|
[1]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. "Electric field effect in atomically thin carbon films." Science 306.5696 (2004): 666-669. [2]J. Lin, D. Teweldebrhan, K Ashraf, G.X. Liu, X. Y. Jing, Z. Yan, R. Li, M. Ozkan, R. K. Lake, A. A. Balandin, C. S. Ozkan. "Gating of Single‐Layer Graphene with Single‐Stranded Deoxyribonucleic Acids." Small 6.10 (2010): 1150-1155. [3]P. Martin. "Graphene in biosensing." Materials today 14.7 (2011): 308-315. [4]HA. Rafiee-Pour, M. Behpour, M. Keshavarz. "A novel label-free electrochemical miRNA biosensor using methylene blue as redox indicator: application to breast cancer biomarker miRNA-21." Biosensors and Bioelectronics 77 (2016): 202-207. [5]J Lu, G Getz, EA Miska, E Alvarez-Saavedra. "MicroRNA expression profiles classify human cancers." Nature 435.7043 (2005): 834. [6]S Peng, X Zeng, X Li, X Peng, L Chen. "Multi-class cancer classification through gene expression profiles: microRNA versus mRNA." Journal of Genetics and Genomics 36.7 (2009): 409-416. [7]S Kumar, R Keerthana, A Pazhanimuthu, P Perumal. "Overexpression of circulating miRNA-21 and miRNA-146a in plasma samples of breast cancer patients." NISCAIR-CSIR, India (2013). [8] S. Asaga, C. Kuo, T. Nguyen, M. Terpenning, A. E. Giuliano, Dave S.B. Hoon "Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer." Clinical chemistry 57.1 (2011): 84-91. [9]WO Lui, N Pourmand, BK Patterson, A Fire. "Patterns of known and novel small RNAs in human cervical cancer." Cancer research 67.13 (2007): 6031-6043. [10]IA Asangani, SAK Rasheed, DA Nikolova, J H; Colburn. "MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer." Oncogene 27.15 (2008): 2128. [11]1.S. Volinia, G. A. Calin, C.G. Liu, S. Ambs, A. Cimmino, F. Petrocca, R. Visone, M. Iorio, C. Roldo, M. Ferracin, R. L. Prueitt, N. Yanaihara, G. Lanza, A. Scarpa, A. Vecchione, M. Negrini, C. C. Harris, C. M. Croce. "A microRNA expression signature of human solid tumors defines cancer gene targets." Proceedings of the National academy of Sciences of the United States of America 103.7 (2006): 2257-2261. [12]F. Meng, R. Henson, H. W. Janek, K. Ghoshal, .S. T. Jacob, T. Patel. "MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer." Gastroenterology 133.2 (2007): 647-658. [13]Geim, Andre K., and Konstantin S. Novoselov. "The rise of graphene." Nature materials 6.3 (2007): 183-191. [14]K. S. Novoselov, A. K. Geim1, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov. "Electric field effect in atomically thin carbon films." Science 306.5696 (2004): 666-669. [15]Y.S. Zhou, W. Xiong, J. Park, M. Qian. "Laser-assisted nanofabrication of carbon nanostructures." Journal of Laser Applications 24.4 (2012): 042007. [16]S. Bae,H. Kim,Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei,H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. Özyilmaz, J.