|
1.Bentley, R. and R. Meganathan, Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol Rev, 1982. 46(3): p. 241-80. 2.Croxen, M.A. and B.B. Finlay, Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol, 2010. 8(1): p. 26-38. 3.Karami, N., Wold, A.E. & Adlerberth, I., Antibiotic resistance is linked to carriage of papC and iutA virulence genes and phylogenetic group D background in commensal and uropathogenic Escherichia coli from infants and young children. Eur J Clin Microbiol Infect Dis, 2017. 36: 721. . 4.Antao, E.M., L.H. Wieler, and C. Ewers, Adhesive threads of extraintestinal pathogenic Escherichia coli. Gut Pathog, 2009. 1(1): p. 22. 5.Servin, A.L., Pathogenesis of Afa/Dr diffusely adhering Escherichia coli. Clin Microbiol Rev, 2005. 18(2): p. 264-92. 6.Smith, J.L., P.M. Fratamico, and N.W. Gunther, Extraintestinal pathogenic Escherichia coli. Foodborne Pathog Dis, 2007. 4(2): p. 134-63. 7.Edlin, R.S., et al., Antibiotic resistance patterns of outpatient pediatric urinary tract infections. J Urol, 2013. 190(1): p. 222-7. 8.Rebekah Moehring, D.J.A., Gram-negative bacillary bacteremia in adults. In: UpToDate, Post TW (Ed), UpToDate, Waltham, MA., 2019. 9.李聰明等人, 2009 年台灣院內感染監視系統分析報告. 2011. 10.Russo, T.A. and J.R. Johnson, Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes and infection, 2003. 5(5): p. 449-456. 11.Ventola, C.L., The antibiotic resistance crisis: part 1: causes and threats. P T, 2015. 40(4): p. 277-83. 12.Levy, S.B. and B. Marshall, Antibacterial resistance worldwide: causes, challenges and responses. Nat Med, 2004. 10(12 Suppl): p. S122-9. 13.Chen, L., et al., Notes from the Field: Pan-Resistant New Delhi Metallo-Beta-Lactamase-Producing Klebsiella pneumoniae - Washoe County, Nevada, 2016. MMWR Morb Mortal Wkly Rep, 2017. 66(1): p. 33. 14.Canton-Bulnes, M.L., et al., A case of pan-resistant Burkholderia cepacia complex bacteremic pneumonia, after lung transplantation treated with a targeted combination therapy. Transpl Infect Dis, 2018: p. e13034. 15.Lay, C., et al., Outcomes in cystic fibrosis lung transplant recipients infected with organisms labeled as pan-resistant: An ISHLT Registrybased analysis. J Heart Lung Transplant, 2019. 16.O’Neill, J. Antimicrobial Resistance:Tackling a Crisis for the Health and Wealth of Nations. Review on Antimicrobial Resistance. 2014; Available from: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf. 17.Dever, L.A. and T.S. Dermody, Mechanisms of bacterial resistance to antibiotics. Arch Intern Med, 1991. 151(5): p. 886-95. 18.Levy, S.B., The Antibiotic Paradox: How Misuse of Antibiotics Destroys their Curative Powers. 2002. 19.Levy, S.B.M., R.V. (eds.), Gene Transfer in the Environment. 1989. 20.Wright, G.D., The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol, 2007. 5(3): p. 175-86. 21.Alekshun, M.N. and S.B. Levy, Molecular mechanisms of antibacterial multidrug resistance. Cell, 2007. 128(6): p. 1037-50. 22.Bradford, P.A., Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev, 2001. 14(4): p. 933-51, table of contents. 23.Bush, K., New beta-lactamases in gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clin Infect Dis, 2001. 32(7): p. 1085-9. 24.Paterson, D.L., et al., International prospective study of Klebsiella pneumoniae bacteremia: implications of extended-spectrum beta-lactamase production in nosocomial Infections. Ann Intern Med, 2004. 140(1): p. 26-32. 25.Biedenbach, D.J., D.M. Johnson, and R.N. Jones, In vitro evaluation of cefepime and other broad-spectrum beta-lactams in Taiwan medical centers. The Taiwan Antimicrobial Resistance Study Group. Diagn Microbiol Infect Dis, 1999. 35(4): p. 299-305. 26.Liu, P.Y., et al., Molecular epidemiology of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae isolates in a district hospital in Taiwan. J Clin Microbiol, 1998. 36(9): p. 2759-62. 