跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/30 04:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張金湘
研究生(外文):JHANG, JIN-SIANG
論文名稱:以溶膠-凝膠法製備磷酸鋰鐵/磷酸鋰釩/碳複合陰極材料 及其電化學分析
論文名稱(外文):Preparation Of LiFePO4/Li3V2(PO4)3/C Composite Cathode Material And Its Electrochemical Performance Analysis
指導教授:楊純誠楊純誠引用關係
指導教授(外文):YANG, CHUN-CHEN 
口試委員:張仁奎施正元
口試委員(外文):CHANG, JENG-KUEISHIH, JENG-YWAN
口試日期:2019-07-12
學位類別:碩士
校院名稱:明志科技大學
系所名稱:化學工程系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:184
中文關鍵詞:溶膠-凝膠法噴霧法複合陰極材料石墨烯+奈米碳管
外文關鍵詞:Sol-Gel MethodSpray-Drying MethodComposite Cathode MaterialGNS+CNT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
本研究以溶膠-凝膠法(Sol-gel method)與噴霧法(Spray-drying method)
製備9LiFePO4.Li3V2(PO4)3/C複合陰極材料(LFP:LVP=9:1 mol比,此處簡稱SG-LFVP-91與SP-LFVP-91),使用硝酸鐵(Fe(NO3)3.9H2O) 、五氧化二釩(V2O5) 、磷酸二氫鋰(LiH2PO4)做為原料,草酸(C2H2O4)、檸檬酸(C6H8O7) 、維他命C (C6H8O6)作為還原劑,以蔗糖(Sucrose)作為碳源並藉由添加氧化石墨烯 (Graphene oxide,簡稱GO) 碳材或石墨烯加奈米碳管(graphene nanosheet + carbon nanotube ,GNS:CNT=2:3,此處簡稱GNS+CNT)碳材,藉以改善此陰極複合材料的電化學特性。所合成材料以X光繞射光譜儀(X-ray diffraction)、顯微拉曼光譜儀(Micro-Raman spectroscopy)、掃瞄式電子顯微儀(SEM)、高解析穿透式電子顯微儀(HR-TEM)、碳/氫/氮/硫元素分析儀(C/H/N/S Elemental analyzer)、Autolab電化學分析儀器等分析所製備之9LiFePO4.Li3V2(PO4)3/C複合陰極材料的物理性質與化學性質、電性,並將此陰極複合材料製作成CR2032鈕扣型半電池,充/放電電壓範圍為2.4~4.3 V之間進行,測試其電化學特性。
由實驗結果得知,SG-LFVP-91複合陰極材料在乾燥溫度60°C及鍛燒溫度750°C時有較佳的電性表現。在0.1C放電速率下,其首次放電克電容量為154.85 mAh g-1,經過30次循環後維持率為94.72%,而在5C與10C時分別可達到115.23 mAh g-1與98.18 mAh g-1。而循環壽命檢測方面,在1C的放電速率下,第一循環放電克電容量可為125.45 mAh g-1,而經過100次充/放電循環後其克電容量維持率為84.14%。當以噴霧法製備SP-LFVP-91/C/GNS+CNT複合陰極材料,以GNS+CNT取代了因為添加氧化石墨烯會產生還原不完全的可能;而為了改善材料的形貌問題,透過二次噴霧造粒解決聚集問題。在0.1C放電速率下,其首次放電克電容量為158.97mAh g-1,經過30次循環後維持率仍未衰退現象,而在5C與10C時分別可達到129.26 mAh g-1與117.82 mAh g-1。而循環壽命檢測方面,在1C的放電速率下,第一循環放電克電容量可高達148.37 mAh g-1,而經過100次充/放電循環後維持率為94.14 %。由實驗結果可以說明,在添加導電碳材,如氧化石墨烯或石墨烯+奈米碳管時,是可以有效改善鋰離子擴散係數 (bare SG-LFVP-91/C樣品的DLi+值為1.61×10-14 cm2 s-1,LFVP添加GO後為5.65×10-14 cm2 s-1,而LFVP添加GNS+CNT為1.26×10-13 cm2 s-1)及交換電流密度(bare SG-LFVP-91/C樣品的jo值為2.72×10-4 A cm-2,而LFVP添加GO的樣品為3.29×10-4 A cm-2,以及LFVP添加GNS+CNT的樣品為6.22×10-4 A cm-2)。

In the present study, 9LiFePO4 (LFP).Li3V2(PO4)3 (LVP)/C composite cathode materials were prepared by sol-gel and spray-drying methods, respectively (i.e., molar ratio of LFP:LVP was 9:1, denoted as SG-LFVP-91 and SP-LFVP-91, respectively). The raw materials were Fe(NO3)3.9H2O, V2O5, LiH2PO4 (as salt precursors), oxalic acid, citric acid, ascorbic acid (as reducing agents), sucrose (as a carbon source), and we also added graphene oxide (denoted as GO), graphene nanosheet and carbon nanotube (i.e., molar ratio of GNS:CNT was 2:3, denoted as GNS+CNT) to improve the electrochemical properties of the as-prepared composite materials. The characterizations of the as-synthesized 9LiFePO4.Li3V2(PO4)3/C composite materials were examined by XRD, micro-Raman, SEM, HR-TEM, EA, and electrochemical impedance spectroscopy (EIS). The CR2032 coin cells were assembled to evaluate the electrochemical performances of the 9LiFePO4.Li3V2(PO4)3/C composite materials. The galvanostatic charge-discharge tests were conducted in a potential range of 2.4-4.3 V vs. Li/Li+ at various C-rates (i.e., 0.1C-10C).
According to the experimental results, it can be found that the SG-LFVP-91 cathode material exhibited a better electrochemical performance under the conditions of the drying and calcination temperatures of 60°C and 750°C, respectively. That is, the initial specific capacity (Qsp) was ~154.85 mAh g-1 with a capacity retention (CR%) of ~94.72% at 0.1C for 30 cycles. The values of Qsp at 5C and 10C were ~115.23 and ~98.18 mAh g-1, respectively. For cycle life tests, the initial Qsp was ~125.45 mAh g-1 at 1C, and the corresponding CR% was ~84.14% after 100 cycles. On the other hand, the SP-LFVP-91 composite material was incorporated with the GNS+CNT, which can significantly solve the incomplete reduction issue from the source of the GO, improved the aggregation of the primary particles via a secondary SP technique. The results showed that the initial Qsp was ~158.97mAh g-1 at 0.1C, and the capacity can remain approximately 100% after 30 cycles. The values of Qsp at 5C and 10C were ~129.26 and ~117.82 mAh g-1, respectively. For long-term cycling tests, the CR% was kept to be ~94.14% at 1C after 100 cycles with the initial Qsp of ~148.37 mAh g-1. Moreover, the addition of conductive carbon materials, such as GO or GNS+CNT, can effectively improve the lithium ion diffusion coefficient (DLi+). The values of DLi+ of the bare SG-LFVP-91, SG-LFVP-91 sample with GO, and SG-LFVP-91 sample with GNS+CNT were ~1.61×10-14, ~5.65×10-14, and ~1.26×10-13 cm2 s-1, respectively and the corresponding exchange current densities (jo) were ~2.72×10-4, ~3.29×10-4, and ~6.22×10-4 A cm-2, respectively.

