跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/09 08:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡宗翰
研究生(外文):Tsung-Han Tsai
論文名稱:評估compouud X對於產生碳青黴烯酶大腸桿菌之殺菌活性
論文名稱(外文):Bactericidal activity of compound X against carbapenemase-producing Escherichia coli isolates.
指導教授:曾嵩斌
指導教授(外文):Sung-Pin Tseng
口試委員:洪薇均鄧麗珍
口試委員(外文):Wei-Chun HungLi-Jen Teng
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:醫學影像暨放射科學系碩士班
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:94
中文關鍵詞:老藥新用產碳青黴烯酶大腸桿菌
外文關鍵詞:Drug repurposingcarbapenemase-producing Escherichia coli
相關次數:
  • 被引用被引用:0
  • 點閱點閱:2
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大腸桿菌 (Escherichia coli)為人體腸道正常菌叢之一,即使大多數大腸桿菌是無害的,但當其獲得毒力因子時仍可造成嚴重的感染包括食物中毒及菌血症等等,由於過度的使用抗生素於大腸桿菌感染症的治療,目前抗藥性問題在大腸桿菌中快速增加,值得注意的是大腸桿菌對最後一線用藥”碳青黴烯”的抗藥性也日趨嚴重,可怕的是此種抗藥性基因能夠藉由質體在細菌間廣泛的傳播,造成治療困難與感染後的高死亡率。故找尋新的藥物治療碳青黴烯抗藥性大腸桿菌是目前迫切需要的項目之一,然而新藥的開發需要投資大量時間及金錢,使得抗生素新藥進度緩慢,因此老藥新用的方式成為一個重要的替代方式。在本研究中選用了具有免疫調節功能之無毒性合成有機化合物Compound X做為候選藥物測試對於多重抗藥性產碳青黴烯酶大腸桿菌之抗菌活性並進一步探討其抗菌機轉。
本研究蒐集2012至2015間全台各地區6家醫院所分離之多重抗藥性產碳青黴烯酶大腸桿菌 (CPEC)臨床菌株,抗菌活性以肉湯微量稀釋法測定Compound X之最小抑菌濃度,整體MIC範圍為0.5 至 32 μg/ml,此數值遠低於其CC50數值 (150 μg/ml)及最高血漿濃度,並以脈衝場凝膠電泳及多位點序列分析臨床菌株親緣性呈現相當高之異質性,顯示在本研究中CPEC菌株並無單一clone擴散之現象。
Compound X之抗菌機制首先使用Time-kill assays測定,在1、2及4倍藥物MIC下觀察到99.9%殺菌能力,故可判斷其抗菌機制為一種殺菌劑。接著採用post-DCF fluorescence及化學製劑偵測此化合物的抗菌機轉,並以DNA片段化試驗及掃描式電子顯微鏡觀察藥物對細菌之影響。發現投予1、2及4倍MIC藥物後ROS生成皆有大幅上升,同時有著DNA降解及細胞壁損傷。
體內試驗則選用秀麗隱桿線蟲及小鼠敗血症模式來測試Compound X對於CPEC菌株治療效果,與安慰劑組相比,經過Compound X治療後大幅提升了線蟲及小鼠隻存活率,同時亦降低小鼠器官載菌量。
總結上述實驗結果表明Compound X是一個極具潛力之新興抗微生物製劑,提供對抗多重抗藥性CPEC菌株之不同治療選項,值得更進一步之研究。
Escherichia coli is an important organism in the human lower intestine that usually harmless, but some pathogen E. coli can cause serious infections including food poisoning and bacteremia. Owing to the overuse of antibiotics, the number of antibiotic-resistant E. coli has rapidly increased, especially for carbapenemase-producing E. coli (CPEC). Furthermore, plasmid and transposable elements carrying multiple antibiotic resistance genes could be transferred horizontally, leading treatment options to become limited and increased mortality. In this situation, developments of new antibiotic are urgently needed whereas this process requires a long lead period and a large investment of resources. Due to the high cost of antibiotic development, drug repurposing was considered as an alternative approach. For this project, we re-evaluated the organic compound X, which was reported as an immunomodulation agent, as a novel antimicrobial agent.
