, et al., External stereotactic irradiation by linear accelerator, Neurosurgery 1985; 16: 154-60.
[24]Warach S, Gaa J, Siewert B et al., Acute human stroke studied by whole brain echo planar diffusion-weighted magnetic resonance imaging, Ann Neurol 1995; 37: 231-241.
[25]Chalela JA, Kidwell CS, Nentwich LM, et al., Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison, Lancet 2007; 369: 293-8.
[26]Gupta A, Nair S, Schweitzer AD, et al., Neuroimaging of cerebrovascular disease in the aging brain, Aging and Disease 2012; 3: 414-425.
[27]Scott LJ, Correction to: gadobutrol: a review in contrast-enhanced MRI and MRA, Clin Drug Investig 2018; 38(10): 989.
[28]Chen BB, Hsu CY, Yu CW, et al., Dynamic contrast-enhanced MR imaging of advanced hepatocellular carcinoma: comparison with the liver parenchyma and correlation with the survival of patients receiving systemic therapy, Radiology 2016; 281(2): 454-464.
[29]Boujan T, Neuberger U, Pfaff J, et al., Value of contrast-enhanced MRA versus time-of-flight MRA in acute ischemic stroke MRI, AJNR Am J Neuroradiol 2018; 39(9): 1710-1716.
[30]Hennig J, Friedburg H, Ströbel B. Rapid nontomographic approach to MR myelography without contrast agents, J Comput Assist Tomogr 1986; 10(3): 375-8.
[31]Ross JS, Ruggieri P, Tkach J, Obuchowski N, Dillinger J, Masaryk TJ, Modic MT. Lumbar degenerative disk disease: prospective comparison of conventional T2-weighted spin-echo imaging and T2-weighted rapid acquisition relaxation-enhanced imaging, AJNR Am J Neuroradiol 1993; 14(5): 1215-23.
[32]Seelos KC, von Smekal A, Vahlensieck M, Gieseke J, Reiser M. Cardiac abnormalities: assessment with T2-weighted turbo spin-echo MR imaging with electrocardiogram gating at 0.5 T, Radiology 1993; 189(2): 517-22.
[33]Lee D, Han S, Cho H. Optimization of sparse phase encodings for variable repetition-delay turbo-spin echo (TSE) T1 measurements for preclinical applications, J Magn Reson 2017; 274: 57-64.
[34]Bavinzski G, Richling B, Binder BR, et al., Histopathological findings in experimental aneurysms embolized with conventional and thrombogenic/ antithrombolytic Guglielmi coils, Minim Invasive Neurosurg 1999; 42: 167–174.
[35]Bocher-Schwarz HG, Ringel K, Bohl J, et al., Histological findings in coil-packed experimental aneurysms 3 months after embolization, Neurosurgery 2002; 50: 379–384.
[36]Ding YH, Dai D, Lewis DA, et al., Angiographic and histologic analysis of experimental aneurysms embolized with platinum coils, Matrix and HydroCoil, AJNR Am J Neuroradiol 2005; 26: 1757–1763.
[37]Ding Y, Dai D, Danielson M, et al., Intra-arterial digital subtraction angiography through the ear artery for experimental aneurysm imaging, AJNR Am J Neuroradiol 2006; 27: 1700–1702.
[38]Ding Y, Dai D, Lewis D, et al., Intra-venous digital subtraction angiography: An alternative method to intra-arterial digital subtraction angiography for experimental aneurysm imaging, Neuroradiology 2005, 47: 792–795.
[39]Krings T, Hans F, Moller-Hartmann W, Time-of-flight, phase contrast and contrast-enhanced magnetic resonance angiography for pre-interventional determination of aneurysm size, configuration and neck morphology in an aneurysm model in rabbits, Neurosci Lett 2002, 326: 46–50.
[40]Doerfler A, Becker W, Wanke I, et al., “Multimodal imaging in the elastase-induced aneurysm model in rabbits: A comparative study using serial DSA, MRA and CTA”, Rofo 2004; 176: 590–596.
[41]Gibbs G, Huston J, Bernstein M, et al., Improved image quality of intracranial aneurysms: 3.0-T versus 1.5-T time-of-flight MR angiography, AJNR Am J Neuroradiol 2004; 25: 84–87.