目錄
明志科技大學碩士學位論文指導教授推薦書
明志科技大學碩士學位論文口試委員審定書 ii
誌謝 iv
摘要 v
Abstract vii
目錄 ix
圖目錄 xii
表目錄 xxii
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 文獻回顧 4
2.1 鋰離子電池工作原理 4
2.1.1 陽極材料 (Anode materials) 5
2.1.2 陰極材料 (Cathode materials) 6
2.1.3 電解液 (Electrolyte) 8
2.1.4 隔離膜 (Separator) 9
2.2 固態電解質介面膜 (Solid Electrolyte Interface,SEI) 10
2.3 磷酸鋰鐵陰極材料的介紹 11
2.4 磷酸鋰釩陰極材料的介紹 12
2.5 磷酸鋰鐵/磷酸鋰釩複合陰極材料的介紹 14
2.6 磷酸鋰鐵釩陰極材料之製備方法 15
2.6.1 溶膠-凝膠法 (Sol-gel method) 15
2.6.2 固相反應法 (Solid-state method) 19
2.6.3 噴霧法 (Spray-drying method) 20
2.6.4 共沉澱法 (Co-precipitation method) 22
2.7 磷酸鋰鐵/釩(9-1)複合陰極材料之改質方法 23
2.7.1 縮小粒徑 23
2.7.2 高能量研磨法 24
第三章 實驗方法 26
3.1 實驗藥品 26
3.2 儀器設備與器材 28
3.3 溶膠-凝膠法製備磷酸鋰釩/碳(SG-LVP/C)陰極複合材料 30
3.4 溶膠-凝膠法製備磷酸鋰鐵/碳(SG-LFP/C) 陰極複合材料 32
3.5 溶膠-凝膠法製備磷酸鋰鐵釩/碳(SG-LFVP-91/C) 陰極複合材料 34
3.6 溶膠-凝膠法製備磷酸鋰鐵釩/碳/氧化石墨烯(SG-LFVP-91/C/GO) 陰極複合材料 36
3.7 噴霧法製備磷酸鋰鐵釩/碳(SP-LFVP-91/C) 陰極複合材料 39
3.8 噴霧法製備磷酸鋰鐵釩/碳/石墨烯+奈米碳管(SP-LFVP-91/C/GNS+CNT) 陰極複合材料 41
3.9 磷酸鋰鐵釩陰極複合材料物/化性之分析 44
3.9.1 材料之物理性質分析 45
3.9.2 材料之電化學性質分析 53
第四章 結果與討論 62
4.1 SG or SP-LFVP-91/C複合陰極材料的物理性質分析 62
4.1.1晶相結構分析(XRD) 62
4.1.2 顯微結構分析(TEM) 73
4.1.3 殘碳包覆性分析(Micro-Raman spectroscopy) 76
4.1.4總殘碳量分析 (EA) 84
4.1.5 表面形態分析(SEM) 86
4.1.6 比表面積分析(BET) 95
4.2 LFVP-91/C複合陰極材料的電化學性質分析 99
4.2.1 電化學交流阻抗測試 99
4.2.2 鋰離子擴散係數測量 108
4.2.3 電化學循環伏安測試 114
4.2.4 電池於低電流速率下充/放電性分析 117
4.2.5 電池於高電流速率下充/放電性分析 136
4.2.6 電池之循環穩定性分析 152
第五章 結論 169
第六章 參考文獻 171




圖目錄
圖1、鋰離子二次電池工作原理示意圖 4
圖2、常見陽極材料分類 6
圖3、常見各種陰極材料分類 8
圖4、各種電解液中溶劑原料結構圖 9
圖5、LIFEPO4充放電示意圖 12
圖6、LI3V2(PO4)3結構圖;(A). 斜六方晶系、(B). 單斜晶系 14
圖7、9LFP.LVP電極在不同速率下充放電曲線圖 18
圖8、LVP/LFP-CHMS-2在0.1C速率下,1.5 - 4.3V之間的第二次充放電曲線 19
圖9、LFP- LVP/C複合材料的初始放電及100次循環電性圖 20
圖10、2LIFEPO4 ·LI3V2(PO4)3/ C複合材料SEM示意圖 21
圖11、2LIFEPO4 ·LI3V2(PO4)3充放電循環圖 21
圖12、LIFEPO4 .LI3V2(PO4)3複合陰極材料SEM分析圖 22
圖13、LIFEPO4 .LI3V2(PO4)3複合陰極材料在不同速率下電性圖 23
圖14、8LIFEPO4·LI3V2(PO4)3 奈米薄片材料的SEM分析圖 24
圖15、8LIFEPO4·LI3V2(PO4)3 在1000次循環後電性圖 24
圖16、(A). 初始循環,(B). 50次循環後之5LFP.LVP/C複合材料的充放電曲線 25
圖17、溶膠-凝膠法製備磷酸鋰釩/碳陰極材料製備流程圖 31
圖18、溶膠-凝膠法製備磷酸鋰鐵/碳陰極材料製備流程圖 33
圖19、溶膠-凝膠法製備磷酸鋰鐵釩/碳陰極材料製備流程圖 35
圖20、溶膠-凝膠法製備磷酸鋰鐵釩/碳/氧化石墨烯陰極材料製備流程圖 38
圖21、噴霧法製備磷酸鋰鐵釩/碳陰極材料製備流程圖 40
圖22、噴霧法製備磷酸鋰鐵釩/碳/石墨烯+奈米碳管陰極材料製備流程圖 42
圖 23、噴霧法製備磷酸鋰鐵釩/碳/石墨烯+奈米碳管陰極材料製備示意圖 43
圖24、磷酸鋰鐵釩複合陰極複合材料物/化性之分析流程圖 44
圖25、XRD (BRUKER D2 PHASER) 硬體設備圖 46
圖26、SEM (HITACHI S-2600H)硬體設備圖 47
圖27、米氏散射 (MIE SCATTERING) 示意圖 47
圖28、DLS(BECKMAN COULTER)硬體設備圖 48
圖29、MICRO-RAMAN(CONFOCAL MICRO-RENISHAW)光譜硬體設備圖 .50
圖30、BET(MICROMERITICS,GEMINI VII)硬體設備圖 51
圖31、HR-TEM(JEOL,JEM2100)硬體設備圖 52
圖32、EA(THERMO FLASH 2000)硬體設備圖 53
圖33、SG OR SP-LIFEPO4.LI3V2(PO4)3/C複合陰極電極製作流程 55
圖34、CR2032鈕扣型半電池封裝示意圖 57
圖35、電性測試儀(METROHM AUTOLAB PGST AT302N)硬體設備圖 59
圖36、AC阻抗分析圖譜示意圖 60
圖37、以溶膠-凝膠法在不同鍛燒溫度下所合成之9LIFEPO4.LI3V2(PO4)3/C陰極複合材料之XRD晶相分析圖 64
圖38、以溶膠-凝膠法在不同乾燥溫度下所合成之SG-LFVP-91/C複合材料之XRD晶相分析圖 66
圖39、以溶膠-凝膠法在不同含碳量下 (20~30 WT. % SUCROSE),所合成之SG-LFVP-91/C/GO複合材料之XRD晶相分析圖 67
圖40、以溶膠-凝膠法在不同還原劑量下 (5~10 WT.%AA),所合成之SG-LFVP-91/C/GO複合材料之XRD晶相分析圖 68
圖41、以噴霧法製備SG-LFVP-91/C以及SP-LFVP-91/C/GNS+CNT複合材料之XRD晶相分析圖 69
圖42、SG-LFVP-91在不同鍛燒溫度下、添加GO以及添加GNS+CNT陰極複合材料之XRD RIETVELD REFINEMENT結果圖 71
圖43、以750°C鍛燒溫度60°C真空乾燥下製備SG-LFVP-91/C複合陰極材料,之TEM表面觀測圖:(A)、(B)、(C)分別在6 KX、80KX、600 KX倍率下 74
圖44、以噴霧法製備含有5 WT. %SUC、5 WT. %AA、1 WT. %GNS+CNT且經過球磨之SP-LFVP-91/C/GNS+CNT複合陰極材料,之TEM表面觀測圖:(A)、(B)、(C)分別在40 KX、500 KX、600 KX倍率下. 75
圖45、以溶膠-凝膠法在不同鍛燒溫度下製備SG-LFVP-91/C複合陰極材料之MICRO-RAMAN分析圖 78
圖46、以溶膠-凝膠法在750°C鍛燒以60°C真空乾燥下製備SG-LFVP-91/C複合陰極材料之MICRO-RAMAN分析圖 79
圖47、添加20 WT. %SUC以製備SG-LFVP-91/C複合陰極材料之MICRO-RAMAN分析圖 80
圖48、添加不同還原劑(AA)量以製備SG-LFVP-91/C複合陰極材料之MICRO- RAMAN分析圖。 81
圖49、以噴霧法製備SP-LFVP-91/C複合陰極材料之MICRO- RAMAN分析圖 82
圖50、以650°C鍛燒溫度下製備SG-LFVP-91/C複合陰極材料之SEM表面觀測圖:(A)、(B)、(C)、(D)分別為1 KX、3KX、5 KX、10 KX倍率下 88
圖51、以700°C鍛燒溫度下製備SG-LFVP-91/C複合陰極材料之SEM表面觀測圖:(A)、(B)、(C)、(D)分別為1 KX、3KX、5 KX、10 KX倍率下 88
