|
參考文獻 [1]Julien, C., Mauger, A., Zaghib, K., Groult, H., Comparative Issues of Cathode Materials for Li-Ion Batteries, Inorganics, 2014, 2 (1), 132-154. [2]Whittingham, M. S., Chemistry of intercalation compounds: Metal guests in chalcogenide hosts, Prog. Solid State Chem., 1978, 12 (1), 41-99. [3]黃可龍、王兆翔、劉素琴, 鋰離子電池原理與技術, 五南圖書出版公司 2010. [4]X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia, X. He, Thermal runaway mechanism of lithium ion battery for electric vehicles: A review, Energy Storage Materials, 2018, 10, 246-267. [5]Wakihara, M., Recent developments in lithium ion batteries, Mater. Sci. Eng., R, 2001, 33 (4), 109-134. [6]Chu, H., Liu, X., Niu, L., Li, C., Gong, Y. Y., Li, S., Sun, C. Q., Microwave-assisted Synthesis of Semiconductor Nanomaterials for Energy Storage, Current Nanoscience, 2016, 12, 000-000. [7]蔡英文、黃炳照, 鋰離子電池陰極材料之研究與發展, 化學 2004, 62 (2), 251-262. [8]B. Xu, D. Qian, Z. Wang, Y. S. Meng, Recent progress in cathode materials research for advanced lithium ion batteries, Materials Science and Engineering: R: Reports, 2012, 73 (5–6), 51-65. [9]Z.-Y. Chen, H.-L. Zhu, S. Ji, R. Fakir, V. Linkov, Influence of carbon sources on electrochemical performances of LiFePO4/C composites, Solid State Ionics, 2008, 179 (27–32), 1810-1815. [10]Padhi, A. K., Nanjundaswamy, K. S., Goodenough, J. B., Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries, J. Electrochem. Soc.,1997, 144 (4), 1188-1194. [11]T. Muraliganth, A. Manthiram, Understanding the Shifts in the Redox Potentials of Olivine LiM1−yMyPO4 (M=Fe, Mn, Co, and Mg) Solid Solution Cathodes, J. Phys. Chem. C, 2010, 114 (36), 15530-15540. [12]K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, LixCoO2 (0[13]H. J. Orman, P. J. Wiseman, Cobalt(III) lithium oxide, CoLiO2: structure refinement by powder neutron diffraction, Acta Crystallogr. Sect. C, 1984, 40 (1), 12-14. [14]Dahn, J.R., Fuller, E.W., Obrovac, M., Sacken, U. von., Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells, Solid State Ionics, 1994, 69 (3–4), 265-270. [15]Feng, X.Y., Shen, C., Fang, X., Chen, C.H., Synthesis of LiNi0.5Mn1.5O4 by solid-state reaction with improved electrochemical performance, J. Alloys Compd., 2011, 509 (8), 3623-3626. [16]Julien, C., Mauger, A., Zaghib, K., Groult, H., Comparative Issues of Cathode Materials for Li-Ion Batteries, Inorganics, 2014, 2 (1), 132-154. [17]李治宏、龔丹誠, 鋰電池隔離膜發展趨勢與近況, 工業材料, 2015, 339, 96-103. [18]K. Liu, Y. Liu, D. Lin, A. Pei, Y. Cui, Materials for lithium-ion battery safety, Science Advances, 2018, 4, eaas9820. [19]莊全超、武山、劉文元、陸兆達, 鋰離子電池有機電解液研究, 電化學 2001, 7 (4), 403-412 [20]Rauh, R.D., Brummer, S.B., The effect of additives on lithium cycling in propylene carbonate, Electrochimica Acta, 1977, 22 (1), 75-83 [21]Plakhotnyk, A. V., Ernst, L., Schmutzler, R., Hydrolysis in the system LiPF6—propylene carbonate—dimethyl carbonate—H2O, J. Fluorine Chem., 2005, 126 (1), 27-31. [22]Lux, S. F., Lucas, I. T., Pollak, E., Passerini, S., Winter, M., Kostecki, R., The mechanism