跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/13 20:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂韻綺
研究生(外文):Yun-Chi Lu
論文名稱:開發具廣泛應用性的抗體鎖平台以提升抗體藥物選擇性及安全性
論文名稱(外文):Development of universal antibody lock platform to enhance antibody drug selectivity and safety
指導教授:鄭添祿
指導教授(外文):Tian-Lu Cheng
口試委員:王雲銘張榮賢孫昭玲廖光文
口試委員(外文):Yun-Ming WangLong-Sen ChangJau-Ling SuenKuang-Wen Liao
學位類別:博士
校院名稱:高雄醫學大學
系所名稱:醫學研究所博士班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:76
中文關鍵詞:類風濕性關節炎抗體鎖具蛋白酶專一性之前驅抗體降低副作用增加抗體藥物選擇性
外文關鍵詞:Rheumatoid arthritisAb lock (hinge domain)Protease-activated pro-antibodyReduce the side effectsEnhance the selectivity of antibody drug
相關次數:
  • 被引用被引用:0
  • 點閱點閱:4
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為增加抗體疾病區域選擇性以提升治療性抗體藥物的安全性,我們”複製”抗體絞鏈區作為空間性屏蔽之抗體鎖,將其”貼上”於抗體藥物的抗原結合位, 並使用疾病區專一性蛋白酶之受質胜肽連結抗體和抗體鎖,形成前驅抗體, 唯在疾病區才可活化中和疾病區抗原並降低副作用。此篇研究中,我們使用了六種不同的抗體絞鏈區作為抗體鎖屏蔽類風濕性關節炎藥物Remicade (Infliximab)的TNFα結合位,並利用MMP-2/9受質胜肽連結抗體和抗體鎖,形成前驅抗體Pro-Remicade,其中IgG1 抗體鎖屏蔽效果最佳,IgG1 Pro-Remicade之TNFα結合能力較Remicade遠低於395倍之多,而Pro-Remicade經MMP-2/9蛋白酶活化後,其抗原中和能力可完全恢復有效抑制TNFα下游的訊息傳遞路徑。另一方面,IgG1抗體鎖可有效避免抗藥抗體中和前驅抗體pro-Remicade。於小鼠實驗中,Pro-Remicade專一活化於疾病區域(小鼠腳掌),並與Remicade具有相似的半衰期、生物分布及療效,同時經由伺機性(Listeria infection)感染實驗證實,Pro-Remicade降低了對宿主免疫能力之干擾,相對於Remicade治療之小鼠組別(0%),Pro-Remicade治療之小鼠組別有更高的存活率(71%)。最後,我們成功了運用空間性屏蔽抗體鎖屏蔽多種臨床抗體藥物。未來此廣泛應用性的抗體鎖或許可為抗體藥物帶來革命性的發展以達到疾病區專一性治療。
To enhance the disease selectivity of antibody for the safety of therapeutic antibody drugs, we “copied” the hinge region as a spatial hindrance-based “antibody lock” and “pasted” it on the antigen binding site of the antibody drug by linking with a disease-specific protease substrate to generate pro-antibody, which can be selectively activated in the disease region and neutralize the antigen in disease region to reduce the side effects. Here, we used six different hinges (IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) as antibody lock (Ab lock) to mask the TNFα binding site of rheumatoid arthritis (RA) drug, Remicade (Infliximab) by linking it with matrix metalloproteinase(MMP)-2/9 substrate peptide to generate pro-Remicade. Among the hinge region, IgG1 Ab lock showed the highest potential to remarkably reduce the TNFα-neutralizing ability. The TNFα-binding of IgG1 pro-Remicade was 395-fold weaker than Remicade, and was completely restored after incubation with MMP-2/9 to block TNFα downstream signaling. In addition, the IgG1 Ab lock also significantly prevented the neutralizing effect of an anti-idiotypic antibody. In mice model, pro-Remicade was only selectively activated in the disease site (paw) and it has similar serum half-life, bio-distribution and therapeutic efficacy compared to Remicade, it minimized the interference in the host immunity against Listeria infection, leading a higher survival rate (71%) than that of the Remicade treatment group (0%). Moreover, we demonstrated that the spatial-hindrance-based Ab lock was successfully applied to several antibodies. The universal Ab lock may revolutionize the development of antibody drugs to achieve disease site-specific therapy.