Among a total of 14 multidrug resistant CPEC clinical isolates was collected from 6 hospitals in Taiwan during 2012 to 2015, the broth microdilution method was used to determine the minimum inhibitory concentration of compound X. Genotype analysis was conducted by PFGE (Pulsed Field Gel Electrophoresis) and MLST (Multilocus sequence typing). The bactericidal activity of compound X against the CRE-415 isolate was tested using time-kill assays. The bactericidal mechanism of compound X was detected by the post-DCF fluorescence and the other chemical agents. Scanning electron microscope was used to observe compound X-treated bacterial cells morphology. Caenorhabditis elegans and mice septicemia model was employed as the in vivo model to investigate the treatment effect of compound X against CPEC.
The MIC range of the CPEC isolates were from 0.5 to 32 μg/ml, well below its 50% cytotoxicity (nearly 150 μg/ml) and maximum human plasma concentration. Following genotype analysis showed no outbreak phenomenon. 99.9% of the bacterial reduction was observed at 1x, 2x and 4x MIC of compound X. Three possible bactericidal mechanisms were found. ROS levels were significantly increased in the group of 1x, 2x and 4x MIC in comparison with that of the control group. DNA degradation and cell damage were found in compound X-treated bacterial cells. Compared to the placebo, compound X demonstrated the robust treatment effects with increased median nematode survival time and bacteria-infected mice survival. Furthermore, compound X significantly rescued the lethal-infected mice via the significant eradication of bacterial organ loads.
In conclusion, our works indicated that compound X is a potentially novel antimicrobial agent worthy of further research.
第一章 緒論 10
1. 大腸桿菌 (Escherichia coli) 簡介 10
2. 抗藥性的發展 11
3. 碳青黴烯 (Carbapenem)簡介及其抗藥性問題 14
4. Compound X簡介 19
第二章 材料與方法 21
第一節 研究用菌株 21
第二節 臨床菌株親緣性分析 22
第三節 毒力基因偵測 26
第四節 Compound X抗菌活性偵測 30
第五節 Compound X抗菌機制試驗 31
第六節 Compound X抗藥性偵測 40
第七節 Compound X 體內投藥試驗 41
第三章 實驗結果 48
1. 台灣14株產碳青黴烯酶大腸桿菌 (carbapenemase-producing Escherichia coli;CPEC)抗生素感受性試驗分析結果 48
2. 台灣14株產碳青黴烯酶大腸桿菌 (carbapenemase-producing Escherichia coli;CPEC)毒力因子偵測 49
3. 台灣14株產碳青黴烯酶大腸桿菌 (carbapenemase-producing Escherichia coli;CPEC)親源性分析 50
4. 評估Compound X對於台灣14株產碳青黴烯酶大腸桿菌(carbapenemase-producing Escherichia coli;CPEC)之抗菌效果 50
5. Compound X對於台灣產碳青黴烯酶大腸桿菌(carbapenemase-producing Escherichia coli;CPEC)之抗菌機制探討 51
6. Compound X抗菌機轉探討 (mechanism of action) 52
7. Compound X投藥後活性氧化物質 (Reactive oxygen species, ROS) 生成試驗 53
8. DNA片段化試驗 53
9. 掃瞄式電子顯微鏡 (Scanning Electron Microscopy;SEM)菌相觀察 54
10. Compound X抗藥性頻率 55