圖52、以750°C鍛燒溫度下製備SG-LFVP-91/C複合陰極材料之SEM表面觀測圖:(A)、(B)、(C)、(D)分別為1 KX、3KX、5 KX、10 KX倍率下 89
圖53、以750°C鍛燒溫度60°C真空乾燥下製備SG-LFVP-91/C複合陰極材料之SEM表面觀測圖:(A)、(B)、(C)、(D)分別為1 KX、3KX、5 KX、10 KX倍率下 89
圖54、添加20 WT. %SUC以製備SGLFVP-91/C/GO複合陰極材料之SEM表面觀測圖:(A)、(B)、(C)、(D)分別為1 KX、3KX、5 KX、10 KX倍率下 90
圖55、添加25 WT.%SUC以製備SGLFVP-91/C/GO複合陰極材料之SEM表面觀測圖:(A)、(B)、(C)、(D)分別為1 KX、3KX、5 KX、10 KX倍率下 90
圖56、添加30 WT. %SUC以製備SGLFVP-91/C/GO複合陰極材料之SEM表面觀測圖:(A)、(B)、(C)、(D)分別為1 KX、3KX、5 KX、10 KX倍率下 91
圖57、添加10 WT.% AA以製備SG-LFVP-91/C/GO複合陰極材料之SEM表面觀測圖:(A)、(B)、(C)、(D)分別為1 KX、3KX、5 KX、10 KX倍率下 91
圖58、GNS+CNT水溶液之SEM表面觀測圖:(A)、(B)、(C)、(D)分別為1 KX、3KX、5 KX、10 KX倍率下 92
圖59、以噴霧法製備SP-LFVP-91/C複合陰極材料之SEM表面觀測圖:(A)、(B)、(C)、(D)分別為1 KX、3KX、5 KX、10 KX倍率下 92
圖60、以噴霧法製備含有20 WT. %SUC、5 WT. %AA、0.5 WT. %GNS+CNT之SP-LFVP-91/C/GNS+CNT複合陰極材料之SEM表面觀測圖:(A)、(B)、(C)、(D)分別為1 KX、3KX、5 KX、10 KX倍率下 93
圖61、以噴霧法製備含有20 WT. %SUC、5 WT. %AA、1 WT. %GNS+CNT之SP-LFVP-91/C/GNS+CNT複合陰極材料之SEM表面觀測圖:(A)、(B)、(C)、(D)分別為1 KX、3KX、5 KX、10 KX倍率下 93
圖62、以噴霧法製備含有5 WT. %SUC、5 WT. %AA、1 WT. %GNS+CNT之SP-LFVP-91/C/GNS+CNT複合陰極材料之SEM表面觀測圖:(A)、(B)、(C)、(D)分別為1 KX、3KX、5 KX、10 KX倍率下 94
圖63、以噴霧法製備含有5 WT. %SUC、5 WT. %AA、1 WT. %GNS+CNT且經過球磨之SP-LFVP-91/C/GNS+CNT複合陰極材料之SEM表面觀測圖:(A)、(B)、(C)、(D)分別為1 KX、3KX、5 KX、10 KX倍率下 94
圖64、SG-9LFVP-20%SUC-5%AA-650°C-120°C粉體之氮氣吸脫附曲線圖;小圖為原料粉體之孔隙大小分佈圖(PSD) 96
圖65、SG-9LFVP-20%SUC-5%AA-750°C-120°C粉體之氮氣吸脫附曲線圖;小圖為原料粉體之孔隙大小分佈圖(PSD) 96
圖66、SG-9LFVP-20%SUC-5%AA-750°C-60°C粉體之氮氣吸脫附曲線圖;小圖為原料粉體之孔隙大小分佈圖(PSD) 97
圖67、SP-9LFVP-5%SUC-5%AA-1%GNS-CNT-JUSTNANO粉體之氮氣吸脫附曲線圖;小圖為原料粉體之孔隙大小分佈圖(PSD) 97
圖68、複合式陰極材料的AC EQUIVALENT CIRCUIT MODEL示意圖 100
圖69、SG-LFVP-91陰極複合材料在不同溫度下,於0.1C/0.1C速率下3次充/放電循環後之AC圖 101
圖70、SG-LFVP-91陰極複合材料在不同乾燥溫度下,於0.1C/0.1C速率下3次充/放電循環後之AC圖 102
圖71、SG-LFVP-91陰極複合材料在不同含碳量下,於0.1C/0.1C速率下3次充/放電循環後之AC圖 103
圖72、SG-LFVP-91陰極複合材料在不同還原劑量下,於0.1C/0.1C速率下3次充/放電循環後之AC圖 104
圖73、SP-LFVP-91複合材料在不同碳源量、還原劑量、GNS+CNT量下,於0.1C/0.1C速率下3次充/放電循環後之AC圖 105
圖74、SG -LFVP-91複合材料在750鍛燒溫度、SP-LFVP-91-GNS+CNT以軟體進行擬合之等效電路(EQUIVALENT CIRCUIT MODEL)示意圖. 107
圖75、SG-LFVP-91-20%SUC-5%AA-120°C複合材料在不同溫度下,擴散係數比較圖 110
圖76、SG-LFVP-91-20%SUC-5%AA-120/60°C複合材料在不同乾燥溫度下,擴散係數比較圖 110
圖77、SG-LFVP-91-20/25/30%SUC-5%AA-60°C-750°C複合材料在不同含碳量下,擴散係數比較圖 111
圖78、SG-LFVP-91-25%SUC-5/10%AA-60°C-750°C複合材料在不同還原劑量下,擴散係數比較圖 111
圖79、SP-LFVP-91複合材料在不同碳源量、還原劑量、GNS+CNT量下,,擴散係數比較圖 112
圖80、SG OR SP-LFVP-91/C樣品在0.1 MV S-1速率下,溶膠-凝膠法與噴霧法複合陰極材料之CV分析圖 115
圖81、SG-LFVP-91+20%SUC+5%AA-120°C-650°C複合材料,於0.1C速率下之充/放電電性圖 119
圖82、SG-LFVP-91+20%SUC+5%AA-120°C-700°C複合材料,於0.1C速率下之充/放電電性圖 120
圖83、SG-LFVP-91+20%SUC+5%AA-120°C-750°C複合材料,於0.1C速率下之充/放電電性圖 121
圖84、SG-LFVP-91+20%SUC+5%AA-60°C-750°C複合材料,於0.1C速率下之充/放電電性圖 122
圖85、SG-LFVP-91+20%SUC+5%AA+1%GO-60°C-750°C複合材料,於0.1C速率下之充/放電電性圖 123
圖86、SG-LFVP-91+25%SUC+5%AA+1%GO-60°C-750°C複合材料,於0.1C速率下之充/放電電性圖 124
圖87、SG-LFVP-91+30%SUC+5%AA+1%GO-60°C-750°C複合材料,於0.1C速率下之充/放電電性圖 125
圖88、SG-LFVP-91+25%SUC+10%AA+1%GO-60°C-750°C複合材料,於0.1C速率下之充/放電電性圖 126
圖89、SP-LFVP-91+20%SUC+5%AA複合材料,於0.1C速率下之充/放電電性圖 127
圖90、SP-LFVP-91+20%SUC+5%AA+0.5%GNS+CNT複合材料,於0.1C速率下之充/放電電性圖 128
圖91、SP-LFVP-91+20%SUC+5%AA+1%GNS+CNT複合材料,於0.1C速率下之充/放電電性圖 129
圖92、SP-LFVP-91+5%SUC+5%AA+1%GNS+CNT複合材料,於0.1C速率下之充/放電電性圖 130
圖93、SP-LFVP-91+5%SUC+5%AA+1%GNS+CNT複合材料,於0.1C速率下之充/放電電性圖 131
圖94、SG OR SP-LFVP-91複合材料不同乾燥溫度、不同鍛燒溫度、不同碳源量、不同還原劑量之材料,於0.1C速率下首次充/放電電性比較圖 132
圖95、SG-LFVP-91不同鍛燒溫度,於0.1C速率下經30 CYCLE之充/放電電性比較圖 133
圖96、SG-LFVP-91複合材料於不同乾燥溫度,於0.1C速率下經30 CYCLE之充/放電電性比較圖 133
圖97、SG-LFVP-91複合材料於不同碳源量,於0.1C速率下經30 CYCLE之充/放電電性比較圖 134
圖98、SG-LFVP-91複合材料於不同還原劑量,於0.1C速率下經30 CYCLE之充/放電電性比較圖 134
圖99、SP-LFVP-91複合材料於不同碳源量、還原劑量、GNS+CNT量,於0.1C速率下經30 CYCLE之充/放電電性比較圖 135
圖100、SG-LFVP-91+20%SUC+5%AA-120°C-650°C複合材料,於0.2C-10C速率下之充/放電電性圖 138
圖101、SG-LFVP-91+20%SUC+5%AA-120°C-700°C複合材料,於0.2C-10C速率下之充/放電電性圖 139
