跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/26 01:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳彥中
研究生(外文):Yen-Chung Chen
論文名稱:3-芳香基喹喔啉查爾酮之衍生物的合成與抗增生活性之研究
論文名稱(外文):Synthesis and antiproliferative evaluation of 3-arylquinoxalinylchalcone derivatives
指導教授:曾志華曾志華引用關係
指導教授(外文):Chih-Hua Tseng
口試委員:曾誠齊王泰吉
口試委員(外文):Cherng-Chyi TzengTai-Chi Wang
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:藥學系碩士班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:78
中文關鍵詞:3-芳香基喹喔啉查爾酮抗增生活性
外文關鍵詞:3-arylquinoxalinylchalconeantiproliferative evaluation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
已知含喹喔啉結構之衍生物具多樣化的生物活性,包括:抗腫瘤,抗真菌,抗發炎,抗微生物和抗病毒。本研究論文中合成出一系列3-苯基喹喔啉查耳酮的衍生物並探討對Huh-7人類肝癌細胞株、MDA-MB-231人類乳腺癌細胞株、MCF-7人類乳腺癌細胞株以及MRC-5正常人類胎兒肺纖維母細胞株的抗增生活性。初步活性篩選結果顯示41c、41i這兩個化合物具有良好的抑制活性。化合物41i對Huh-7、MDA-MB-231和MCF-7細胞株的IC50值分別為0.08 ± 0.03 μM、0.11 ± 0.06 μM和0.07 ± 0.02 μM,但對胎兒肺臟細胞MRC-5具有細胞毒性,IC50值為1.53 ± 0.09 μM。化合物41c對Huh-7、MDA-MB-231和MCF-7細胞株的IC50值分別為0.16 ± 0.08 μM、0.90 ± 0.11 μM及1.18 ± 0.05 μM,同時對MRC-5無細胞毒性(IC50值大於20 μM)。
Quinoxaline derivatives are known to have a wide variety of biological activities, including anti-tumor, anti-fungal, anti-inflammatory, anti-microbial, and anti-viral activities. In this research, a number of 3-arylquinoxalinylchalcone derivatives were synthesized and evaluated in vitro for their antiproliferative activities against three cancer cell lines, including the Huh-7 human liver cancer cell line, the MB-231 human breast cancer cell line, and the MCF-7 human breast cancer cell line. Their cytotoxicity against the MRC-5 normal human fetal lung fibroblast cell line was also evaluated. The preliminary results indicated that compounds 41c and 41i exhibited significant antiproliferative activities. The IC50 values of compound 41i against Huh-7, MB-231 and MCF-7 cell lines were 0.08 ± 0.03 μM, 0.11 ± 0.06 μM, and 0.07 ± 0.02 μM respectively. However, it had cytotoxicity against MRC-5 cell line with an IC50 value of 1.53 ± 0.09 μM. The IC50 values of compound 41c for Huh-7, MB-231, and MCF-7 cell lines were 0.16 ± 0.08 μM, 0.90 ± 0.11 μM, and 1.18 ± 0.05 μM, respectively. Moreover, it was not cytotoxic against MRC-5 cell line (the IC50 value > 20 μM).
致謝 I
目錄 II
圖目錄 III
表目錄 IV
中文摘要 V
英文摘要 VI
壹、緒論 1
貳、研究動機 17
參、合成方法 18
一、逆合成分析 18
二、3-苯基-2-取代喹喔啉查爾酮衍生物之合成 19
肆、結果與討論 25
伍、結論 33
陸、實驗部分 35
一、溶劑及處理過程 35
二、儀器 36
三、試藥 38
四、各化合物製備 39
參考資料 75
1.Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R. L.; Torre, L. A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018, 68, 394–424.
2.106年死因統計結果分析。台灣衛生福利部統計處。2018/07/23。https://dep.mohw.gov.tw/DOS/cp-3960-41756-113.html
3.Vanneman, M.; Dranoff, G. Combining Immunotherapy and Targeted Therapies in Cancer Treatment. Nat Rev Cancer. 2012, 12(4), 237–251.
4.Nyströma, L.; Malmsten, M. Membrane interactions and cell selectivity of amphiphilic anticancer peptides. Curr Opin Colloid Interface Sci. 2018, 38, 1-17.