11. Compound X對於秀麗隱桿線蟲感染產碳青黴烯酶大腸桿菌的治療效果 (in vivo) 55
13. Compound X對於感染產碳青黴烯酶大腸桿菌引起小鼠敗血症治療效果 (in vivo) 56
14. Compound X對於產碳青黴烯酶大腸桿菌感染小鼠器官載菌量測試 (organ load) 57
第四章 討論 58
第五章 實驗結果附表 71
【表一】毒力因子偵測所使用核酸引子 71
【表二】台灣14株產碳青黴烯酶大腸桿菌所攜帶碳青黴烯酶基因及乙內醯胺酶基因 72
【表三】Compound X對台灣14株產碳青黴烯酶大腸桿菌之最小抑菌濃度及毒力因子偵測結果 72
【表四】Compound X抗菌機轉探討。 73
【表五】小鼠器官載菌量。 73
第六章 實驗結果附圖 74
【圖一】台灣14株產碳青黴烯酶大腸桿菌抗生素感受性試驗分析結果 74
【圖二】台灣14株產碳青黴烯酶大腸桿菌親源性分析 75
【圖三(a)】Compound X抗菌機制偵測之抑菌劑對照組 76
【圖三(b)】Compound X抗菌機制偵測之殺菌劑對照組 76
【圖三(c)】Compound X抗菌機制偵測結果。 77
【圖四】 Compound X抗菌機轉偵測 78
【圖五】 DNA片段化試驗 79
【圖六(a)】掃描式電子顯微鏡菌相觀察之對照組 80
【圖六(b)】掃描式電子顯微鏡菌相觀察之對照組 80
【圖六(c)】掃描式電子顯微鏡菌相觀察之投予Compound X組 81
【圖六(d)】掃描式電子顯微鏡菌相觀察之投予Compound X組 81
【圖七】 Compound X抗藥性頻率偵測 82
【圖八】 秀麗隱桿線蟲體內試驗 83
【圖九】 小鼠敗血症模式體內試驗 84
【圖十(a)】 小鼠器官載菌量之肝臟組 84
【圖十(b)】 小鼠器官載菌量之腎臟組 85
【圖十(c)】 小鼠器官載菌量之脾臟組 85
第七章 參考文獻 86
1.Bentley, R. and R. Meganathan, Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol Rev, 1982. 46(3): p. 241-80.
2.Croxen, M.A. and B.B. Finlay, Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol, 2010. 8(1): p. 26-38.
3.Karami, N., Wold, A.E. & Adlerberth, I., Antibiotic resistance is linked to carriage of papC and iutA virulence genes and phylogenetic group D background in commensal and uropathogenic Escherichia coli from infants and young children. Eur J Clin Microbiol Infect Dis, 2017. 36: 721. .
4.Antao, E.M., L.H. Wieler, and C. Ewers, Adhesive threads of extraintestinal pathogenic Escherichia coli. Gut Pathog, 2009. 1(1): p. 22.
5.Servin, A.L., Pathogenesis of Afa/Dr diffusely adhering Escherichia coli. Clin Microbiol Rev, 2005. 18(2): p. 264-92.
6.Smith, J.L., P.M. Fratamico, and N.W. Gunther, Extraintestinal pathogenic Escherichia coli. Foodborne Pathog Dis, 2007. 4(2): p. 134-63.
7.Edlin, R.S., et al., Antibiotic resistance patterns of outpatient pediatric urinary tract infections. J Urol, 2013. 190(1): p. 222-7.
8.Rebekah Moehring, D.J.A., Gram-negative bacillary bacteremia in adults. In: UpToDate, Post TW (Ed), UpToDate, Waltham, MA., 2019.
9.李聰明等人, 2009 年台灣院內感染監視系統分析報告. 2011.
10.Russo, T.A. and J.R. Johnson, Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes and infection, 2003. 5(5): p. 449-456.
11.Ventola, C.L., The antibiotic resistance crisis: part 1: causes and threats. P T, 2015. 40(4): p. 277-83.
12.Levy, S.B. and B. Marshall, Antibacterial resistance worldwide: causes, challenges and responses. Nat Med, 2004. 10(12 Suppl): p. S122-9.
13.Chen, L., et al., Notes from the Field: Pan-Resistant New Delhi Metallo-Beta-Lactamase-Producing Klebsiella pneumoniae - Washoe County, Nevada, 2016. MMWR Morb Mortal Wkly Rep, 2017. 66(1): p. 33.