27.Yan, J.J., et al., Extended-spectrum beta-lactamases and plasmid-mediated AmpC enzymes among clinical isolates of Escherichia coli and Klebsiella pneumoniae from seven medical centers in Taiwan. Antimicrob Agents Chemother, 2006. 50(5): p. 1861-4. 28.Wu, P.C., et al., Prevalence and risk factors for colonization by extended-spectrum beta-lactamase-producing or ST 131 Escherichia coli among asymptomatic adults in community settings in Southern Taiwan. Infect Drug Resist, 2019. 12: p. 1063-1071. 29.Smet, A., et al., Broad-spectrum β-lactamases among Enterobacteriaceae of animal origin: molecular aspects, mobility and impact on public health. FEMS microbiology reviews, 2010. 34(3): p. 295-316. 30.Lee, W.C. and K.S. Yeh, Characteristics of extended-spectrum beta-lactamase-producing Escherichia coli isolated from fecal samples of piglets with diarrhea in central and southern Taiwan in 2015. BMC Vet Res, 2017. 13(1): p. 66. 31.Breilh, D., et al., Carbapenems. J Chemother, 2013. 25(1): p. 1-17. 32.Kumarasamy, K.K., et al., Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis, 2010. 10(9): p. 597-602. 33.Pfeifer, Y., A. Cullik, and W. Witte, Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. Int J Med Microbiol, 2010. 300(6): p. 371-9. 34.Livermore, D.M., et al., Non-susceptibility trends among Enterobacteriaceae from bacteraemias in the UK and Ireland, 2001-06. J Antimicrob Chemother, 2008. 62 Suppl 2: p. ii41-54. 35.Queenan, A.M. and K. Bush, Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev, 2007. 20(3): p. 440-58, table of contents. 36.Jean, S.S., et al., Carbapenem-Resistant Enterobacteriaceae Infections: Taiwan Aspects. Front Microbiol, 2018. 9: p. 2888. 37.Chow, J.W. and D.M. Shlaes, Imipenem resistance associated with the loss of a 40 kDa outer membrane protein in Enterobacter aerogenes. J Antimicrob Chemother, 1991. 28(4): p. 499-504. 38.Prevention, C.f.D.C.a., Biggest Threats and Data. Antibiotic / Antimicrobial Resistance (AR / AMR). 39.Yamamoto, N., et al., Prevalence of, and risk factors for, carriage of carbapenem-resistant Enterobacteriaceae among hospitalized patients in Japan. Journal of Hospital Infection, 2017. 97(3): p. 212-217. 40.Tran, D.M., et al., High Prevalence of Colonisation with Carbapenem-Resistant Enterobacteriaceae Among Patients Admitted to Vietnamese Hospitals: Risk Factors and Burden of Disease. 2019. 41.Hoelle, J., et al., Survey of US wastewater for carbapenem-resistant Enterobacteriaceae. Journal of water and health, 2019. 17(2): p. 219-226. 42.Lee, C.M., et al., Presence of multidrug-resistant organisms in the residents and environments of long-term care facilities in Taiwan. J Microbiol Immunol Infect, 2017. 50(2): p. 133-144. 43.Lai, C.-C., et al., Susceptibility rates of clinically important bacteria collected from intensive care units against colistin, carbapenems, and other comparative agents: results from Surveillance of Multicenter Antimicrobial Resistance in Taiwan (SMART). Infection and drug resistance, 2019. 12: p. 627. 44.Poirel, L., J.D. Pitout, and P. Nordmann, Carbapenemases: molecular diversity and clinical consequences. Future Microbiol, 2007. 2(5): p. 501-12. 45.Bush, K., Alarming beta-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Curr Opin Microbiol, 2010. 13(5): p. 558-64. 46.Mohanty, S., M. Gajanand, and R. Gaind, Identification of carbapenemase-mediated resistance among Enterobacteriaceae bloodstream isolates: A molecular study from India. Indian journal of medical microbiology, 2017. 35(3): p. 421. 47.Zhang, R., et al., Nationwide surveillance of clinical carbapenem-resistant Enterobacteriaceae (CRE) strains in China. EBioMedicine, 2017. 19: p. 98-106. 48.Hung, K.-H., et al., Characterization of the modified Hodge test-positive isolates of Enterobacteriaceae in Taiwan. Journal of Microbiology, Immunology and Infection, 2013. 