of HF formation in LiPF6 based organic carbonate electrolytes. Electrochem. Commun., 2012, 14 (1), 47-50. [23]K. Xu, Electrolytes and Interphases in Li-Ion Batteries and Beyond, Chem. Rev., 2014, 114 (23), 11503-11618. [24]Petibon, R., Harlow, J., Le, D. B., Dahn, J. R., The use of ethyl acetate and methyl propanoate in combination with vinylene carbonate as ethylene carbonate-free solvent blends for electrolytes in Li-ion batteries. Electrochim. Acta, 2015, 154, 227-234. [25]R. Wang, X. Li, Z. Wang, H. Guo, M. Su, T. Hou, Comparative study of lithium bis(oxalato)borate and lithium bis(fluorosulfonyl)imide on lithium manganese oxide spinel lithium-ion batteries. J. Alloys Compd., 2015, 624, 74-84. [26]J.H. Jeong, M.S. Kim, Y.H. Kim, K.C. Roh, K.B. Kim, High-rate Li4Ti5O12/N-doped reduced graphene oxide composite using cyanamide both as nanospacer and a nitrogen doping source, J. Power Sources, 2016, 336, 376-384. [27]G. Liu, H. Wang, G. Liu, Z. Yang, B. Jin, Q. Jiang, Synthesis and electrochemical performance of high-rate dual-phase Li4Ti5O12–TiO2 nanocrystallines for Li-ion batteries, Electrochim. Acta, 2013, 87, 218-223. [28]T. Yi, S. Yang, Y. Zhu, M. Ye, Y. Xie, R. Zhu, Enhanced rate performance of Li4Ti5O12 anode material by ethanol-assisted hydrothermal synthesis for lithium-ion battery, Ceram. Int., 2014, 40(7), 9853-9858. [29]趙傑, 材料科學基礎, 大連理工大學出版社, 2010, 45. [30]C.A. Antonio, K. Tetyana, P.G. Jesús, K. Andriy, Extinction Phenomenon in X-Ray Diffraction Technique for Texture Analysis, Ingeniería, Investigación y Tecnología, 2014, 15(2), 241-252. [31]D.J. Gardiner, P.R. Graves, Practical Raman spectroscopy, Springer-Verlag, 1989. [32]J. Goldstein, D.E. Newbury, D.C. Joy, C.E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, J.R. Michael, Scanning Electron Microscopy and X-Ray Microanalysis, 2003. [33]R.M. Wightman, Probing Cellular Chemistry in Biological Systems with Microelectrodes, Science, 2006, 311(5767), 1570–1574. [34]R.S. Nicholson, Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics, Anal. Chem., 1965, 37, 1351–1355. [35]廖世傑、林正榮、鄭佳容, 快速充電鋰電池富及材料技術, 工業材料雜誌, 2009, 28, 12-13. [36]W. Yao, W. Zhuang, X. Ji, J. Chen, X. Lu, C. Wang, Solid-state synthesis of Li4Ti5O12 whiskers from TiO2-B, Mater. Res. Bull., 2016(75), 204-210. [37]S.Y. Yin, L. Song, X.Y. Wang, M.F. Zhang, K.L. Zhang, Y.X. Zhang, Synthesis of spinel Li4Ti5O12 anode material by a modified rheological phase reaction, Electrochim. Acta, 2009, 54(24), 5629-5633. [38]J.A. Dawson, J.Robertson, Improved Calculation of Li and Na Intercalation Properties in Anatase, Rutile, and TiO2(B), J. Phys. Chem., 2016, 120(40), 22910-22917. [39]M.L. Sushko, K.M. Rosso, J. Liu, Mechanism of Li+/Electron Conductivity in Rutile and Anatase TiO2 Nanoparticles, J. Phys. Chem., 2010, 114(47), 20277-20283. [40]D.O. Scanlon, C.W. Dunnill, J. Buckeridge, S.A. Shevlin, A.J. Logsdail, S.M. Woodley, C.R.A. Catlow, M.J. Powell, R.G. Palgrave, I.P. Parkin, G.W. Watson, T.W. Keal, P. Sherwood, A. Walsh, A.A. Sokol, Band