5.Kasi, P. M.; Tawbi, H. A.; Oddis, C. V.; Kulkarni, H. S. Clinical review: Serious adverse events associated with the use of rituximab - a critical care perspective. Crit Care. 2013, 16(4), 231-241.
6.Fakih, M.; Vincent, M. Adverse events associated with anti-EGFR therapies for the treatment of metastatic colorectal cancer. Curr Oncol. 2010, 17(Suppl 1), S18-S30.
7.Babar, T.; Blomberg, C.; Hoffner, E.; Yan, X. Anti-HER2 cancer therapy and cardiotoxicity. Curr Pharm Des. 2014, 20(30), 4911-4919.
8.Rhian, M. T.; Sandra, M. S. H.; Joerg, H. Vascular toxicities with VEGF inhibitor therapies–focus on hypertension and arterial thrombotic events. J Am Soc Hypertens. 2018, 12(6), 409-425.
9.Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: an overview. Cancers (Basel). 2014, 6(3), 1769-1792.
10.Kerru, N.; Singh, P.; Koorbanally, N.; Raj, R.; Kumar, V. Recent advances (2015-2016) in anticancer hybrids. Eur J Med Chem. 2017, 142, 179-212.
11.Masui, K.; Gini, B.; Wykosky, J.; Zanca, C.; Mischel, P. S.; Furnari, F. B.; Cavenee, W. K. A tale of two approaches: complementary mechanisms of cytotoxic and targeted therapy resistance may inform next-generation cancer treatments. Carcinogenesis. 2013, 34(4),725-738.
12.Baselga, J.; Cortés, J.; Kim, S. B. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med. 2011, 366(2), 109-119.
13.Barrett, D.; Brown, V. I.; Grupp, S. A.; Teachey, D. T. Targeting the PI3K/AKT/mTOR signaling axis in children with hematologic malignancies. Paediatr Drugs. 2012, 14(5), 299-316.
14.Gomes, M. N.; Muratov, E. N.; Pereira, M. Chalcone Derivatives: Promising Starting Points for Drug Design. Molecules. 2017, 22(8), 1210-1235.
15.Singh, P.; Anand, A.; Kumar, V. Recent developments in biological activities of chalcones: a mini review. Eur J Med Chem. 2014, 85, 758-777.
16.Wang, G.; Li, C.; He, L.; Lei, K.; Wang, F.; Pu, Y.; Yang, Z.; Cao, D.; Ma, L.; Chen, J.; Sang, Y.; Liang, X.; Xiang, M.; Peng, A.; Wei, Y.; Chen, L. Design, synthesis and biological evaluation of a series of pyrano chalcone derivatives containing indole moiety as novel anti-tubulin agents. Bioorg Med Chem. 2014, 22(7), 2060-2079.
17.Kamal, A.; Reddy, J. S.; Ramaiah, M. J.; Dastagiri, D.; Bharathi, E. V.; Sagar, M. V. P.; Pushpavalli, S. N. C. V. L.; Ray, P.; Pal-Bhadra, M. Design, synthesis and biological evaluation of imidazopyridine / pyrimidine- chalcone derivatives as potential anticancer agents. Med Chem Commun. 2010, 1, 355-360.
18.Kaushal, T.; Srivastava, G.; Sharma, A.; Singh, N. A. An insight into medicinal chemistry of anticancer quinoxalines. Bioorg Med Chem. 2019, 27, 16-35.
19.Tariq, S.; Somakala, K.; Amir, M. Quinoxaline: an insight into the recent pharmacological advances. Eur J Med Chem. 2018, 143, 542-557.
20.Watanabe, K.; Oguri, H.; Oikawa, H. Diversification of echinomycin molecular structure by way of chemoenzymatic synthesis and heterologous expression of the engineered echinomycin biosynthetic pathway. Curr Opin Chem Biol. 2009, 13(2), 189-96.
21.Marcu, L.; Olver, I. Tirapazamine: from bench to clinical trials. Curr Clin Pharmacol. 2006, 1(1), 71-79.
22.Karck, M.; Meliss, R.; Hestermann, M.; Mengel, M.; Pethig, K.; Levitzki, A.; Banai, S.; Golomb, G.; Fishbein, I.; Chorny, M.; Haverich, A. Inhibition of aortic allograft vasculopathy by local delivery of platelet-derived growth factor receptor tyrosine-kinase blocker AG-1295. Transplantation. 2002, 74(9), 1335-1341.