[42]Bavinzski G, al-Schameri A, Killer M, et al., Experimental bifurcation aneurysm: A model for in vivo evaluation of endovascular techniques, Minim Invasive Neurosurg 1998; 41: 129–132.
[43]Ersoy H, Zhang H, Prince MR, Peripheral MR angiography, J Cardiovasc Magn Reson 2006; 8(3): 517–528.
[44]Foo TK, Polzin JA, MR angiography physics: an update, Magn Reson Imaging Clin N 2005; 13(1): 1–22.
[45]Prince MR, Gadolinium-enhanced MR aortography, Radiology 1994; 191: 155–164.
[46]Buhaescu I, Izzedine H, Gadolinium-induced nephrotoxicity, Int J Clin Pract 2008; 62: 1113–1118.
[47]Masaryk TJ, Laub GA, Modic MT, et al., Carotid- CNS MR flow imaging, Magn Reson Med 1990; 14: 308–314.
[48]Laub GA, Time-of-flight method of MRA, Magn Reson Imaging Clin N Am 1995; 3: 391–398.
[49]Dumoulin CL, Souza SP, Walker MF, et al., Three-dimensional phase contrast angiography, Magn Reson Med, 1989; 9: 139–149.
[50]Dumoulin CL, Yucel EK, Vock P, et al., Two- and three-dimensional phase contrast MRA of the abdomen, J Comput Assist Tomogr 1990; 14: 779–784.
[51]Miyazaki M, Sugiura S, Tateishi F, et al., Non-contrast-enhanced MRA using 3D ECG-synchronized half-Fourier fast spin echo, J Magn Reson Imaging 2000; 12: 776–783.
[52]Miyazaki M, Ichinose N, Sugiura S, et al., A novel MR angiography technique: swap phase encode extended data (SPEED) acquisition using half-Fourier RARE, J Magn Reson Imaging 1998; 8: 505–507.
[53]Miyazaki M, Takai H, Sugiura S, et al., Peripheral MRA: separation of arteries from veins with flow spoiled gradient pulses in electrocardiography-triggered three dimensional half-Fourier fast spin-echo imaging, Radiology 2003; 227: 890–896.
[54]Ono A, Murase K, Taniguchi T, et al., Deep vein thrombosis using non-contrast-enhanced MR venography with electrocardiographically-gated three-dimensional half-Fourier FSE: preliminary experience, Magn Reson Med 2009; 61: 907–917.
[55]Anderson CM, Lee RE, Time-of-flight techniques: Pulse sequences and clinical protocols, Magn Reson Imaging Clin N Am 1993; 1: 217–227.
[56]McCauley TR, Monib A, Dickey KW, et al., Peripheral vascular occlusive disease: Accuracy and reliability of time-of-flight MR angiography, Radiology 1994; 192: 351–357.
[57]Atkinson D, Brant-Zawadzki M, Gillan G, et al., Improved MR angiography: Magnetization transfer suppression with variable flip angle excitation and increased resolution, Radiology 1994; 190(3): 890–894.
[58]Dvoretzky A, Erdős P, Kakutani S, Nonincrease everywhere of the Brownian motion process, Proc. 4th Berkeley Sympos Math Statist and Prob 1961; 2: 103-116.
[59]Stejskal EO, Tanner JE, Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient, J Chem Phys 1965; 42: 288-292.
[60]Warach S, Chien D, Li W, et al., Fast magnetic resonance diffusion-weighted imaging of acute human stroke, Neurology 1992; 42: 1717-1723.
[61]Mori S, Barker PB, Diffusion magnetic resonance imaging: its principle and applications, Anat Rec 1999; 257: 102-109.
[62]Bammer R, Basic principles of diffusion-weighted imaging, Eur J Radiol 2003; 45: 169-184.
[63]Le Bihan D, Mangin JF, C. Poupon C, et al, Diffusion tensor imaging: concepts and applications, J Magn Reson Imaging 2001; 3: 534-546.
[64]Mori S, Zhang J, Principles of diffusion tensor imaging and its applications to basic neuroscience research, Neuron 2006; 51: 527-539.
[65]Bederson JB, Pitts LH, Germano SM, et al, Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats, Stroke 1986;17: 1304-1308.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