46(1): p. 35-40. 49.Wang, J.-T., et al., Carbapenem-nonsusceptible enterobacteriaceae in Taiwan. PloS one, 2015. 10(3): p. e0121668. 50.Lin, Y.-T., et al. Appropriate treatment for bloodstream infections due to carbapenem-resistant Klebsiella pneumoniae and Escherichia coli: A nationwide multicenter study in Taiwan. in Open forum infectious diseases. 2018. Oxford University Press US. 51.Patel, G., et al., Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol, 2008. 29(12): p. 1099-106. 52.Tzouvelekis, L.S., et al., Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev, 2012. 25(4): p. 682-707. 53.Nation, R.L., et al., Polymyxin Acute Kidney Injury: Dosing and Other Strategies to Reduce Toxicity. Antibiotics (Basel), 2019. 8(1). 54.Olaitan, A.O., S. Morand, and J.M. Rolain, Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol, 2014. 5: p. 643. 55.Mediavilla, J.R., et al., Colistin- and Carbapenem-Resistant Escherichia coli Harboring mcr-1 and blaNDM-5, Causing a Complicated Urinary Tract Infection in a Patient from the United States. MBio, 2016. 7(4). 56.Liu, J.-Y., et al., Increased mcr-1 in pathogenic Escherichia coli from diseased swine, Taiwan. Journal of Microbiology, Immunology and Infection, 2018. 57.La, M.-V., et al., Prevalence and antibiotic susceptibility of colistin-resistance gene (mcr-1) positive Enterobacteriaceae in stool specimens of patients attending a tertiary care hospital in Singapore. International Journal of Infectious Diseases, 2019. 58.WHO publishes list of bacteria for which new antibiotics are urgently needed. . 2017. 59.Fujita, K.i., T. Fujita, and I. Kubo, Anethole, a potential antimicrobial synergist, converts a fungistatic dodecanol to a fungicidal agent. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 2007. 21(1): p. 47-51. 60.Sisson, G., et al., Metronidazole activation is mutagenic and causes DNA fragmentation in Helicobacter pylori and in Escherichia coli containing a cloned H. pylori RdxA(+) (Nitroreductase) gene. J Bacteriol, 2000. 182(18): p. 5091-6. 61.Alhanout, K., et al., New insights into the antibacterial mechanism of action of squalamine. J Antimicrob Chemother, 2010. 65(8): p. 1688-93. 62.Smith, P.A., et al., Optimized arylomycins are a new class of Gram-negative antibiotics. Nature, 2018. 561(7722): p. 189-194. 63.Stiernagle, T., Maintenance of C. elegans. WormBook, 2006: p. 1-11. 64.Johnson, J.R., et al., Isolation and molecular characterization of nalidixic acid-resistant extraintestinal pathogenic Escherichia coli from retail chicken products. Antimicrob Agents Chemother, 2003. 47(7): p. 2161-8. 65.Granizo, J.J., et al., Streptococcus pneumoniae resistance to erythromycin and penicillin in relation to macrolide and beta-lactam consumption in Spain (1979-1997). J Antimicrob Chemother, 2000. 46(5): p. 767-73. 66.Woodford, N., et al., Carbapenemase-producing Enterobacteriaceae and non-Enterobacteriaceae from animals and the environment: an emerging public health risk of our own making? J Antimicrob Chemother, 2014. 69(2): p. 287-91. 67.Grundmann, H., et al., Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. The Lancet Infectious Diseases, 2017. 17(2): p. 153-163. 68.Roschanski, N., et al., VIM-1 carbapenemase-producing Escherichia coli isolated from retail seafood, Germany 2016. Eurosurveillance, 2017. 22(43). 69.Jao, Y.T., et al., First report of OXA-48 carbapenemase-producing Escherichia coli in Taiwan. J Microbiol Immunol Infect, 2017. 50(3): p. 403-404. 70.Munoz-Price, L.S., et al., Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis, 2013. 13(9): p. 785-96. 71.Logan, L.K. and R.A. Weinstein, The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. The Journal of infectious diseases, 2017. 215(suppl_1): p. S28-S36. 72.Rasheed, J.K., et al., New Delhi Metallo-β-Lactamase–producing Enterobacteriaceae, United States. Emerging infectious diseases, 2013. 