14.Canton-Bulnes, M.L., et al., A case of pan-resistant Burkholderia cepacia complex bacteremic pneumonia, after lung transplantation treated with a targeted combination therapy. Transpl Infect Dis, 2018: p. e13034.
15.Lay, C., et al., Outcomes in cystic fibrosis lung transplant recipients infected with organisms labeled as pan-resistant: An ISHLT Registrybased analysis. J Heart Lung Transplant, 2019.
16.O’Neill, J. Antimicrobial Resistance:Tackling a Crisis for the Health and Wealth of Nations. Review on Antimicrobial Resistance. 2014; Available from: https://amr-review.org/sites/default/files/AMR%20Review%20Paper%20-%20Tackling%20a%20crisis%20for%20the%20health%20and%20wealth%20of%20nations_1.pdf.
17.Dever, L.A. and T.S. Dermody, Mechanisms of bacterial resistance to antibiotics. Arch Intern Med, 1991. 151(5): p. 886-95.
18.Levy, S.B., The Antibiotic Paradox: How Misuse of Antibiotics Destroys their Curative Powers. 2002.
19.Levy, S.B.M., R.V. (eds.), Gene Transfer in the Environment. 1989.
20.Wright, G.D., The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol, 2007. 5(3): p. 175-86.
21.Alekshun, M.N. and S.B. Levy, Molecular mechanisms of antibacterial multidrug resistance. Cell, 2007. 128(6): p. 1037-50.
22.Bradford, P.A., Extended-spectrum beta-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev, 2001. 14(4): p. 933-51, table of contents.
23.Bush, K., New beta-lactamases in gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clin Infect Dis, 2001. 32(7): p. 1085-9.
24.Paterson, D.L., et al., International prospective study of Klebsiella pneumoniae bacteremia: implications of extended-spectrum beta-lactamase production in nosocomial Infections. Ann Intern Med, 2004. 140(1): p. 26-32.
25.Biedenbach, D.J., D.M. Johnson, and R.N. Jones, In vitro evaluation of cefepime and other broad-spectrum beta-lactams in Taiwan medical centers. The Taiwan Antimicrobial Resistance Study Group. Diagn Microbiol Infect Dis, 1999. 35(4): p. 299-305.
26.Liu, P.Y., et al., Molecular epidemiology of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae isolates in a district hospital in Taiwan. J Clin Microbiol, 1998. 36(9): p. 2759-62.
27.Yan, J.J., et al., Extended-spectrum beta-lactamases and plasmid-mediated AmpC enzymes among clinical isolates of Escherichia coli and Klebsiella pneumoniae from seven medical centers in Taiwan. Antimicrob Agents Chemother, 2006. 50(5): p. 1861-4.
28.Wu, P.C., et al., Prevalence and risk factors for colonization by extended-spectrum beta-lactamase-producing or ST 131 Escherichia coli among asymptomatic adults in community settings in Southern Taiwan. Infect Drug Resist, 2019. 12: p. 1063-1071.
29.Smet, A., et al., Broad-spectrum β-lactamases among Enterobacteriaceae of animal origin: molecular aspects, mobility and impact on public health. FEMS microbiology reviews, 2010. 34(3): p. 295-316.
30.Lee, W.C. and K.S. Yeh, Characteristics of extended-spectrum beta-lactamase-producing Escherichia coli isolated from fecal samples of piglets with diarrhea in central and southern Taiwan in 2015. BMC Vet Res, 2017. 13(1): p. 66.
31.Breilh, D., et al., Carbapenems. J Chemother, 2013. 25(1): p. 1-17.
32.Kumarasamy, K.K., et al., Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis, 2010. 10(9): p. 597-602.
33.Pfeifer, Y., A. Cullik, and W. Witte, Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. Int J Med Microbiol, 2010. 300(6): p. 371-9.
34.Livermore, D.M., et al., Non-susceptibility trends among Enterobacteriaceae from bacteraemias in the UK and Ireland, 2001-06. J Antimicrob Chemother, 2008. 62 Suppl 2: p. ii41-54.