圖102、SG-LFVP-91+20%SUC+5%AA-120°C-750°C複合材料,於0.2C-10C速率下之充/放電電性圖 140
圖103、SG-LFVP-91+20%SUC+5%AA-60°C-750°C複合材料,於0.2C-10C速率下之充/放電電性圖 141
圖104、SG-LFVP-91+20%SUC+5%AA+1%GO-60°C-750°C複合材料,於0.2C-10C速率下之充/放電電性圖 142
圖105、SG-LFVP-91+25%SUC+5%AA+1%GO-60°C-750°C複合材料,於0.2C-10C速率下之充/放電電性圖 143
圖106、SG-LFVP-91+30%SUC+5%AA+1%GO-60°C-750°C複合材料,於0.2C-10C速率下之充/放電電性圖 144
圖107、SG-LFVP-91+25%SUC+10%AA-1%GO -60°C-750°C複合材料,於0.2C-10C速率下之充/放電電性圖 145
圖108、SP-LFVP-91+20%SUC+5%AA複合材料,於0.2C-10C速率下之充/放電電性圖 146
圖109、SP-LFVP-9+-20%SUC+5%AA+0.5%GNS+CNT複合材料,於0.2C-10C速率下之充/放電電性圖 147
圖110、SP-LFVP-91+20%SUC+5%AA+1%GNS+CNT複合材料,於0.2C-10C速率下之充/放電電性圖 148
圖111、SP-LFVP-91+5%SUC+5%AA+1%GNS+CNT複合材料,於0.2C-10C速率下之充/放電電性圖 149
圖112、SP-LFVP-91+5%SUC+5%AA+1%GNS+CNT-JUSTNANO複合材料,於0.2C-10C速率下之充/放電電性圖 150
圖113、SG OR SP-LFVP-91複合材料於不同乾燥溫度、鍛燒溫度、碳源量、還原劑量、GNS+CNT量之材料,於0.2C-10C不同速率下之充/放電電性比較圖 151
圖114、SG-LFVP-91-20%SUC-5%AA-120°C-650°C複合材料,於1C/1C速率下之充/放電電性圖 153
圖115、SG-LFVP-91-20%SUC-5%AA-120°C-700°C複合材料,於1C/1C速率下之充/放電電性圖 154
圖116、SG-LFVP-91-20%SUC-5%AA-120°C-750°C複合材料,於1C/1C速率下之充/放電電性圖 155
圖117、SG-LFVP-91-20%SUC-5%AA-60°C-750°C複合材料,於1C/1C速率下之充/放電電性圖 156
圖118、SG-LFVP-91-20%SUC-5%AA-1%GO-60°C-750°C複合材料,於1C/1C速率下之充/放電電性圖 157
圖119、SG-LFVP-91-25%SUC-5%AA-1%GO-60°C-750°C複合材料,於1C/1C速率下之充/放電電性圖 158
圖120、SG-LFVP-91-30%SUC-5%AA-1%GO-60°C-750°C複合材料,於1C/1C速率下之充/放電電性圖 159
圖121、SG-LFVP-91-25%SUC-10%AA-1%GO-60°C-750°C複合材料,於1C/1C速率下之充/放電電性圖 160
圖122、SP-LFVP-91-20%SUC-5%AA複合材料,於1C/1C速率下之充/放電電性圖 161
圖123、SP-LFVP-91-20%SUC-5%AA-0.5%GNS+CNT複合材料,於1C/1C速率下之充/放電電性圖 162
圖124、SP-LFVP-91-20%SUC-5%AA-1%GNS+CNT複合材料,於1C/1C速率下之充/放電電性圖 163
圖125、SP-LFVP-91-5%SUC-5%AA-1%GNS+CNT複合材料,於1C/1C速率下之充/放電電性圖 164
圖126、SP-LFVP-91-5%SUC-5%AA-1%GNS+CNT複合材料,於1C/1C速率下之充/放電電性圖 165
圖127、SG OR SP-LFVP-91複合材料於不同乾燥溫度、鍛燒溫度、碳源量、還原劑量、GNS+CNT量之材料,於1C/1C速率下經100次放充/放電電性比較圖 166


表目錄
表1、常見鋰離子電池陰極材料性質特性之比較 7
表2、有機溶劑之參數介紹 9
表3、磷酸鋰鐵、磷酸鋰釩以及磷酸鋰鐵釩之晶格參數以及體積大小 15
表4、磷酸鋰鐵釩中的磷酸鋰鐵像之晶面大小以及體積大小 17
表5、複合陰極材料製備之藥品 26
表6、極片製作之藥品 27
表7、電解液配製之藥品 27
表8、實驗儀器設備與器材 28
表9、以溶膠-凝膠法在不同鍛燒溫度下所合成之SG-LFVP-91/C複合材料之RIETVELD REFINEMENT模擬分析結果 65
表10、以溶膠-凝膠法在不同乾燥溫度下所合成之SG-LFVP-91/C複合材料之RIETVELD REFINEMENT模擬分析結果 66
表11、以溶膠-凝膠法在不同含碳量下(20~30 WT. % SUCROSE),所合成之SG-LFVP-91/C/GO複合材料之RIETVELD REFINEMENT模擬分析結果 67
表12、以溶膠-凝膠法在不同還原劑量下所合成之SG-LFVP-91/C/GO複合材料之之RIETVELD REFINEMENT模擬分析結果 68
表13、以噴霧法製備SG-LFVP-91/C以及SP-LFVP-91/C/GNS+CNT複合材料之RIETVELD REFINEMENT模擬分析結果 70
表14、SG-LFVP-91在不同鍛燒溫度下、添加GO以及添加GNS+CNT陰極複合材料之XRD RIETVELD REFINEMENT數值分析 72
表15、以溶膠-凝膠法在不同鍛燒溫度下製備SG-LFVP-91/C複合陰極材料之MICRO-RAMAN結果比較 78
表16、以溶膠-凝膠法在750°C鍛燒溫度以60°C真空乾燥下製備SG-LFVP-91/C複合陰極材料之MICRO-RAMAN結果比較 79
表17、添加20 WT.%SUC以製備SG-LFVP-91/C複合陰極材料之MICRO-RAMAN結果比較 80
表18、添加不同還原劑量(AA)以製備SG-LFVP-91/C複合陰極材料之MICRO- RAMAN結果比較 81
表19、以噴霧法製備SP-LFVP-91/C複合陰極材料之MICRO- RAMAN結果比較 83
表20、在不同鍛燒溫度、乾燥溫度、不同含碳量、不同還原劑量下製備磷酸鋰鐵釩陰極複合材料之殘碳量分析 85
表21、以溶膠-凝膠法與噴霧法製備之SG OR SP-LFVP-91陰極材料之表面積分析結果 98
表22、SG-LFVP-91陰極複合材料在不同溫度下,於0.1C/0.1C速率下,經3次充/放電循環後之阻抗分析結果 101
表23、SG-LFVP-91陰極複合材料在不同乾燥溫度下,於0.1C/0.1C速率下,經3次充/放電循環後之阻抗分析結果 102
表24、SG-LFVP-91陰極複合材料在不同含碳量下,於0.1 /0.1C速率下,經3次充/放電循環後之阻抗分析結果 103
表25、SG-LFVP-91陰極複合材料在不同還原劑量下,於0.1C/0.1C速率下,經3次充/放電循環後之阻抗分析結果 104
表26、SP-LFVP-91複合材料在不同碳源量、還原劑量、GNS+CNT量下,於0.1C/0.1C速率下,經3次充/放電循環後之阻抗分析結果 106
表27、SG -LFVP-91複合材料在750鍛燒溫度、SP-LFVP-91-GNS+CNT下之AC參數值 107
表28、SG OR SP-LFVP-91陰極材料之鋰離子擴散係數分析結果 113
表29、溶膠-凝膠法與噴霧法複合陰極材料於第1次循環的電性分析結果 116
表30、SG-LFVP-91+20%SUC+5%AA-120°C-650°C複合材料,於0.1C速率下之充/放電電性表現結果 119
表31、SG-LFVP-91+20%SUC+5%AA-120°C-700°C複合材料,於0.1C速率下之充/放電電性表現結果 120
表32、SG-LFVP-91+20%SUC+5%AA-120°C-750°C複合材料,於0.1C速率下之充/放電電性表現結果 121
表33、SG-LFVP-91+20%SUC+5%AA-60°C-750°C複合材料,於0.1C速率下之充/放電電性表現結果 122
表34、SG-LFVP-91+20%SUC+5%AA+1%GO-60°C-750°C複合材料,於0.1C速率下之充/放電電性表現結果 123
表35、SG-LFVP-91+25%SUC+5%AA+1%GO-60°C-750°C複合材料,於0.1C速率下之充/放電電性表現結果 124