alignment of rutile and anatase TiO2, Nat. Mater., 2013(12), 798-801. [41]F. Li, M. Zeng, J. Li, H. Xu, Preparation and Electrochemical Performance of Mg-doped Li4Ti5O12 Nanoparticles as Anode Materials for Lithium-Ion Batteries, Int. J. Electrochem. Sci., 2015(10), 10445 – 10453. [42]S. Goriparti, E. Miele, F. D. Angelis, E. D. Fabrizio, R. P. Zaccaria, C. Capiglia, Review on recent progress of nanostructured anode materials for Li-ion batteries, J. Power Sources, 2014, 257, 421-443. [43]D. Wang, X. Wu, Y. Zhang, J. Wang, P. Yan, C. Zhang, D. He, The influence of the TiO2 particle size on the properties of Li4Ti5O12 anode material for lithium-ion battery, Ceramics International, 2014, 40(2), 3799-3804. [44]H. Wu, Ch.V. Rao, B. Rambabu, Electrochemical performance of LiNi0.5Mn1.5O4 prepared by improved solid state method as cathode in hybrid supercapacitor, Mater. Chem. Phys., 2009, 116, 532-535. [45]D. Li, A. Ito, K. Kobayakawa, H. Noguchi, Y. Sato, Electrochemical characteristics of LiNi0.5Mn1.5O4 prepared by spray drying and post-annealing, Electrochim. Acta, 2007, 52, 1919-1924. [46]F. Rahmawati, W. Lestari, A. Purwanto, Lithium Titanate (LTO) Synthesis Through Solid State Reaction and Its Performance for LiFePO4/LTO Battery, J. Math. and Fundamental Sciences, 2018, 50, 290-302. [47]L. Deng, W.H. Yang, S.X. Zhou, J.T. Chen, Effect of carbon nanotubes addition on electrochemical performance and thermal stability of Li4Ti5O12 anode in commercial LiMn2O4/Li4Ti5O12 full-cell, Chin. Chem. Lett., 2015, 26, 1529-1534. [48]G. Xu, P. Han, S. Dong, H. Liu, G. Cui, L. Chen, Li4Ti5O12-based energy conversion and storage systems: Status and prospects, Coord. Chem. Rev., 2017, 343, 139–184 [49]Groat L. A., Chakoumakos B. C., Brouwer D. H., Hoffman C. M., Fyfe C. A., Morell. H., Schultz A. J., The amblygonite (LiAlPO4F)-montebrasite (LiAlPO4OH) solid solution: A combined powder and single-crystal neutron diffraction and solid-state 6Li MAS, CP MAS, and REDOR NMR study, Am. Mineral., 2003, 88(1), 195-210. [50]Jalem R., Nakayama M., Kasuga T., Lithium ion conduction in tavorite-type LiMXO4F (M–X:Al-P, Mg-S) candidate solid electrolyte materials, Solid State Ionics, 2014, 262, 589–592. [51]J.E. Hong, R.G. Oh, K.S. Ryuz, Li4Ti5O12/Co3O4 Composite for Improved Performance in Lithium-Ion Batteries, J. Electrochem. Soc., 2015, 162(10), A1978-A1983. [52]Q. Huang, Z. Yang, J. Mao, Mechanisms of the decrease in low-temperature electrochemical performance of Li4Ti5O12-based anode materials, Sci Rep., 2017, 7(1):15292. [53]楊建文、颜波、葉璟、李雪, 鋰鈦氧嵌鋰負極材料的研究進展, 稀有金屬材料與工程, 2015, 44, 1. [54]Lin, C., Fan, X., Xin, Y., Cheng, F., Lai, M. O., Zhou, H., Lu, L., Li4Ti5O12-based anode materials with low working potentials, high rate capabilities and high cyclability for high-power lithium-ion batteries: a synergistic effect of doping, incorporating a conductive phase and reducing the particle size, J. Mater. Chem. A, 2014, 2, 9982-9993. [55]Zhao, B., Ran, R., Liu, M., Shao, Z., A