-H. Ahn, B. H. Hong, S. Iijima. "Roll-to-roll production of 30-inch graphene films for transparent electrodes." Nature nanotechnology 5.8 (2010): 574-578. [17]H. Park, S. Chang, J. Jean, J. J. Cheng, P. T. Araujo, M.S. Wang, M. G. Bawendi, M. S. Dresselhaus, V. Bulović, J. Kong, S. Gradečak. "Graphene cathode-based ZnO nanowire hybrid solar cells." Nano letters 13 (2012): 233-239. [18]CY Su, AY Lu, Y Xu, FR Chen, AN Khlobystov, LJ Li. "High-quality thin graphene films from fast electrochemical exfoliation."ACS nano 5 (2011): 2332-2339. [19]CG Núñez, WT Navaraj, EO Polat. "Energy autonomous flexible and transparent tactile skin." Advanced Functional Materials (2017) DOI: 10.1002/adfm.201606287. [20]蘇清源,光連月刊2013.11 no.108 [21]C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, N. Marchenkov, E. H. Conrad, P. N. First, W A. de Heer. "Electronic confinement and coherence in patterned epitaxial graphene." Science 312.5777 (2006): 1191-1196. [22]K.S Kim, Y Zhao, H Jang, S.Y Lee, J.M Kim, K.S Kim. "Large-scale pattern growth of graphene films for stretchable transparent electrodes." Nature 457.7230 (2009): 706. [23]X. Li, W.Cai, J. An, S. Kim, J.Nah, D.X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, R.S. Ruoff. "Large-area synthesis of high-quality and uniform graphene films on copper foils." Science 324.5932 (2009): 1312-1314. [24]S. H. Lee, D. H. Lee, W. J. Lee, S. O.K Kim. "Tailored assembly of carbon nanotubes and graphene." Advanced Functional Materials 21.8 (2011): 1338-1354. [25]K. S. Novoselov, V. I. Fal′ko, L. Colombo,P. R. Gellert, M. G. Schwab, K. Kim, et al. "A roadmap for graphene." Nature 490.7419 (2012): 192-200. [26]X Li, Y Zhu, W Cai, M Borysiak, B Han, D Chen, R. D. Piner, L. Colombo, R. S. Ruoff. "Transfer of large-area graphene films for high-performance transparent conductive electrodes." Nano letters 9.12 (2009): 4359-4363. [27]H. Van Ngoc, Y Qian, S.K Han, D.J Kang. "PMMA-Etching-Free Transfer of Wafer-scale Chemical Vapor Deposition Two-dimensional Atomic Crystal by a Water Soluble Polyvinyl Alcohol Polymer Method." Scientific Reports 6 (2016) DOI: 10.1038/srep33096. [28]D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, K. S. Novoselov,. "Control of graphene's properties by reversible hydrogenation: evidence for graphane." Science 323.5914 (2009): 610-613. [29]S. H. Lee, D. H. Lee, W. J. Lee, S. O. Kim. "Tailored assembly of carbon nanotubes and graphene." Advanced Functional Materials 21.8 (2011): 1338-1354. [30]J.E Kim, T.H Han, S.H. Lee, J.Y. Kim. "Graphene oxide liquid crystals." Angewandte Chemie International Edition 50.13 (2011): 3043-3047. [31]J. O. Sofo, A. S. Chaudhari, G. D. Barber. "Graphane: A two-dimensional hydrocarbon." Physical Review B 75.15 (2007): 153401. [32]A. V. Okotrub, K. S. Babin, A. V. Gusel'nikov, I. P. Asanov, L. G. Bulusheva. "Interaction of NH3 with the reduced surface of graphite fluoride C2F." physica status solidi (b) 247.11‐12 (2010): 3039-3042. [33]C.H. Lucas, A. J. López-Peinado, .J.de D.López-González, M.L.Rojas-Cervantes. "Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization." Carbon 33.11 (1995): 1585-1592. [34]HA Rafiee-Pour, M Behpour, M Keshavarz "A novel label-free electrochemical miRNA biosensor using methylene blue as redox indicator: application to breast cancer biomarker miRNA-21." Biosensors and Bioelectronics 77 (2016): 202-207. [35]B.C. Brodie, "On the atomic weight of graphite." Philosophical Transactions of the Royal Society of London 149 (1859): 249-259. [36]WS Hummers Jr, RE Offeman. "Preparation of graphitic oxide." Journal