表36、SG-LFVP-91+30%SUC+5%AA+1%GO-60°C-750°C複合材料,於0.1C速率下之充/放電電性表現結果 125
表37、SG-LFVP-91+25%SUC+10%AA+1%GO-60°C-750°C複合材料,於0.1C速率下之充/放電電性表現結果 126
表38、SP-LFVP-91+20%SUC+5%AA複合材料,於0.1C速率下之充/放電電性表現結果 127
表39、SP-LFVP-91+20%SUC+5%AA+0.5%GNS+CNT複合材料,於0.1C速率下之充/放電電性表現結果 128
表40、SP-LFVP-91+20%SUC+5%AA+1%GNS+CNT複合材料,於0.1C速率下之充/放電電性表現結果 129
表41、SP-LFVP-91+5%SUC+5%AA+1%GNS+CNT複合材料,於0.1C速率下之充/放電電性表現結果 130
表42、SP-LFVP-91+5%SUC+5%AA+1%GNS+CNT複合材料,於0.1C速率下之充/放電電性表現結果 131
表43、SG-LFVP-91-20%SUC-5%AA-120°C-650°C複合材料,於0.2C-10C速率下之充/放電電性表現結果 138
表44、SG-LFVP-91-20%SUC-5%AA-120°C-700°C複合材料,於0.2C-10C速率下之充/放電電性表現結果 139
表45、SG-LFVP-91-20%SUC-5%AA-120°C-750°C複合材料,於0.2C-10C速率下之充/放電電性表現結果 140
表46、SG-LFVP-91-20%SUC-5%AA-60°C-750°C複合材料,於0.2C-10C速率下之充/放電電性表現結果 141
表47、SG-LFVP-91-20%SUC-5%AA-1%GO-60°C-750°C複合材料,於0.2C-10C速率下之充/放電電性表現結果 142
表48、SG-LFVP-91-25%SUC-5%AA-1%GO -60°C-750°C複合材料,於0.2C-10C速率下之充/放電電性表現結果 143
表49、SG-LFVP-91-30%SUC-5%AA-1%GO -60°C-750°C複合材料,於0.2C-10C速率下之充/放電電性表現結果 144
表50、SG-LFVP-91-25%SUC-10%AA-1%GO-60°C-750°C複合材料,於0.2C-10C速率下之充/放電電性表現結果 145
表51、SP-LFVP-91-20%SUC-5%AA複合材料,於0.2C-10C速率下之充/放電電性表現結果 146
表52、SP-LFVP-91-20%SUC-5%AA-0.5%GNS+CNT複合材料,於0.2C-10C速率下之充/放電電性表現結果 147
表53、SP-LFVP-91-20%SUC-5%AA-1%GNS+CNT複合材料,於0.2C-10C速率下之充/放電電性表現結果 148
表54、SP-LFVP-91-5%SUC-5%AA-1%GNS+CNT複合材料,於0.2C-10C速率下之充/放電電性表現結果 149
表55、SP-LFVP-91-5%SUC-5%AA-1%GNS+CNT-JUSTNANO複合材料,於0.2C-10C速率下之充/放電電性表現結果 150
表56、SG-LFVP-91-20%SUC-5%AA-120°C-650°C複合材料,於1C/1C速率下之充/放電電性表現結果 153
表57、SG-LFVP-91-20%SUC-5%AA-120°C-700°C複合材料,於1C/1C速率下之充/放電電性表現結果 154
表58、SG-LFVP-91-20%SUC-5%AA-120°C-750°C複合材料,於1C/1C速率下之充/放電電性表現結果 155
表59、SG-LFVP-91-20%SUC-5%AA-60°C-750°C複合材料,於1C/1C速率下之充/放電電性表現結果 156
表60、SG-LFVP-91-20%SUC-5%AA-1%GO-60°C-750°C複合材料,於1C/1C速率下之充/放電電性表現結果 157
表61、SG-LFVP-91-25%SUC-5%AA-1%GO-60°C-750°C複合材料,於1C/1C速率下之充/放電電性表現結果 158
表62、SG-LFVP-91-30%SUC-5%AA-1%GO-60°C-750°C複合材料,於1C/1C速率下之充/放電電性表現結果 159
表63、SG-LFVP-91-25%SUC-10%AA-1%GO-60°C-750°C複合材料,於1C/1C速率下之充/放電電性表現結果 160
表64、SP-LFVP-91-20%SUC-5%AA複合材料,於1C/1C速率下之充/放電電性表現結果 161
表65、SP-LFVP-91-20%SUC-5%AA-0.5%GNS+CNT複合材料,於1C/1C速率下之充/放電電性表現結果 162
表66、SP-LFVP-91-20%SUC-5%AA-1%GNS+CNT複合材料,於1C/1C速率下之充/放電電性表現結果 163
表67、SP-LFVP-91-5%SUC-5%AA-1%GNS+CNT複合材料,於1C/1C速率下之充/放電電性表現結果 164
表68、SP-LFVP-91-5%SUC-5%AA-1%GNS+CNT複合材料,於1C/1C速率下之充/放電電性表現結果 165
表69、SP-LFVP-91與其他文獻比較 167


1.Speirs, J.; Contestabile, M.; Houari, Y.; Gross, R. The future of lithium availability for electric vehicle batteries. Renewable and Sustainable Energy Reviews 2014, 35, 183-193.
2.呂學隆, 鋰電池正極材料技術與產業趨勢(一)-總體市場供需與發展, IEK 電子材料智庫, 2011.09。
3.黃可龍、王兆翔、劉素琴, 鋰離子電池原理與技. 五南圖書出版公司, 2010.
4.Lu, Y.; Shi, J.; Guo, Z.; Tong, Q.; Huang, W.; Li, B. Synthesis of LiFe1−xNixPO4/C composites and their electrochemical performance. J. Power Sources 2009, 194 (2), 786-793.
5.Ni, J.; Han, Y.; Gao, L.; Lu, L. One-pot synthesis of CNT-wired LiCo0.5Mn0.5PO4 nanocomposites. Electrochem. Commun. 2013, 31, 84-87.
6.Ren, M.; Zhou, Z.; Li, Y.; Gao, X. P.; Yan, J. Preparation and electrochemical studies of Fe-doped Li3V2(PO4)3 cathode materials for lithium-ion batteries. J. Power Sources 2006, 162 (2), 1357-1362.
7.Zhang, Y.; Su, Z.; Ding, J. Synthesis and electrochemical properties of Ge-doped Li3V2(PO4)3/C cathode materials for lithium-ion batteries. J. Alloys Compd. 2017, 702, 427-431.
8.Xia, A.; Huang, J.; Tan, G.; Ren, H. Synthesis and electrochemical properties of W-doped Li3V2(PO4)3/C cathode materials for lithium ion batteries. Ceram. Int. 2014, 40 (9, Part B), 14845-14850.
9.Xia, Y.; Zhang, W.; Huang, H.; Gan, Y.; Li, C.; Tao, X. Synthesis and electrochemical properties of Nb-doped Li3V2(PO4)3/C cathode materials for lithium-ion batteries. Mater. Sci. Eng., B 2011, 176 (8), 633-639.