comprehensive review of Li4Ti5O12-based electrodes for lithium-ion batteries: The latest advancements and future perspectives, Mater. Sci. Eng., R, 2015, 98, 1-71. [56]Yi, T., Liu, H., Zhu, Y. R., Jiang, L.J., Xie, Y., Zhu, R.S., Improving the high rate performance of Li4Ti5O12 through divalent zinc substitution, J. Power Sources, 2012, 215, 258-265. [57]Longjiao, C., Shaohua, L., Fang, L., Keshi, Shuo, G. B., Xiwei, Q., Aimin, H., Yuchun, Z., Zhiyuan, W., Electrochemical Performance of Li4Ti5O12 Synthesized by a PVP Combustion Assisted Sol-gel Method, Rare Metal Mater. Eng., 2015, 44 (12), 2996-2999. [58]Zhu, Y. R., Wang, P., Yi, T. F., Deng, L., Xie, Y., Improved high-rate performance of Li4Ti5O12/carbon nanotube nanocomposite anode for lithium-ion batteries, Solid State Ionics, 2015, 276, 84-89. [59]Wei, A., Li, W., Zhang, L., Ren, B., Bai, X., Liu, Z., Enhanced electrochemical performance of a LTO/N-doped graphene composite as an anode material for Li-ion batteries, Solid State Ionics, 2017, 311, 98-104. [60]Seo, A., Lee, C. R., Kim, J. K., Zr doping effect with low-cost solid-state reaction method to synthesize submicron Li4Ti5O12 anode material, J. Phys. Chem. Solids, 2017, 108, 25-29. [61]Nandiyanto,A. B. D., Okuyama, K., Progress in developing spray-drying methods for the production of controlled morphology particles: From the nanometer to submicrometer size ranges, Adv. Powder Technol., 2011, 22 (1), 1-19. [62]Wen, S., Li, G., Ren, R., Li, C., Preparation of spherical Li4Ti5O12 anode materials by spray drying, 2015, Mater. Lett., 2015, 148, 130-133. [63]Xu, G., Quan, X., Gao, H., Li, J., Cai, Y., Cheng, X., Guo, L., Facile spray drying route for large scale nitrogen-doped carbon-coated Li4Ti5O12 anode material in lithium-ion batteries, Solid State Ionics, 2017, 304, 40-45. [64]Nitta, N., Wu, F., Lee, J. T., Yushin, G., Li-ion battery materials: present and future, Mater. Today, 2015, 18 (5), 252-264. [65]Kashkooli, A. G., Lui, G., Farhad, S., Lee, D. U., Feng, K., Yu, A., Chen, Z., Nano-particle size effect on the performance of Li4Ti5O12 spinel, Electrochim. Acta, 2016, 196, 33-40. [66]H.G. Jung, J. Kim, B. Scrosati, Y.K. Sun, Micron-sized, carbon-coated Li4Ti5O12 as high power anode material for advanced lithium batteries, J. Power Sources, 2011, 196(18), 7763-7766. [67]G.J. Wang, J. Gao, L.J. Fu, N.H. Zhao, Y.P. Wu, T. Takamura, Preparation and characteristic of carbon-coated Li4Ti5O12 anode material, J. Power Sources, 2007, 174(2), 1109-1112. [68]T. Yuan, X. Yu, R. Cai, Y. Zhou, Z. Shao, Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance, J. Power Sources, 2010, 195(15), 4997-5004. [69]Z. Zhu, F. Cheng, J. Chen, Investigation of effects of carbon coating on the electrochemical performance of Li4Ti5O12/C nanocomposites, J. Mater. Chem.,2013, 9484-9490. [70]S. Huang, Z. Wen, J. Zhang, Z. Gu, X. Xu, Li4Ti5O12/Ag composite as electrode materials for lithium-ion battery, Solid State Ionics, 2006, 177(9), 