of the American Chemical Society 80.6 (1958): 1339-1339. [37]Y. Xu, H. Bai, G. Lu, C. Li, G. Shi. "Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets." Journal of the American Chemical Society 130.18 (2008): 5856-5857. [38]Stankovich S, et al. "Graphene-based composite materials." Nature, 442 (2006): 282-286. [39]S. Stankovich, D.A Dikin, G.H Dommett, K.M. Kohlhaas, E.J Zimney, E.A Stach, R.D Piner, S.T Nguyen, R.S Ruoff. "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide." Carbon 45.7 (2007): 1558-1565. [40]C Chi, X Wang, Y Peng, Y Qian, Z Hu "Facile Preparation of Graphene Oxide Membranes for Gas Separation." Chemistry of Materials 28 (2016): 2921-2927. [41]C.Y Zhi, X.D Bai, E.G Wang. "Enhanced field emission from carbon nanotubes by hydrogen plasma treatment." Applied physics letters 81.9 (2002): 1690-1692. [42]Q Chen, L Dai, M Gao, S Huang, A. Mau. "Plasma activation of carbon nanotubes for chemical modification." The Journal of Physical Chemistry B 105.3 (2001): 618-622. [43]D.M Andrada, H.S Vieira, M.M Oliveira, A.P Santos "Dramatic increase in the Raman signal of functional groups on carbon nanotube surfaces." Carbon 56 (2013): 235-242. [44]S. P. Surwade,S.N. Smirnov,I. V. Vlassiouk, R. R. Unocic, G. M. Veith,S. Dai, S. M. Mahurin. "Water desalination using nanoporous single-layer graphene." Nature nanotechnology 10 (2015): 459-464. [45]Lin, Y. C.; Lu, C. C.; Yeh, C. H.; Jin, C. H.; Suenaga, K.; Chiu, P. W., Graphene Annealing: How Clean Can It Be? Nano Lett (2012), 12 (1), 414-419. [46]T Ohchi, S Kobayashi, M Fukasawa, K. Kugimiya, T. Kinoshita, T. Takizawa1, S. Hamaguchi, Y. Kamide, T. Tatsumi. "Reducing damage to Si substrates during gate etching processes." Japanese Journal of Applied Physics 47.7R (2008): 5324. [47]S. Samukawa, M. Hori, S. Rauf, K. Tachibana, P. Bruggeman, G. Kroesen, J C. Whitehead, A. B Murphy, A. F Gutso, S. Starikovskaia. "The 2012 plasma roadmap." Journal of Physics D: Applied Physics 45.25 (2012): 253001. [48]A Felten, B.S Flavel, L Britnell, A Eckmann, P Louette, J.J Pireaux, M. Hirtz, R. Krupke, C. Casiraghi. "Single‐and Double‐Sided Chemical Functionalization of Bilayer Graphene." Small 9.4 (2013): 631-639. [49]A Eckmann, A Felten, A Mishchenko, L Britnell, R. Krupke, K.S Novoselov, C Casiraghi. "Probing the nature of defects in graphene by Raman spectroscopy." Nano letters 12.8 (2012): 3925-3930. [50]LG Cançado, A Jorio, EH Martins Ferreira, F Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari. "Quantifying defects in graphene via Raman spectroscopy at different excitation energies." Nano letters 11.8 (2011): 3190-3196. [51]MM Lucchese, F Stavale, EHM Ferreira, C Vilani. "Quantifying ion-induced defects and Raman relaxation length in graphene." Carbon 48.5 (2010): 1592-1597. [52]Huang, C. H.; Su, C. Y.; Lai, C. S.; Li, Y. C.; Samukawa, S., Ultra-low-damage radical treatment for the highly controllable oxidation of large-scale graphene sheets. Carbon (2014), 73, 244-251. [53]Cheng, H. E.; Wang, Y. Y.; Wu, P. C.; Huang, C. H., Preparation of large-area graphene oxide sheets with a high density of carboxyl groups using O2/H2 low-damage plasma. Surf Coat Tech (2016), 303, 170-175. [54]RC Lee, RL