23.Liu, Q. Q.; Lu, K.; Zhu, H. M.; Kong, S. L.; Yuan, J. M.; Zhang, G. H.; Chen, N. Y.; Gu, C. X.; Pan, C. X.; Mo, D. L.; Su, G. F. Identification of 3-(benzazol-2-yl)quinoxaline derivatives as potent anticancer compounds: Privileged structure based design, synthesis, and bioactive evaluation in vitro and in vivo. Eur J Med Chem. 2019, 165, 293-308.
24.Ghanbarimasir, Z.; Bekhradnia, A.; Morteza-Semnani, K.; Rafiei, A.; Razzaghi-Asl, N.; Kardan, M. Design, synthesis, biological assessment and molecular docking studies of new 2-aminoimidazole-quinoxaline hybrids as potential anticancer agents. Spectrochim Acta A Mol Biomol Spectrosc. 2018, 194, 21-35.
25.Alswah, M.; Bayoumi, A.H.; Elgamal, K.; Elmorsy, A.; Ihmaid, S.; Ahmed, H.E.A. Design, Synthesis and Cytotoxic Evaluation of Novel Chalcone Derivatives Bearing Triazolo[4,3-a]-quinoxaline Moieties as Potent Anticancer Agents with Dual EGFR Kinase and Tubulin Polymerization Inhibitory Effects. Molecules. 2018, 23(1), 48-64.
26.Mielcke, T. R.; Mascarello, A.; Filippi-Chiela, E.; Zanin, R. F.; Lenz, G.; Leal, P. C.; Chiaradia, L. D.; Yunes, R. A.; Nunes, R. J.; Battastini, A. M.; Morrone, F. B.; Campos, M. M. Activity of novel quinoxaline-derived chalcones on in vitro glioma cell proliferation. Eur J Med Chem. 2012, 48, 255-264.
27.Tseng, C. H.; Chen, Y. L.; Hsu, C. Y.; Chen, T. C.; Cheng, C. M.; Tso, H. C.; Lu, Y. J.; Tzeng, C. C. Synthesis and antiproliferative evaluation of 3-phenylquinolinylchalcone derivatives against non-small cell lung cancers and breast cancers. Eur J Med Chem. 2013, 59, 274-282.
28.Tseng, C. H.; Tzeng, C. C.; Hsu, C. Y.; Cheng, C. M.; Yang, C. N.; Chen, Y. L. Discovery of 3-phenylquinolinylchalcone derivatives as potent and selective anticancer agents against breast cancers. Eur J Med Chem. 2015, 97, 306-319.
29.Nam, N. H.; Kim, Y.; You, Y. J.; Hong, D. H.; Kim, H. M.; Ahn, B. Z. Cytotoxic 2′,5′-dihydroxychalcones with unexpected antiangiogenic activity. Eur J Med Chem. 2003, 38, 179-187.
30.Moffat, D.; Patel, S.; Day, F.; Belfield, A.; Donald, A.; Rowlands, M.; Wibawa, J.; Brotherton, D.; Stimson, L.; Clark, V.; Owen, J.; Bawden, L.; Box, G.; Bone, E.; Mortenson, P.; Hardcastle, A.; van Meurs, S.; Eccles, S.; Raynaud, F.; Aherne, W. Discovery of 2-(6-{[(6-fluoroquinolin-2-yl)methyl]amino}bicyclo[3.1.0]hex-3-yl)-N-hydroxypyrimidine-5-carboxamide (CHR-3996), a class I selective orally active histone deacetylase inhibitor. J Med Chem. 2010, 53, 8663-8678.
31.Bandyopadhyay, D.; Mukherjee, S.; R Rodriguez, R.; K Banik, B. An Effective Microwave-Induced Iodine-Catalyzed Method for the Synthesis of Quinoxalines via Condensation of 1,2-Diamines with 1,2-Dicarbonyl Compounds. Molecules. 2010, 15, 4207-4212.
32.Fedoseev, S. V.; Belikov, M. Y.; Ershov, O. V.; Bardasov, I. N.; Tafeenko, V. A. New push–pull chromophores. Synthesis of 2-[4-Aryl-3-cyano-5-hydroxy-5-methyl-1H-pyrrol-2(5H)-ylidene]malononitrile. Russ J Org Chem. 2016, 52, 1440-1443.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文