851-855. [71]Y.R. Zhu, T.F. Yi, H.T. Ma, Y.Q. Ma, L.J. Jiang, R.S. Zhu, Improved electrochemical performance of Ag-modified Li4Ti5O12 anode material in a broad voltage window, J. Chem. Sci, 2014, 126, 17-23. [72]Pohjalainen, E., Rauhala, T., Valkeapää, M., Kallioinen, J., Kallio, T., Effect of Li4Ti5O12 Particle Size on the Performance of Lithium Ion Battery Electrodes at High C-Rates and Low Temperatures, J. Phys. Chem. C, 2015, 119, 2277–2283. [73]Li, W., Chen, M., Jiang, J., Wu, R., Wang, F., Liu, W., Peng, G., Qu, M., Structural and electrochemical characteristics of SiO2 modified Li4Ti5O12 as anode for lithium-ion batteries, J. Alloys Compd., 2015, 637, 476-482. [74]Wei, A., Li, W., Zhang, L., Liu, Z., Enhanced electrochemical performance of La2O3-modified Li4Ti5O12 anode material for Li-ion batteries, IOP Conf. Ser.: Mater. Sci. Eng., 2017, 231. [75]Zheng, J., Xiao, J., Nie, Z., Zhang, J. G., Lattice Mn3+ Behaviors in Li4Ti5O12/LiNi0.5Mn1.5O4 Full Cells, J. Electrochem. Soc., 2013, 160(8). [76]Aldon, L., Kubiak, P., Womes, M., Jumas, J. C., Olivier-Fourcade, J., Tirado, J. L., Corredor, J. I., Vicente, C. P., Chemical and Electrochemical Li-Insertion into the Li4Ti5O12 Spinel, Chem. Mater., 2004, 16 (26), 5721–5725. [77]Baddour-Hadjean, R., Pereira-Ramos, J. P., Raman Microspectrometry Applied to the Study of Electrode Materials for Lithium Batteries, Chem. Rev., 2010, 110 (3), 1278–1319. [78]Yan, G., Fang, H. S., Zhao, H. J., Li, G.S., Yang, Y., Li, L. P., Ball milling-assisted sol–gel route to Li4Ti5O12 and its electrochemical properties, J. Alloys Compd., 2009, 470, 544–547. [79]S. Mao, X. Huang, J. Chang, S. Cui, G. Zhou, J. Chen, One-step, continuous synthesis of a sphericalLi4Ti5O12/graphene composite as an ultra-long cyclelife lithium-ion battery anode, NPG Asia Materials (2015) 7, e224. [80]Y. Ren, P. Lu, X. Huang, S. Zhou, Y. Chen, B. Liu, F. Chu, J. Ding, In-situ synthesis of nano-Li4Ti5O12/C composite as an anode material for Li-ion batteries, Solid State Ionics, 2015, 274, 83-87. [81]J. Wang, H. Zhao, Y. Wen, J. Xie, Q. Xia, T. Zhang, Z. Zeng, X. Du, High performance Li4Ti5O12 material as anode for lithium-ion batteries, Electrochim. Acta, 2013, 113, 679-685 [82]G. Liu, R. Zhang, K. Bao, H. Xie, S. Zheng, J. Guo, G. Liu, Synthesis of nano-Li4Ti5O12 anode material for lithium ion batteries by a biphasic interfacial reaction route, Ceram. Int., 2016, 42(9), 11468-11472 [83]P. Dhaiveegan, H.T. Peng, M. Michalska, Y. Xiao,J.Y. Lin, C.K. Hsieh, Investigation of carbon coating approach on electrochemical performance of Li4Ti5O12/C composite anodes for high-rate lithium-ion batteries, J. Solid State Electrochem., 2018, 22(6), 1851–1861 [84]Z. Li, F. Ding, Y. Zhao, Y. Wang, J. Li, K. Yang, F. Gao, Synthesis and electrochemical performance of Li4Ti5O12 submicrospheres coated with TiN as anode materials for lithium-ion battery, Ceram. Int., 2016, 42(14), 15464-15470 [85]Z. Yu, L. Wang, L. Jiang, Design and synthesis of N-doped graphene sheets loaded with Li4Ti5O12 