Feinbaum, V Ambros. "The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14." Cell 75 (1993): 843-854. [55]W Wang, J Li, W Zhu, C Gao, RJ Jiang. "MicroRNA-21 and the clinical outcomes of various carcinomas: a systematic review and meta-analysis." BMC cancer 14.1 (2014): 819. [56]GA Calin, C Sevignani, CD Dumitru, T Hyslop, E Noch, S Yendamuri, M Shimizu, S Rattan, F Billrich, M Negrini, C.M Crose. "Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers." Proceedings of the National academy of Sciences of the United States of America 101.9 (2004): 2999-3004. [57]L.P Lim, N.C Lau, P Garrett-Engele, A Grimson. "Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs." Nature 433 (2005): 769. [58]M.E Hatley, D.M Patrick, M.R Garcia, J.A Richardson, R Bassel-Duby, E van Rooij . "Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21." Cancer cell 18.3 (2010): 282-293. [59]S Volinia, GA Calin, CG Liu, S Ambs. "A microRNA expression signature of human solid tumors defines cancer gene targets." Proceedings of the National academy of Sciences of the United States of America 103.7 (2006): 2257-2261. [60]T Kawaguchi, S Komatsu, D Ichikawa, M Tsujiura, H Takeshita, S Hirajima, M Miyamae, W Okajima, T Ohashi, T Imamura, J Kiuchi, H Konishi, A Shiozaki, K Okamoto, E Otsuji. "Circulating MicroRNAs: A Next-Generation Clinical Biomarker for Digestive System Cancers." International Journal of Molecular Sciences 17.(2016): 1459 (15pp). [61]Y Liu, D Yu, C Zeng, Z Miao, L Dai. "Biocompatible graphene oxide-based glucose biosensors." Langmuir 26 (2010): 6158-6160. [62]Low, S. S.; Loh, H. S.; Boey, J. S.; Khiew, P. S.; Chiu, W. S.; Tan, M. T. T., Sensitivity enhancement of graphene/zinc oxide nanocomposite-based electrochemical impedance genosensor for single stranded RNA detection. Biosens Bioelectron (2017), 94, 365-373. [63]Jou, A. F. J.; Chen, Y. J.; Li, Y.; Chang, Y. F.; Lee, J. J.; Liao, A. T.; Ho, J. A. A., Target-Triggered, Dual Amplification Strategy for Sensitive Electrochemical Detection of a Lymphoma-associated MicroRNA. Electrochim Acta (2017), 236, 190-197. [64]Cao, X. T.; Cao, X.; Guo, H. J.; Li, T.; Jie, Y.; Wang, N.; Wang, Z. L., Piezotronic Effect Enhanced Label-Free Detection of DNA Using a Schottky-Contacted ZnO Nanowire Biosensor. Acs Nano (2016), 10 (8), 8038-8044. [65]M Azimzadeh, M Rahaie, N Nasirizadeh, K Ashtari, H Naderi-Manesh. "An electrochemical nanobiosensor for plasma miRNA-155, based on graphene oxide and gold nanorod, for early detection of breast cancer." Biosensors and Bioelectronics 77 (2016): 99-106. [66]Bard, A. J., Faulkner, L. R., Leddy, J., & Zoski, C. G. (1980). Electrochemical methods: fundamentals and applications (Vol. 2). New York: wiley. [67]Azimzadeh, M.; Rahaie, M.; Nasirizadeh, N.; Ashtari, K.; Naderi-Manesh, H., An electrochemical nanobiosensor for plasma miRNA-155, based on graphene oxide and gold nanorod, for early detection of breast cancer. Biosens Bioelectron (2016), 77, 99-106. [68]Huang, C. H.; Lin, C. T.; Wang, J. C.; Chou, C.; Ye, Y. R.; Cheng, B. M.; Lai, C. S., Tunable bandgap energy of fluorinated nanocrystals for flash memory applications produced by low-damage plasma treatment. Nanotechnology (2012), 23 (47).
|