35.Queenan, A.M. and K. Bush, Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev, 2007. 20(3): p. 440-58, table of contents.
36.Jean, S.S., et al., Carbapenem-Resistant Enterobacteriaceae Infections: Taiwan Aspects. Front Microbiol, 2018. 9: p. 2888.
37.Chow, J.W. and D.M. Shlaes, Imipenem resistance associated with the loss of a 40 kDa outer membrane protein in Enterobacter aerogenes. J Antimicrob Chemother, 1991. 28(4): p. 499-504.
38.Prevention, C.f.D.C.a., Biggest Threats and Data. Antibiotic / Antimicrobial Resistance (AR / AMR).
39.Yamamoto, N., et al., Prevalence of, and risk factors for, carriage of carbapenem-resistant Enterobacteriaceae among hospitalized patients in Japan. Journal of Hospital Infection, 2017. 97(3): p. 212-217.
40.Tran, D.M., et al., High Prevalence of Colonisation with Carbapenem-Resistant Enterobacteriaceae Among Patients Admitted to Vietnamese Hospitals: Risk Factors and Burden of Disease. 2019.
41.Hoelle, J., et al., Survey of US wastewater for carbapenem-resistant Enterobacteriaceae. Journal of water and health, 2019. 17(2): p. 219-226.
42.Lee, C.M., et al., Presence of multidrug-resistant organisms in the residents and environments of long-term care facilities in Taiwan. J Microbiol Immunol Infect, 2017. 50(2): p. 133-144.
43.Lai, C.-C., et al., Susceptibility rates of clinically important bacteria collected from intensive care units against colistin, carbapenems, and other comparative agents: results from Surveillance of Multicenter Antimicrobial Resistance in Taiwan (SMART). Infection and drug resistance, 2019. 12: p. 627.
44.Poirel, L., J.D. Pitout, and P. Nordmann, Carbapenemases: molecular diversity and clinical consequences. Future Microbiol, 2007. 2(5): p. 501-12.
45.Bush, K., Alarming beta-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Curr Opin Microbiol, 2010. 13(5): p. 558-64.
46.Mohanty, S., M. Gajanand, and R. Gaind, Identification of carbapenemase-mediated resistance among Enterobacteriaceae bloodstream isolates: A molecular study from India. Indian journal of medical microbiology, 2017. 35(3): p. 421.
47.Zhang, R., et al., Nationwide surveillance of clinical carbapenem-resistant Enterobacteriaceae (CRE) strains in China. EBioMedicine, 2017. 19: p. 98-106.
48.Hung, K.-H., et al., Characterization of the modified Hodge test-positive isolates of Enterobacteriaceae in Taiwan. Journal of Microbiology, Immunology and Infection, 2013. 46(1): p. 35-40.
49.Wang, J.-T., et al., Carbapenem-nonsusceptible enterobacteriaceae in Taiwan. PloS one, 2015. 10(3): p. e0121668.
50.Lin, Y.-T., et al. Appropriate treatment for bloodstream infections due to carbapenem-resistant Klebsiella pneumoniae and Escherichia coli: A nationwide multicenter study in Taiwan. in Open forum infectious diseases. 2018. Oxford University Press US.
51.Patel, G., et al., Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol, 2008. 29(12): p. 1099-106.
52.Tzouvelekis, L.S., et al., Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev, 2012. 25(4): p. 682-707.
53.Nation, R.L., et al., Polymyxin Acute Kidney Injury: Dosing and Other Strategies to Reduce Toxicity. Antibiotics (Basel), 2019. 8(1).
54.Olaitan, A.O., S. Morand, and J.M. Rolain, Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol, 2014. 5: p. 643.
55.Mediavilla, J.R., et al., Colistin- and Carbapenem-Resistant Escherichia coli Harboring mcr-1 and blaNDM-5, Causing a Complicated Urinary Tract Infection in a Patient from the United States. MBio, 2016. 7(4).
56.Liu, J.-Y., et al., Increased mcr-1 in pathogenic Escherichia coli from diseased swine, Taiwan. Journal of Microbiology, Immunology and Infection, 2018.