10.Mishra, A.; Mehta, A.; Basu, S.; Malode, S. J.; Shetti, N. P.; Shukla, S. S.; Nadagouda, M. N.; Aminabhavi, T. M. Electrode Materials for Lithium-ion Batteries. Materials Science for Energy Technologies 2018.
11.Guyomard, D.; Tarascon, J. M. The carbon/Li1+xMn2O4 system. Solid State Ionics 1994, 69 (3), 222-237.
12.Kang, S.-H.; Thackeray, M. M. Enhancing the rate capability of high capacity xLi2MnO3·(1−x)LiMO2 (M=Mn, Ni, Co) electrodes by Li–Ni–PO4 treatment. Electrochem. Commun. 2009, 11 (4), 748-751.
13.Shen, X.; Tian, Z.; Fan, R.; Shao, L.; Zhang, D.; Cao, G.; Kou, L.; Bai, Y. Research progress on silicon/carbon composite anode materials for lithium-ion battery. Journal of Energy Chemistry 2018, 27 (4), 1067-1090.
14.Eftekhari, A. Low voltage anode materials for lithium-ion batteries. Energy Storage Materials 2017, 7, 157-180.
15.Qin, F.; Hu, H.; Jiang, Y.; Zhang, K.; Fang, Z.; Lai, Y.; Li, J. Mesoporous MoSe2/C composite as anode material for sodium/lithium ion batteries. J. Electroanal. Chem. 2018, 823, 67-72.
16.Farhat, D.; Maibach, J.; Eriksson, H.; Edström, K.; Lemordant, D.; Ghamouss, F. Towards high-voltage Li-ion batteries: Reversible cycling of graphite anodes and Li-ion batteries in adiponitrile-based electrolytes. Electrochim. Acta 2018, 281, 299-311.
17.Shen, C.-W.; Ko, T.-H.; Liu, C.-H.; Chiu, K.-F.; Leu, H.-J.; Lin, P.-S.; Lin, J.-H. Low temperature process modified MCMB for lithium ion batteries. Solid State Ionics 2014, 268, 282-287.
18.Geng, F.; Yuan, A.; Xu, J. Synthesis and electrochemical performance of a coaxial VGCF@ZnMnO3 nanocomposite as a high-capacity anode material for lithium-ion batteries. Electrochim. Acta 2016, 216, 376-385.
19.Al Hassan, M. R.; Sen, A.; Zaman, T.; Mostari, M. S. Emergence of graphene as a promising anode material for rechargeable batteries: a review. Materials Today Chemistry 2019, 11, 225-243.
20.Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (021.Huang, L.; Guo, R.; Jiang, L.; Quan, X.; Sun, Y.; Chen, G. Cobalt leaching from lithium cobalt oxide in microbial electrolysis cells. Chem. Eng. J. 2013, 220, 72-80.
22.Huang, L.; Yao, B.; Wu, D.; Quan, X. Complete cobalt recovery from lithium cobalt oxide in self-driven microbial fuel cell – Microbial electrolysis cell systems. J. Power Sources 2014, 259, 54-64.
23.Huang, L.; Li, T.; Liu, C.; Quan, X.; Chen, L.; Wang, A.; Chen, G. Synergetic interactions improve cobalt leaching from lithium cobalt oxide in microbial fuel cells. Bioresour. Technol. 2013, 128, 539-546.
24.Zhao, J.; Wang, Z.; Guo, H.; Li, X. Enhanced electrochemical properties of LiNiO2-based cathode materials by nanoscale manganese carbonate treatment. Appl. Surf. Sci. 2017, 403, 426-434.
25.Li, W.; Currie, J. C.; Wolstenholme, J. Influence of morphology on the stability of LiNiO2. J. Power Sources 1997, 68 (2), 565-569.
26.Rodríguez, R. A.; Pérez-Cappe, E. L.; Laffita, Y. M.; Ardanza, A. C.; Salazar, J. S.; Santos, M. Á.; Aguilar Frutis, M. A.; Mohalem, N. D. S.; Alves, O. L. Structural defects in LiMn2O4 induced by gamma radiation and its influence on the Jahn-Teller effect. Solid State Ionics 2018, 324, 77-86.
27.Sun, S.; Matei Ghimbeu, C.; Janot, R.; Le Meins, J.-M.; Cassel, A.; Davoisne, C.; Masquelier, C.; Vix-Guterl, C. One-pot synthesis of LiFePO4–carbon mesoporous composites for Li-ion batteries. Microporous Mesoporous 2014, 198, 175-184.
28.Andersson, A. S.; Thomas, J. O. The source of first-cycle capacity loss in LiFePO4. J. Power Sources 2001, 97-98, 498-502.
29.Chikkannanavar, S. B.; Bernardi, D. M.; Liu, L. A review of blended cathode materials for use in Li-ion batteries. J. Power Sources 2014, 248, 91-100.
30.Wright, D. R.; Garcia-Araez, N.; Owen, J. R. Review on high temperature secondary Li-ion batteries. Energy Procedia 2018, 151, 174-181.
31.Wang, Q.; Zhang, B.; Zhang, J.; Yu, Y.; Hu, P.; Zhang, C.; Ding, G.; Liu, Z.; Zong, C.; Cui, G. Heat-resistant and rigid-flexible coupling glass-fiber nonwoven supported polymer electrolyte for high-performance lithium ion batteries. Electrochim. Acta 2015, 157, 191-198.
32.Zheng, J.; He, Q.; Liu, C.; Yuan, T.; Zhang, S.; Yang, H. Nafion-microporous organic polymer networks composite membranes. Journal of Membrane Science 2015, 476, 571-579.
33.Li, J.; Wang, S.; Xu, J.; Xu, L.; Liu, F.; Tian, X.; Wang, Z. Organic-inorganic composite membrane based on sulfonated poly (arylene ether ketone sulfone) with excellent long-term stability for proton exchange membrane fuel cells. Journal of Membrane Science 2017, 529, 243-251.
34.Kurzweil, P.; Brandt, K., Chapter 3 - Overview of Rechargeable Lithium Battery Systems. In Electrochemical Power Sources: Fundamentals, Systems, and Applications, Garche, J.; Brandt, K., Eds. Elsevier: 2019; pp 47-82.
35.Zhang, W.-J. Structure and performance of LiFePO4 cathode materials: A review. J. Power Sources 2011, 196 (6), 2962-2970.
36.Hu, G.; Gan, Z.; Peng, Z.; Du, K.; Wang, W.; Cao, Y. Enhancing the high rate performance of synergistic hybrid LiFePO4·LiVPO4F/C cathode for lithium ion battery. Solid State Ionics 2019, 335, 142-150.
37.Guan, Y.; Shen, J.; Wei, X.; Zhu, Q.; Zheng, X.; Zhou, S.; Xu, B. LiFePO4/activated carbon/graphene composite with capacitive-battery characteristics for superior high-rate lithium-ion storage. Electrochim. Acta 2019, 294, 148-155.
38.Kulka, A.; Redel, K.; Molenda, J. Platelet-shape LiFePO4/Fe2P/C composite material as a high-rate positive electrode for Li-ion batteries. Solid State Ionics 2019, 335, 113-120.
39.Rui, X.; Yan, Q.; Skyllas-Kazacos, M.; Lim, T. M. Li3V2(PO4)3 cathode materials for lithium-ion batteries: A review. J. Power Sources 2014, 258, 19-38.
40.Patoux, S.; Wurm, C.; Morcrette, M.; Rousse, G.; Masquelier, C. A comparative structural and electrochemical study of monoclinic Li3Fe2(PO4)3 and Li3V2(PO4)3. J. Power Sources 2003, 119-121, 278-284.
41.Moshtev, R.; Zlatilova, P.; Manev, V.; Tagawa, K. Synthesis of LiNiO2 in air atmosphere: X-ray diffraction characterization and electrochemical investigation. J. Power Sources 1996, 62 (1), 59-66.
42.Chen, Y.; Zhang, D.; Bian, X.; Bie, X.; Wang, C.; Du, F.; Jang, M.; Chen, G.; Wei, Y. Characterizations of the electrode/electrolyte interfacial properties of carbon coated Li3V2(PO4)3 cathode material in LiPF6 based electrolyte. Electrochim. Acta 2012, 79, 95-101.