nanocrystals as advanced anode material for Li-ion batteries, Ceram. Int., 2016, 42(14),16031-16039. [86]K. Bi, S.X. Zhao, C. Huang, C.W. Nan, Improving low-temperature performance of spinel LiNi0.5Mn1.5O4 electrode and LiNi0.5Mn1.5O4/Li4Ti5O12 full-cell by coating solid-state electrolyte Li-Al-Ti-P-O, J. Power Sources, 2018, 389, 240-248. [87]H.F. Xiang, X. Zhang, Q.Y. Jin, C.P. Zhang, C.H. Chen, X.W. Ge, Effect of capacity matchup in the LiNi0.5Mn1.5O4/Li4Ti5O12 cells, J. Power Sources, 2008, 183, 355-360. [88]Y.R. Zhu, P. Wang, T.F. Yi, L. Deng, Y. Xie, Improved high-rate performance of Li4Ti5O12/carbon nanotube nanocomposite anode for lithium-ion batteries, Solid State Ionics, 2015, 276, 84-89 [89]V. Mansfeldova, B. Laskova, H. Krysova, M. Zukalova, L. Kavan, Synthesis of nanostructured TiO2 (anatase) and TiO2(B) in ionic liquids, Catal. Today, 2014, 230, 85-90. [90]M. Lübke, I. Johnson, N. M. Makwana, D. Brett, P. Shearing, Z. Liu, J.A. Darr, High power TiO2 and high capacity Sn-doped TiO2 nanomaterial anodes for lithium-ion batteries, J. Power Sources, 2015, 294, 94-102. [91]Lee, M. L., Li, Y. H., Liao, S. C., Chen, J. M., Yeh, J. W., Shih, H. C., Li4Ti5O12-coated graphite anode materials for lithium-ion batteries, Electrochim. Acta, 2013, 112, 529-534. [92]H.C. Chiu, X. Lu, J. Zhou, L. Gu, J. Reid, R. Gauvin, K. Zaghib, G.P. Demopoulos, Capacity Fade Mechanism of Li4Ti5O12 Nanosheet Anode, Adv. Energy Mater., 2016, 1601825. [93]Yang, K., Deng, Z., Suo, J., Synthesis and characterization of LiFePO4 and LiFePO4/C cathode material from lithium carboxylic acid and Fe3+, J. Power Sources, 2012, 201, 274-279. [94]Shenouda, A. Y., Murali, K. R., Electrochemical properties of doped lithium titanate compounds and their performance in lithium rechargeable batteries, J. Power Sources, 2008, 176 (1), 332-339. [95]C.H. Hamann, A. Hamnett, W. Vielstich, Electrochemistry, 2nd edition: 2, Wiley-VCH, 2007, 169. [96]D.T. Sawyer, A. Sobkowiak, J.L. Roberts, Electrochemistry for Chemists, John Wiley, NY, 1995. [97]I. Nuroniah, S. Priyono, A. Subhan, B. Prihandoko, A. Suhandi, A. Sohib, Synthesis and Characterization of Al-Doped Li4Ti5O12 with Sol Gel Method for Anode Material Lithium Ion Battery, Mater. Today: Proceedings, 2019, 13, 65-70. [98]Q. Li, B. Xue, Y. Tan, J. Sun, K. Wang, The Mg/Zr codoping on morphology and electrochemical properties of Li4Ti5O12 anode materials, Chem. Phys. Lett., 2018, 711, 15-22. [99]X. Xue, H. Yan, Y. Fu, Preparation of pure and metal-doped Li4Ti5O12 composites and their lithium-storage performances for lithium-ion batteries, Solid State Ionics, 2019, 335, 1-6. [100]H. Iuchi, T. Horikawa, K.I. Sotowa, Synthesis and electrochemical performance of a nanocrystalline Li4Ti5O12/C composite for lithium-ion batteries prepared using resorcinol–formaldehyde resins, Electrochim. Acta , 2019, 295, 540-549. [101]M. Landmann, E. Rauls, W.G. Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO2, J. Phys.: Condens. Matter, 2012, 24, 195503.
|