19(6): p. 870. 73.Bonomo, R.A., et al., Carbapenemase-producing organisms: a global scourge. Clinical Infectious Diseases, 2017. 66(8): p. 1290-1297. 74.Ma, L., et al., Updated molecular epidemiology of carbapenem-non-susceptible Escherichia coli in Taiwan: first identification of KPC-2 or NDM-1-producing E. coli in Taiwan. BMC Infect Dis, 2013. 13: p. 599. 75.Wu, P.-F., et al., High minimum inhibitory concentration of imipenem as a predictor of fatal outcome in patients with carbapenem non-susceptible Klebsiella pneumoniae. Scientific reports, 2016. 6: p. 32665. 76.Chang, Y.-Y., et al., Clinical features of patients with carbapenem nonsusceptible Klebsiella pneumoniae and Escherichia coli in intensive care units: a nationwide multicenter study in Taiwan. Journal of Microbiology, Immunology and Infection, 2015. 48(2): p. 219-225. 77.Chiu, S.-K., et al., Carbapenem Nonsusceptible Klebsiella pneumoniae in Taiwan: Dissemination and Increasing Resistance of Carbapenemase Producers During 2012–2015. Scientific reports, 2018. 8(1): p. 8468. 78.de Maio Carrillho, C.M., et al., Colistin-resistant Enterobacteriaceae infections: clinical and molecular characterization and analysis of in vitro synergy. Diagn Microbiol Infect Dis, 2017. 87(3): p. 253-257. 79.Wise, M.G., et al., Prevalence of mcr-type genes among colistin-resistant Enterobacteriaceae collected in 2014-2016 as part of the INFORM global surveillance program. PLoS One, 2018. 13(4): p. e0195281. 80.Carroll, L.M., et al., Identification of Novel Mobilized Colistin Resistance Gene mcr-9 in a Multidrug-Resistant, Colistin-Susceptible Salmonella enterica Serotype Typhimurium Isolate. MBio, 2019. 10(3). 81.Sun, W., P.E. Sanderson, and W. Zheng, Drug combination therapy increases successful drug repositioning. Drug Discov Today, 2016. 21(7): p. 1189-95. 82.Zheng, W., W. Sun, and A. Simeonov, Drug repurposing screens and synergistic drug-combinations for infectious diseases. Br J Pharmacol, 2018. 175(2): p. 181-191. 83.Sun, W., et al., Rapid antimicrobial susceptibility test for identification of new therapeutics and drug combinations against multidrug-resistant bacteria. Emerg Microbes Infect, 2016. 5(11): p. e116. 84.Harbut, M.B., et al., Auranofin exerts broad-spectrum bactericidal activities by targeting thiol-redox homeostasis. Proc Natl Acad Sci U S A, 2015. 112(14): p. 4453-8. 85.Ejim, L., et al., Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat Chem Biol, 2011. 7(6): p. 348-50. 86.Runci, F., et al., Acinetobacter baumannii biofilm formation in Human serum and disruption by gallium. Antimicrobial agents and chemotherapy, 2017. 61(1): p. e01563-16. 87.Chang, H.C., et al., In vitro and in vivo activity of a novel sorafenib derivative SC5005 against MRSA. J Antimicrob Chemother, 2016. 71(2): p. 449-59. 88.Li, J., et al., Evaluation of colistin as an agent against multi-resistant Gram-negative bacteria. International journal of antimicrobial agents, 2005. 25(1): p. 11-25. 89.Zavascki, A.P., et al., Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. Journal of antimicrobial chemotherapy, 2007. 60(6): p. 1206-1215. 90.Brown, M. and J. Melling, Role of divalent cations in the action of polymyxin B and EDTA on Pseudomonas aeruginosa. Microbiology, 1969. 59(2): p. 263-274. 91.Shen, B., R.G. Jensen, and H.J. Bohnert, Mannitol Protects against Oxidation by Hydroxyl Radicals. Plant Physiol, 1997. 115(2): p. 527-532. 92.Rosenkranz, A.R., et al., A microplate assay for the detection of oxidative products using 2'',7''-dichlorofluorescin-diacetate. J Immunol Methods, 1992. 156(1): p. 39-45. 93.Myhre, O., et al., Evaluation of the probes 2'',7''-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmacol, 2003. 65(10): p. 1575-82. 94.Kohanski, M.A., D.J. Dwyer, and J.J. Collins, How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol, 2010. 