57.La, M.-V., et al., Prevalence and antibiotic susceptibility of colistin-resistance gene (mcr-1) positive Enterobacteriaceae in stool specimens of patients attending a tertiary care hospital in Singapore. International Journal of Infectious Diseases, 2019.
58.WHO publishes list of bacteria for which new antibiotics are urgently needed. . 2017.
59.Fujita, K.i., T. Fujita, and I. Kubo, Anethole, a potential antimicrobial synergist, converts a fungistatic dodecanol to a fungicidal agent. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives, 2007. 21(1): p. 47-51.
60.Sisson, G., et al., Metronidazole activation is mutagenic and causes DNA fragmentation in Helicobacter pylori and in Escherichia coli containing a cloned H. pylori RdxA(+) (Nitroreductase) gene. J Bacteriol, 2000. 182(18): p. 5091-6.
61.Alhanout, K., et al., New insights into the antibacterial mechanism of action of squalamine. J Antimicrob Chemother, 2010. 65(8): p. 1688-93.
62.Smith, P.A., et al., Optimized arylomycins are a new class of Gram-negative antibiotics. Nature, 2018. 561(7722): p. 189-194.
63.Stiernagle, T., Maintenance of C. elegans. WormBook, 2006: p. 1-11.
64.Johnson, J.R., et al., Isolation and molecular characterization of nalidixic acid-resistant extraintestinal pathogenic Escherichia coli from retail chicken products. Antimicrob Agents Chemother, 2003. 47(7): p. 2161-8.
65.Granizo, J.J., et al., Streptococcus pneumoniae resistance to erythromycin and penicillin in relation to macrolide and beta-lactam consumption in Spain (1979-1997). J Antimicrob Chemother, 2000. 46(5): p. 767-73.
66.Woodford, N., et al., Carbapenemase-producing Enterobacteriaceae and non-Enterobacteriaceae from animals and the environment: an emerging public health risk of our own making? J Antimicrob Chemother, 2014. 69(2): p. 287-91.
67.Grundmann, H., et al., Occurrence of carbapenemase-producing Klebsiella pneumoniae and Escherichia coli in the European survey of carbapenemase-producing Enterobacteriaceae (EuSCAPE): a prospective, multinational study. The Lancet Infectious Diseases, 2017. 17(2): p. 153-163.
68.Roschanski, N., et al., VIM-1 carbapenemase-producing Escherichia coli isolated from retail seafood, Germany 2016. Eurosurveillance, 2017. 22(43).
69.Jao, Y.T., et al., First report of OXA-48 carbapenemase-producing Escherichia coli in Taiwan. J Microbiol Immunol Infect, 2017. 50(3): p. 403-404.
70.Munoz-Price, L.S., et al., Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis, 2013. 13(9): p. 785-96.
71.Logan, L.K. and R.A. Weinstein, The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. The Journal of infectious diseases, 2017. 215(suppl_1): p. S28-S36.
72.Rasheed, J.K., et al., New Delhi Metallo-β-Lactamase–producing Enterobacteriaceae, United States. Emerging infectious diseases, 2013. 19(6): p. 870.
73.Bonomo, R.A., et al., Carbapenemase-producing organisms: a global scourge. Clinical Infectious Diseases, 2017. 66(8): p. 1290-1297.
74.Ma, L., et al., Updated molecular epidemiology of carbapenem-non-susceptible Escherichia coli in Taiwan: first identification of KPC-2 or NDM-1-producing E. coli in Taiwan. BMC Infect Dis, 2013. 13: p. 599.
75.Wu, P.-F., et al., High minimum inhibitory concentration of imipenem as a predictor of fatal outcome in patients with carbapenem non-susceptible Klebsiella pneumoniae. Scientific reports, 2016. 6: p. 32665.
76.Chang, Y.-Y., et al., Clinical features of patients with carbapenem nonsusceptible Klebsiella pneumoniae and Escherichia coli in intensive care units: a nationwide multicenter study in Taiwan. Journal of Microbiology, Immunology and Infection, 2015. 48(2): p. 219-225.