目錄 2
中文摘要 7
英文摘要 8
Abbreviations 9
I. Introduction 10
II. Material and Methods 14
2-1. Cells and Animals 14
2-2. Plasmid construction, expression, and purification of pro-antibody 14
2-3.Analyses the binding affinity of pro-Abs and MMP-2/9 treated pro-Abs by ELISA 15
2-4. Removal of the inhibitory domain from pro-Remicade through MMP-2/9 treatment in vitro 16
2-5. Neutralization of TNFα signal by pro-Remicade 16
2-6. Evaluation of the binding affinity of anti-idiotypic Ab to pro-Remicade 17
2-7. Measurement of the serum half-life and bio-distribution in vivo 18
2-8. Disease-site-specific activation of pro-Remicade in vivo 18
2-9. Therapeutic efficacy of pro-Remicade for rheumatoid arthritis in vivo 19
2-10. Comparison of on-target toxicities of pro-Remicade and Remicade in vivo 20
2-11. Statistical analysis 20
III. Results 21
3-1. IgG1 Ab lock shows the highest masking effect to the antigen binding affinity of Remicade through spatial hindrance 21
3-2. MMP-2/9 treatment can completely remove Ab lock and entirely restore the TNFα binding affinity and neutralizing ability of pro-Remicade 24
3-3 The Ab lock prevents the neutralizing effect of an anti-idiotypic Ab on Remicade 29
3-4 The Ab lock will not change the basic characteristics of Remicade 32
3-5 Site-specific activation of pro-Remicade prevents RA progression 36
3-6 Selective restoration of pro-Remicade reduces risk of opportunistic infection in a human TNFα transgenic mouse model 42
3-7 Spatial-hindrance-based Ab lock can mask the antigen binding affinity of various clinical Ab drugs 46
IV. Discussion 48
V. Conclusion 52
VI. References 53
VII. Appendices 57
1.Chan, A.C. and P.J. Carter, Therapeutic antibodies for autoimmunity and inflammation. Nat Rev Immunol, 2010. 10(5): p. 301-16.
2.Casadevall, A., E. Dadachova, and L.A. Pirofski, Passive antibody therapy for infectious diseases. Nat Rev Microbiol, 2004. 2(9): p. 695-703.
3.Scott, A.M., J.D. Wolchok, and L.J. Old, Antibody therapy of cancer. Nat Rev Cancer, 2012. 12(4): p. 278-87.
4.Reichert, J.M., C.J. Rosensweig, L.B. Faden, and M.C. Dewitz, Monoclonal antibody successes in the clinic. Nat Biotechnol, 2005. 23(9): p. 1073-8.
5.Hansel, T.T., H. Kropshofer, T. Singer, J.A. Mitchell, and A.J. George, The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov, 2010. 9(4): p. 325-38.
6.Perdriger, A., Infliximab in the treatment of rheumatoid arthritis. Biologics, 2009. 3: p. 183-91.
7.Bongartz, T., A.J. Sutton, M.J. Sweeting, I. Buchan, E.L. Matteson, and V. Montori, Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA, 2006. 295(19): p. 2275-85.
8.Chaudhary, P. and A. Gajra, Cardiovascular effects of EGFR (epidermal growth factor receptor) monoclonal antibodies. Cardiovasc Hematol Agents Med Chem, 2010. 8(3): p. 156-63.
9.Osio, A., C. Mateus, J.C. Soria, C. Massard, D. Malka, V. Boige, B. Besse, and C. Robert, Cutaneous side-effects in patients on long-term treatment with epidermal growth factor receptor inhibitors. Br J Dermatol, 2009. 161(3): p. 515-21.
10.Boutros, C., A. Tarhini, E. Routier, O. Lambotte, F.L. Ladurie, F. Carbonnel, H. Izzeddine, A. Marabelle, S. Champiat, A. Berdelou, E. Lanoy, M. Texier, C. Libenciuc, A.M. Eggermont, J.C. Soria, C. Mateus, and C. Robert, Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat Rev Clin Oncol, 2016. 13(8): p. 473-86.