8(6): p. 423-35. 95.Kohanski, M.A., et al., A common mechanism of cellular death induced by bactericidal antibiotics. Cell, 2007. 130(5): p. 797-810. 96.Van Acker, H. and T. Coenye, The Role of Reactive Oxygen Species in Antibiotic-Mediated Killing of Bacteria. Trends Microbiol, 2017. 25(6): p. 456-466. 97.Hansen, L.T., J.W. Austin, and T.A. Gill, Antibacterial effect of protamine in combination with EDTA and refrigeration. International journal of food microbiology, 2001. 66(3): p. 149-161. 98.Tseng, S., et al., Toluidine blue O photodynamic inactivation on multidrug‐resistant pseudomonas aeruginosa. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery, 2009. 41(5): p. 391-397. 99.Gao, C., et al., Investigation of antibacterial activity of aspidin BB against Propionibacterium acnes. Archives of Dermatological Research, 2016. 308(2): p. 79-86. 100.Darah, I., S.H. Lim, and K. Nithianantham, Effects of Methanol Extract of Wedelia chinensis Osbeck (Asteraceae) Leaves against Pathogenic Bacteria with Emphasise on Bacillus cereus. Indian J Pharm Sci, 2013. 75(5): p. 533-9. 101.Ramli, S., et al., Antibacterial Activity of Ethanolic Extract of Syzygium polyanthum L. (Salam) Leaves against Foodborne Pathogens and Application as Food Sanitizer. Biomed Res Int, 2017. 2017: p. 9024246. 102.Guillon, A., et al., Treatment of Pseudomonas aeruginosa biofilm present in endotracheal tubes by poly-L-lysine. Antimicrobial agents and chemotherapy, 2018. 62(11): p. e00564-18. 103.Huband, M.D., et al., In vitro and in vivo activities of PD 0305970 and PD 0326448, new bacterial gyrase/topoisomerase inhibitors with potent antibacterial activities versus multidrug-resistant gram-positive and fastidious organism groups. Antimicrobial agents and chemotherapy, 2007. 51(4): p. 1191-1201. 104.Clark, C., et al., Antistaphylococcal activity of dihydrophthalazine antifolates, a family of novel antibacterial drugs. Antimicrobial agents and chemotherapy, 2009. 53(4): p. 1353-1361. 105.Aballay, A. and F.M. Ausubel, Caenorhabditis elegans as a host for the study of host-pathogen interactions. Curr Opin Microbiol, 2002. 5(1): p. 97-101. 106.Hengartner, M.O. and H.R. Horvitz, Programmed cell death in Caenorhabditis elegans. Current opinion in genetics & development, 1994. 4(4): p. 581-586. 107.Bargmann, C.I., Neurobiology of the Caenorhabditis elegans genome. Science, 1998. 282(5396): p. 2028-2033. 108.Wang, X., et al., Mechanisms of AIF-mediated apoptotic DNA degradation in Caenorhabditis elegans. Science, 2002. 298(5598): p. 1587-1592. 109.Uccelletti, D., et al., Anti-Pseudomonas activity of frog skin antimicrobial peptides in a Caenorhabditis elegans infection model: a plausible mode of action in vitro and in vivo. Antimicrobial agents and chemotherapy, 2010. 54(9): p. 3853-3860. 110.Tomkiewicz, D., et al., Berberine-INF55 (5-nitro-2-phenylindole) hybrid antimicrobials: effects of varying the relative orientation of the berberine and INF55 components. Antimicrobial agents and chemotherapy, 2010. 54(8): p. 3219-3224. 111.Choi, E.-J., et al., The herbal-derived honokiol and magnolol enhances immune response to infection with methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA). Applied microbiology and biotechnology, 2015. 99(10): p. 4387-4396. 112.King, A.M., et al., Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature, 2014. 510(7506): p. 503. 113.Ewers, C., et al., Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: how closely related are they? Int J Med Microbiol, 2007. 297(3): p. 163-76. 114.Yamamoto, S., et al., Detection of urovirulence factors in Escherichia coli by multiplex polymerase chain reaction. FEMS Immunol Med Microbiol, 1995. 12(2): p. 85-90. 115.Johnson, J.R. and A.L. Stell, Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis, 2000. 181(1): p. 261-72.
|