77.Chiu, S.-K., et al., Carbapenem Nonsusceptible Klebsiella pneumoniae in Taiwan: Dissemination and Increasing Resistance of Carbapenemase Producers During 2012–2015. Scientific reports, 2018. 8(1): p. 8468.
78.de Maio Carrillho, C.M., et al., Colistin-resistant Enterobacteriaceae infections: clinical and molecular characterization and analysis of in vitro synergy. Diagn Microbiol Infect Dis, 2017. 87(3): p. 253-257.
79.Wise, M.G., et al., Prevalence of mcr-type genes among colistin-resistant Enterobacteriaceae collected in 2014-2016 as part of the INFORM global surveillance program. PLoS One, 2018. 13(4): p. e0195281.
80.Carroll, L.M., et al., Identification of Novel Mobilized Colistin Resistance Gene mcr-9 in a Multidrug-Resistant, Colistin-Susceptible Salmonella enterica Serotype Typhimurium Isolate. MBio, 2019. 10(3).
81.Sun, W., P.E. Sanderson, and W. Zheng, Drug combination therapy increases successful drug repositioning. Drug Discov Today, 2016. 21(7): p. 1189-95.
82.Zheng, W., W. Sun, and A. Simeonov, Drug repurposing screens and synergistic drug-combinations for infectious diseases. Br J Pharmacol, 2018. 175(2): p. 181-191.
83.Sun, W., et al., Rapid antimicrobial susceptibility test for identification of new therapeutics and drug combinations against multidrug-resistant bacteria. Emerg Microbes Infect, 2016. 5(11): p. e116.
84.Harbut, M.B., et al., Auranofin exerts broad-spectrum bactericidal activities by targeting thiol-redox homeostasis. Proc Natl Acad Sci U S A, 2015. 112(14): p. 4453-8.
85.Ejim, L., et al., Combinations of antibiotics and nonantibiotic drugs enhance antimicrobial efficacy. Nat Chem Biol, 2011. 7(6): p. 348-50.
86.Runci, F., et al., Acinetobacter baumannii biofilm formation in Human serum and disruption by gallium. Antimicrobial agents and chemotherapy, 2017. 61(1): p. e01563-16.
87.Chang, H.C., et al., In vitro and in vivo activity of a novel sorafenib derivative SC5005 against MRSA. J Antimicrob Chemother, 2016. 71(2): p. 449-59.
88.Li, J., et al., Evaluation of colistin as an agent against multi-resistant Gram-negative bacteria. International journal of antimicrobial agents, 2005. 25(1): p. 11-25.
89.Zavascki, A.P., et al., Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. Journal of antimicrobial chemotherapy, 2007. 60(6): p. 1206-1215.
90.Brown, M. and J. Melling, Role of divalent cations in the action of polymyxin B and EDTA on Pseudomonas aeruginosa. Microbiology, 1969. 59(2): p. 263-274.
91.Shen, B., R.G. Jensen, and H.J. Bohnert, Mannitol Protects against Oxidation by Hydroxyl Radicals. Plant Physiol, 1997. 115(2): p. 527-532.
92.Rosenkranz, A.R., et al., A microplate assay for the detection of oxidative products using 2'',7''-dichlorofluorescin-diacetate. J Immunol Methods, 1992. 156(1): p. 39-45.
93.Myhre, O., et al., Evaluation of the probes 2'',7''-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochem Pharmacol, 2003. 65(10): p. 1575-82.
94.Kohanski, M.A., D.J. Dwyer, and J.J. Collins, How antibiotics kill bacteria: from targets to networks. Nat Rev Microbiol, 2010. 8(6): p. 423-35.
95.Kohanski, M.A., et al., A common mechanism of cellular death induced by bactericidal antibiotics. Cell, 2007. 130(5): p. 797-810.
96.Van Acker, H. and T. Coenye, The Role of Reactive Oxygen Species in Antibiotic-Mediated Killing of Bacteria. Trends Microbiol, 2017. 25(6): p. 456-466.