11.Kothary, N., I.L. Diak, A. Brinker, S. Bezabeh, M. Avigan, and G. Dal Pan, Progressive multifocal leukoencephalopathy associated with efalizumab use in psoriasis patients. J Am Acad Dermatol, 2011. 65(3): p. 546-51.
12.Schon, M.P., Efalizumab in the treatment of psoriasis: mode of action, clinical indications, efficacy, and safety. Clin Dermatol, 2008. 26(5): p. 509-14.
13.Desnoyers, L.R., O. Vasiljeva, J.H. Richardson, A. Yang, E.E. Menendez, T.W. Liang, C. Wong, P.H. Bessette, K. Kamath, S.J. Moore, J.G. Sagert, D.R. Hostetter, F. Han, J. Gee, J. Flandez, K. Markham, M. Nguyen, M. Krimm, K.R. Wong, S. Liu, P.S. Daugherty, J.W. West, and H.B. Lowman, Tumor-specific activation of an EGFR-targeting probody enhances therapeutic index. Sci Transl Med, 2013. 5(207): p. 207ra144.
14.Erster, O., J.M. Thomas, J. Hamzah, A.M. Jabaiah, J.A. Getz, T.D. Schoep, S.S. Hall, E. Ruoslahti, and P.S. Daugherty, Site-specific targeting of antibody activity in vivo mediated by disease-associated proteases. J Control Release, 2012. 161(3): p. 804-12.
15.Yang, Y., Q. Guo, M. Xia, Y. Li, X. Peng, T. Liu, X. Tong, J. Xu, H. Guo, W. Qian, S. Hou, J. Dai, H. Wang, R. Liu, and Y. Guo, Generation and characterization of a target-selectively activated antibody against epidermal growth factor receptor with enhanced anti-tumor potency. MAbs, 2015. 7(2): p. 440-50.
16.Donaldson, J.M., C. Kari, R.C. Fragoso, U. Rodeck, and J.C. Williams, Design and development of masked therapeutic antibodies to limit off-target effects: application to anti-EGFR antibodies. Cancer Biol Ther, 2009. 8(22): p. 2147-52.
17.Chen, I.J., C.H. Chuang, Y.C. Hsieh, Y.C. Lu, W.W. Lin, C.C. Huang, T.C. Cheng, Y.A. Cheng, K.W. Cheng, Y.T. Wang, F.M. Chen, T.L. Cheng, and S.C. Tzou, Selective antibody activation through protease-activated pro-antibodies that mask binding sites with inhibitory domains. Sci Rep, 2017. 7(1): p. 11587.
18.Zhu, L., J. Xie, M. Swierczewska, F. Zhang, Q. Quan, Y. Ma, X. Fang, K. Kim, S. Lee, and X. Chen, Real-time video imaging of protease expression in vivo. Theranostics, 2011. 1: p. 18-27.
19.Chen, W.C., C.K. Tseng, B.H. Chen, C.K. Lin, and J.C. Lee, Grape Seed Extract Attenuates Hepatitis C Virus Replication and Virus-Induced Inflammation. Front Pharmacol, 2016. 7: p. 490.
20.Wolbink, G.J., M. Vis, W. Lems, A.E. Voskuyl, E. de Groot, M.T. Nurmohamed, S. Stapel, P.P. Tak, L. Aarden, and B. Dijkmans, Development of antiinfliximab antibodies and relationship to clinical response in patients with rheumatoid arthritis. Arthritis Rheum, 2006. 54(3): p. 711-5.
21.Kosmac, M., T. Avcin, N. Toplak, G. Simonini, R. Cimaz, and V. Curin Serbec, Exploring the binding sites of anti-infliximab antibodies in pediatric patients with rheumatic diseases treated with infliximab. Pediatr Res, 2011. 69(3): p. 243-8.
22.van Schouwenburg, P.A., T. Rispens, and G.J. Wolbink, Immunogenicity of anti-TNF biologic therapies for rheumatoid arthritis. Nat Rev Rheumatol, 2013. 9(3): p. 164-72.
23.Douni, E., P.P. Sfikakis, S. Haralambous, P. Fernandes, and G. Kollias, Attenuation of inflammatory polyarthritis in TNF transgenic mice by diacerein: comparative analysis with dexamethasone, methotrexate and anti-TNF protocols. Arthritis Res Ther, 2004. 6(1): p. R65-R72.