43.Wu, C.; Guo, R.; Cai, G.; Zhang, C.; Yang, Y.; Guo, W.; Liu, Z.; Wan, Y.; Jiang, H. Ti3SiC2 modified Li3V2(PO4)3/C cathode materials with simultaneous improvement of electronic and ionic conductivities for lithium ion batteries. J. Power Sources 2016, 306, 779-790.
44.Hu, Y.; Ma, X.; Guo, P.; Jaeger, F.; Wang, Z. 3D graphene-encapsulated Li3V2(PO4)3 microspheres as a high-performance cathode material for energy storage. J. Alloys Compd. 2017, 723, 873-879.
45.Tang, Y.; Ou, Q.; Zhong, Y.; Liu, H.; Zhong, B.; Guo, X.; Chen, M. Facile synthesis of porous Li3V2(PO4)3/C composite and its superior electrochemical performance for lithium ion battery. Mater. Lett. 2015, 142, 189-192.
46.Yang, C.-C.; Kung, S.-H.; Lin, S. J.; Chien, W.-C. Li3V2(PO4)3/C composite materials synthesized using the hydrothermal method with double-carbon sources. J. Power Sources 2014, 251, 296-304.
47.Zhang, D.; Wang, J.; Dong, K.; Hao, A. First principles investigation on the elastic and electronic properties of Mn, Co, Nb, Mo doped LiFePO4. Computational Materials Science 2018, 155, 410-415.
48.Lv, Y.-j.; Huang, B.; Tan, J.-x.; Jiang, S.-q.; Zhang, S.-f.; Wen, Y.-x. Enhanced low temperature electrochemical performances of LiFePO4/C by V3+ and F− co-doping. Mater. Lett. 2018, 229, 349-352.
49.Zhao, R.-r.; Hung, I. M.; Li, Y.-T.; Chen, H.-y.; Lin, C.-P. Synthesis and properties of Co-doped LiFePO4 as cathode material via a hydrothermal route for lithium-ion batteries. J. Alloys Compd. 2012, 513, 282-288.
50.Hu, G.; Chen, P.; Cao, Y.; Peng, Z.; Ke, D.; Zhang, Z. Enhanced electrochemical performance of LiFePO4 cathode with synergistic modification of Na3V2(PO4)3 and carbon network. Solid State Ionics 2017, 301, 138-145.
51.Mączka, M.; Pasierb, P. Sol-gel synthesis of metal (V, W, Zn) oxide - Carbon nanocomposites as cathode materials for Al-ion batteries. Ceram. Int. 2019, 45 (8), 11041-11049.
52.Zhang, X.; Guo, H.; Li, X.; Wang, Z.; Wu, L. Studies of fast-ion conducting Li3V2(PO4)3 coated LiFePO4 via sol–gel method. Solid State Ionics 2012, 212, 106-111.
53.Li, Y.; Bai, W. Q.; Zhang, Y. D.; Niu, X. Q.; Wang, D. H.; Wang, X. L.; Gu, C. D.; Tu, J. P. Synthesis and electrochemical performance of lithium vanadium phosphate and lithium vanadium oxide composite cathode material for lithium ion batteries. J. Power Sources 2015, 282, 100-108.
54.He, W.; Wei, C.; Zhang, X.; Wang, Y.; Liu, Q.; Shen, J.; Wang, L.; Yue, Y. Li3V2(PO4)3/LiFePO4 composite hollow microspheres for wide voltage lithium ion batteries. Electrochim. Acta 2016, 219, 682-692.
55.Lim, C. H.; Jung, Y. H.; Yeom, S. J.; Lee, H.-W.; Kim, D. K. Encapsulation of Lithium Vanadium Phosphate in Reduced Graphene Oxide for a Lithium-ion Battery Cathode with Stable Elevated Temperature Performance. Electrochim. Acta 2017, 253, 208-217.
56.Cheng, W.; Wang, L.; Sun, Z.; Wang, Z.; Zhang, Q.; Lv, D.; Ren, W.; Bian, L.; Xu, J.; Chang, A. Preparation and characterization of LiFePO4·xLi3V2(PO4)3 composites by two-step solid-state reaction method for lithium-ion batteries. Mater. Lett. 2017, 198, 172-175.
57.Liu, L.; Xiao, W.; Chen, M.; Chen, H.; Cui, Y.; Zeng, G.; Chen, Y.; Ke, X.; Guo, Z.; Shi, Z.; Zhang, H.; Chou, S. Improved rate and cycle performance of nano-sized 5LiFePO4·Li3V2(PO4)3/C via high-energy ball milling assisted carbothermal reduction. J. Alloys Compd. 2017, 719, 281-287.
58.Guo, Y.; Huang, Y.; Jia, D.; Wang, X.; Sharma, N.; Guo, Z.; Tang, X. Preparation and electrochemical properties of high-capacity LiFePO4–Li3V2(PO4)3/C composite for lithium-ion batteries. J. Power Sources 2014, 246, 912-917.
59.Guan, X.-m.; Li, G.-j.; Li, C.-y.; Ren, R.-m. Synthesis of porous nano/micro structured LiFePO4/C cathode materials for lithium-ion batteries by spray-drying method. Transactions of Nonferrous Metals Society of China 2017, 27 (1), 141-147.
60.Zhang, J.-f.; Shen, C.; Zhang, B.; Zheng, J.-c.; Peng, C.-l.; Wang, X.-w.; Yuan, X.-b.; Li, H.; Chen, G.-m. Synthesis and performances of 2LiFePO4·Li3V2(PO4)3/C cathode materials via spray drying method with double carbon sources. J. Power Sources 2014, 267, 227-234.
61.Ma, P.; Hu, P.; Liu, Z.; Xia, J.; Xia, D.; Chen, Y.; Liu, Z.; Lu, Z. Structural and electrochemical characterization of 0.7LiFePO4·0.3Li3V2(PO4)3/C cathode materials using PEG and glucose as carbon sources. Electrochim. Acta 2013, 106, 187-194.
62.Zhang, B.; Zheng, J.-c. Synthesis of Li3V2(PO4)3/C with high tap-density and high-rate performance by spray drying and liquid nitrogen quenching method. Electrochim. Acta 2012, 67, 55-61.
63.Zheng, J.-c.; Li, X.-h.; Wang, Z.-x.; Niu, S.-s.; Liu, D.-r.; Wu, L.; Li, L.-j.; Li, J.-h.; Guo, H.-j. Novel synthesis of LiFePO4–Li3V2(PO4)3 composite cathode material by aqueous precipitation and lithiation. J. Power Sources 2010, 195 (9), 2935-2938.
64.Liang, S.; Cao, X.; Wang, Y.; Hu, Y.; Pan, A.; Cao, G. Uniform 8LiFePO4·Li3V2(PO4)3/C nanoflakes for high-performance Li-ion batteries. Nano Energy 2016, 22, 48-58.
65.Yang, X.; Hu, Z.; Liang, J. Effects of sodium and vanadium co-doping on the structure and electrochemical performance of LiFePO4/C cathode material for lithium-ion batteries. Ceram. Int. 2015, 41 (2, Part B), 2863-2868.
66.Chen, M.; Shao, L.-L.; Yang, H.-B.; Ren, T.-Z.; Du, G.; Yuan, Z.-Y. Vanadium-doping of LiFePO4/carbon composite cathode materials synthesized with organophosphorus source. Electrochim. Acta 2015, 167, 278-286.
67.Jiang, J.; Tan, G.; Peng, S.; Qian, D.; Liu, J.; Luo, D.; Liu, Y. Electrochemical performance of carbon-coated Li3V2(PO4)3 as a cathode material for asymmetric hybrid capacitors. Electrochim. Acta 2013, 107, 59-65.
68.Zhang, C.; Santosh, M. Coupled laser Raman spectroscopy and carbon stable isotopes of graphite from the khondalite belt of Kerala, southern India. Lithos 2019, 334-335, 245-253.
69.Liao, Y.; Li, C.; Lou, X.; Hu, X.; Ning, Y.; Yuan, F.; Chen, B.; Shen, M.; Hu, B. Carbon-coated Li3V2(PO4)3 derived from metal-organic framework as cathode for lithium-ion batteries with high stability. Electrochim. Acta 2018, 271, 608-616.
70.Wang, J.; Gu, Y.-J.; Kong, W.-L.; Liu, H.-Q.; Chen, Y.-B.; Liu, W. Effect of carbon coating on the crystal orientation and electrochemical performance of nanocrystalline LiFePO4. Solid State Ionics 2018, 327, 11-17.