97.Hansen, L.T., J.W. Austin, and T.A. Gill, Antibacterial effect of protamine in combination with EDTA and refrigeration. International journal of food microbiology, 2001. 66(3): p. 149-161.
98.Tseng, S., et al., Toluidine blue O photodynamic inactivation on multidrug‐resistant pseudomonas aeruginosa. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery, 2009. 41(5): p. 391-397.
99.Gao, C., et al., Investigation of antibacterial activity of aspidin BB against Propionibacterium acnes. Archives of Dermatological Research, 2016. 308(2): p. 79-86.
100.Darah, I., S.H. Lim, and K. Nithianantham, Effects of Methanol Extract of Wedelia chinensis Osbeck (Asteraceae) Leaves against Pathogenic Bacteria with Emphasise on Bacillus cereus. Indian J Pharm Sci, 2013. 75(5): p. 533-9.
101.Ramli, S., et al., Antibacterial Activity of Ethanolic Extract of Syzygium polyanthum L. (Salam) Leaves against Foodborne Pathogens and Application as Food Sanitizer. Biomed Res Int, 2017. 2017: p. 9024246.
102.Guillon, A., et al., Treatment of Pseudomonas aeruginosa biofilm present in endotracheal tubes by poly-L-lysine. Antimicrobial agents and chemotherapy, 2018. 62(11): p. e00564-18.
103.Huband, M.D., et al., In vitro and in vivo activities of PD 0305970 and PD 0326448, new bacterial gyrase/topoisomerase inhibitors with potent antibacterial activities versus multidrug-resistant gram-positive and fastidious organism groups. Antimicrobial agents and chemotherapy, 2007. 51(4): p. 1191-1201.
104.Clark, C., et al., Antistaphylococcal activity of dihydrophthalazine antifolates, a family of novel antibacterial drugs. Antimicrobial agents and chemotherapy, 2009. 53(4): p. 1353-1361.
105.Aballay, A. and F.M. Ausubel, Caenorhabditis elegans as a host for the study of host-pathogen interactions. Curr Opin Microbiol, 2002. 5(1): p. 97-101.
106.Hengartner, M.O. and H.R. Horvitz, Programmed cell death in Caenorhabditis elegans. Current opinion in genetics & development, 1994. 4(4): p. 581-586.
107.Bargmann, C.I., Neurobiology of the Caenorhabditis elegans genome. Science, 1998. 282(5396): p. 2028-2033.
108.Wang, X., et al., Mechanisms of AIF-mediated apoptotic DNA degradation in Caenorhabditis elegans. Science, 2002. 298(5598): p. 1587-1592.
109.Uccelletti, D., et al., Anti-Pseudomonas activity of frog skin antimicrobial peptides in a Caenorhabditis elegans infection model: a plausible mode of action in vitro and in vivo. Antimicrobial agents and chemotherapy, 2010. 54(9): p. 3853-3860.
110.Tomkiewicz, D., et al., Berberine-INF55 (5-nitro-2-phenylindole) hybrid antimicrobials: effects of varying the relative orientation of the berberine and INF55 components. Antimicrobial agents and chemotherapy, 2010. 54(8): p. 3219-3224.
111.Choi, E.-J., et al., The herbal-derived honokiol and magnolol enhances immune response to infection with methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA). Applied microbiology and biotechnology, 2015. 99(10): p. 4387-4396.
112.King, A.M., et al., Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature, 2014. 510(7506): p. 503.
113.Ewers, C., et al., Avian pathogenic, uropathogenic, and newborn meningitis-causing Escherichia coli: how closely related are they? Int J Med Microbiol, 2007. 297(3): p. 163-76.
114.Yamamoto, S., et al., Detection of urovirulence factors in Escherichia coli by multiplex polymerase chain reaction. FEMS Immunol Med Microbiol, 1995. 12(2): p. 85-90.
115.Johnson, J.R. and A.L. Stell, Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis, 2000. 181(1): p. 261-72.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top