24.Ali, T., S. Kaitha, S. Mahmood, A. Ftesi, J. Stone, and M.S. Bronze, Clinical use of anti-TNF therapy and increased risk of infections. Drug Healthc Patient Saf, 2013. 5: p. 79-99.
25.Pasparakis, M., L. Alexopoulou, V. Episkopou, and G. Kollias, Immune and inflammatory responses in TNF alpha-deficient mice: a critical requirement for TNF alpha in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J Exp Med, 1996. 184(4): p. 1397-411.
26.Choi, K.Y., M. Swierczewska, S. Lee, and X. Chen, Protease-activated drug development. Theranostics, 2012. 2(2): p. 156-78.
27.Fink, K. and J. Boratynski, [The role of metalloproteinases in modification of extracellular matrix in invasive tumor growth, metastasis and angiogenesis]. Postepy Hig Med Dosw (Online), 2012. 66: p. 609-28.
28.Wunder, A., C.H. Tung, U. Muller-Ladner, R. Weissleder, and U. Mahmood, In vivo imaging of protease activity in arthritis: a novel approach for monitoring treatment response. Arthritis Rheum, 2004. 50(8): p. 2459-65.
29.McKerrow, J.H., V. Bhargava, E. Hansell, S. Huling, T. Kuwahara, M. Matley, L. Coussens, and R. Warren, A functional proteomics screen of proteases in colorectal carcinoma. Mol Med, 2000. 6(5): p. 450-60.
30.Ulisse, S., E. Baldini, S. Sorrenti, and M. D''Armiento, The urokinase plasminogen activator system: a target for anti-cancer therapy. Curr Cancer Drug Targets, 2009. 9(1): p. 32-71.
31.Dollery, C.M. and P. Libby, Atherosclerosis and proteinase activation. Cardiovasc Res, 2006. 69(3): p. 625-35.
32.Li, W., D.M. Danilenko, S. Bunting, R. Ganesan, S. Sa, R. Ferrando, T.D. Wu, G.A. Kolumam, W. Ouyang, and D. Kirchhofer, The serine protease marapsin is expressed in stratified squamous epithelia and is up-regulated in the hyperproliferative epidermis of psoriasis and regenerating wounds. J Biol Chem, 2009. 284(1): p. 218-28.
33.Baker, M.P., H.M. Reynolds, B. Lumicisi, and C.J. Bryson, Immunogenicity of protein therapeutics: The key causes, consequences and challenges. Self Nonself, 2010. 1(4): p. 314-322.
34.Bartelds, G.M., C.L. Krieckaert, M.T. Nurmohamed, P.A. van Schouwenburg, W.F. Lems, J.W. Twisk, B.A. Dijkmans, L. Aarden, and G.J. Wolbink, Development of antidrug antibodies against adalimumab and association with disease activity and treatment failure during long-term follow-up. JAMA, 2011. 305(14): p. 1460-8.
35.Bito, T., R. Nishikawa, M. Hatakeyama, A. Kikusawa, H. Kanki, H. Nagai, Y. Sarayama, T. Ikeda, H. Yoshizaki, H. Seto, A. Adachi, T. Horikawa, M. Oka, and C. Nishigori, Influence of neutralizing antibodies to adalimumab and infliximab on the treatment of psoriasis. Br J Dermatol, 2014. 170(4): p. 922-9.
36.Weinblatt, M.E., P.J. Maddison, K.J. Bulpitt, B.L. Hazleman, M.B. Urowitz, R.D. Sturrock, J.S. Coblyn, A.L. Maier, W.R. Spreen, V.K. Manna, and et al., CAMPATH-1H, a humanized monoclonal antibody, in refractory rheumatoid arthritis. An intravenous dose-escalation study. Arthritis Rheum, 1995. 38(11): p. 1589-94.
37.Somerfield, J., G.A. Hill-Cawthorne, A. Lin, M.S. Zandi, C. McCarthy, J.L. Jones, M. Willcox, D. Shaw, S.A. Thompson, A.S. Compston, G. Hale, H. Waldmann, and A.J. Coles, A novel strategy to reduce the immunogenicity of biological therapies. J Immunol, 2010. 185(1): p. 763-8.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top