71.Zhang, S.; Gu, Q.; Tan, S.; Zhao, L. Improved electrochemical properties of the Li3V2(PO4)3 cathode material synthesized from a V(III) precursor. J. Alloys Compd. 2019, 802, 583-590.
72.Jiang, S. Fabrication and characterization of plate-like Li3V2(PO4)3@C as cathode material for energy storage. Solid State Ionics 2018, 325, 128-132.
73.Wang, X.; Dong, S.; Wang, H. Three-dimensional CNTs wrapped Li3V2(PO4)3 microspheres cathode with high-rate capability and cycling stability for Li-ion batteries. Solid State Ionics 2017, 309, 146-151.
74.I, M. J.; M, V.; P, C.; N, B. Augmentation of graphite purity from mineral resources and enhancing % graphitization using microwave irradiation: XRD and Raman studies. Diamond Relat. Mater. 2018, 88, 129-136.
75.Rantitsch, G.; Lämmerer, W.; Fisslthaler, E.; Mitsche, S.; Kaltenböck, H. On the discrimination of semi-graphite and graphite by Raman spectroscopy. International Journal of Coal Geology 2016, 159, 48-56.
76.Cui, K.; Hu, S.; Li, Y. Nitrogen-doped graphene nanosheets decorated Li3V2(PO4)3/C nanocrystals as high-rate and ultralong cycle-life cathode for lithium-ion batteries. Electrochim. Acta 2016, 210, 45-52.
77.Hu, Y.; Xing, Y.; Zhao, J. Design and synthesis of nano-sized Li3V2(PO4)3 particles embedded in boron-doped graphene sheets for lithium-ion batteries. Solid State Ionics 2017, 304, 46-50.
78.Yan, J.; Wang, P.; Fang, H.; Wang, L.-X.; Li, L.; Gao, H.-L.; Wang, L.-Z.; Zhang, L.-S.; Song, Y.-H.; Tang, Z.-Y. Enhanced rate performance of Li3V2(PO4)3/C cathode by an improved rheological phase assisted microwave method. Mater. Res. Bull. 2018, 106, 250-256.
79.Liang, S.; Hu, J.; Zhang, Y.; Wang, Y.; Cao, X.; Pan, A. Facile synthesis of sandwich-structured Li3V2(PO4)3/carbon composite as cathodes for high performance lithium-ion batteries. J. Alloys Compd. 2016, 683, 178-185.
80.Sun, M.; Han, X.; Chen, S. Nano-Li3V2(PO4)3@C particles embedded in reduced graphene oxide sheets as cathode materials for high-performance lithium-ion batteries. Solid State Ionics 2018, 323, 166-171.
81.Liu, H. N.; Cong, X.; Lin, M. L.; Tan, P. H. The intrinsic temperature-dependent Raman spectra of graphite in the temperature range from 4K to 1000K. Carbon 2019, 152, 451-458.
82.Sørensen, D. R.; Mathiesen, J. K.; Ravnsbæk, D. B. Dynamic charge-discharge phase transitions in Li3V2(PO4)3 cathodes. J. Power Sources 2018, 396, 437-443.
83.Pankin, I. A.; Polozhentsev, O. E.; Soldatov, M. A.; Bugaev, A. L.; Tsaturyan, A.; Lomachenko, K. A.; Guda, A. A.; Budnyk, A. P.; Lamberti, C.; Soldatov, A. V. Investigation of the nanoscale two-component ZnS-ZnO heterostructures by means of HR-TEM and X-ray based analysis. J. Solid State Chem. 2018, 262, 264-272.
84.Vives Díaz, N. E.; Hosmani, S. S.; Schacherl, R. E.; Mittemeijer, E. J. Nitride precipitation and coarsening in Fe–2.23at.% V alloys: XRD and (HR)TEM study of coherent and incoherent diffraction effects caused by misfitting nitride precipitates in a ferrite matrix. Acta Materialia 2008, 56 (16), 4137-4149.
85.Gupta, R.; Medwal, R.; Annapoorni, S. Direct evidence of chemical ordering in the FePt nanostructured alloy by HR-TEM. Superlattices Microstruct. 2015, 83, 459-465.
86.Jin, B.; Jin, E. M.; Park, K.-H.; Gu, H.-B. Electrochemical properties of LiFePO4-multiwalled carbon nanotubes composite cathode materials for lithium polymer battery. Electrochem. Commun. 2008, 10 (10), 1537-1540.
87.Yang, K.; Deng, Z.; Suo, J. Synthesis and characterization of LiFePO4 and LiFePO4/C cathode material from lithium carboxylic acid and Fe3+. J. Power Sources 2012, 201, 274-279.
88.Shenouda, A. Y.; Murali, K. R. Electrochemical properties of doped lithium titanate compounds and their performance in lithium rechargeable batteries. J. Power Sources 2008, 176 (1), 332-339.
89.Bini, M.; Ferrari, S.; Capsoni, D.; Massarotti, V. Mn influence on the electrochemical behaviour of Li3V2(PO4)3 cathode material. Electrochim. Acta 2011, 56 (6), 2648-2655.
90.Ivanishchev, A. V.; Ushakov, A. V.; Ivanishcheva, I. A.; Churikov, A. V.; Mironov, A. V.; Fedotov, S. S.; Khasanova, N. R.; Antipov, E. V. Structural and electrochemical study of fast Li diffusion in Li3V2(PO4)3-based electrode material. Electrochim. Acta 2017, 230, 479-491.
91.Huang, B.; Zheng, X.; Fan, X.; Song, G.; Lu, M. Enhanced rate performance of nano–micro structured LiFePO4/C by improved process for high-power Li-ion batteries. Electrochim. Acta 2011, 56 (13), 4865-4868.
92.Wang, X.; Dong, S.; Wang, H. Design and fabrication of N-doped graphene decorated LiFePO4@C composite as a potential cathode for electrochemical energy storage. Ceram. Int. 2018, 44 (1), 464-470.
93.Ou, Q.-Z.; Tang, Y.; Zhong, Y.-J.; Guo, X.-D.; Zhong, B.-H.; Heng, L.; Chen, M.-Z. Submicrometer porous Li3V2(PO4)3/C composites with high rate electrochemical performance prepared by sol-gel combustion method. Electrochim. Acta 2014, 137, 489-496.
94.He, R.; Liu, Z.; Zhang, L.; Guo, R.; Yang, S. Electrochemical properties of V and Ti co-doping Li1.02FePO4/C material prepared by solid-state synthesis route. J. Alloys Compd. 2016, 662, 461-466.
95.Delp, S. A.; Borodin, O.; Olguin, M.; Eisner, C. G.; Allen, J. L.; Jow, T. R. Importance of Reduction and Oxidation Stability of High Voltage Electrolytes and Additives. Electrochim. Acta 2016, 209, 498-510.
96.Zhang, B.; Wei, H.; Zhang, J.; Ji, G.; Zhang, J.; Ou, X. Porous spherical LiFePO4·LiMnPO4·Li3V2(PO4)3@C@rGO composites as a high-rate and long-cycle cathode for lithium ion batteries. Ceram. Int. 2019, 45 (11), 13607-13613.
97.Jo, J.; Gim, J.; Song, J.; Kim, Y.; Mathew, V.; Kim, S.; Kim, S.; Park, S.; Baboo, J. P.; Kim, J. One-pot pyro-synthesis of a high energy density LiFePO4-Li3V2(PO4)3 nanocomposite cathode for lithium-ion battery applications. Ceram. Int. 2017, 43 (5), 4288-4294.
98.Rui, X. H.; Jin, Y.; Feng, X. Y.; Zhang, L. C.; Chen, C. H. A comparative study on the low-temperature performance of LiFePO4/C and Li3V2(PO4)3/C cathodes for lithium-ion batteries. J. Power Sources 2011, 196 (4), 2109-2114.
99.Jiang, S.; Wang, Y. Synthesis and characterization of vanadium-doped LiFePO4@C electrode with excellent rate capability for lithium-ion batteries. Solid State Ionics 2019, 335, 97-102.
100.Yang, M.-R.; Ke, W.-h.; Wu, S.-h. Improving electrochemical properties of lithium iron phosphate by addition of vanadium. J. Power Sources 2007, 165 (2), 646-650.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top