跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/24 22:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莎西卡
研究生(外文):SHIKHA SAKALLEY
論文名稱:高功率脈衝磁控濺射製備p型氧化物及氮化物薄膜之性質及應用
論文名稱(外文):Characterizations and Applications of p-type Oxide and Nitride Thin films deposited by High Power Impulse Magnetron Sputtering
指導教授:陳勝吉
指導教授(外文):CHEN, SHENG-CHI
口試委員:陳勝吉任盛源黃裕清
口試委員(外文):CHEN, SHENG-CHIJEN, SHIEN-UANGHUANG, YU-CHING
口試日期:2019-07-15
學位類別:碩士
校院名稱:明志科技大學
系所名稱:材料工程系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:78
中文關鍵詞:薄膜氮化物氧化物高功率脈衝磁控濺鍍(HiPIMS)光感測Cu2+ 離子感測
外文關鍵詞:Thin filmsNitrideOxideHiPIMSLight SensingCu2+ ion sensing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來p型氧化物及氮化物薄膜在許多領域上的應用快速成長,推動我們開發p型的氧化物及氮化物薄膜的動機;本研究藉由金屬(銅和鎳)靶材並運用高功率脈衝磁控濺鍍系統(HiPIMS)沉積p型氧化物及氮化物薄膜於玻璃和矽基板上。直到現今,較少研究者將其研究聚焦在運用HiPIMS系統沉積具p型導電性之氧化銅及氧化鎳薄膜的應用。並且,目前尚未有研究人員使用HiPIMS系統沉積氮化銅薄膜,這促使我們嘗試這些研究工作。本研究將探討製程參數[包含:氧氣流率比或氮氣流率比及工作週期(duty cycle)]對於薄膜的化學成份、結構、電性質及光學性質的影響。我們發現,變化不同的製程參數,薄膜之導電型態由n型轉變為p型,此乃因為薄膜中存在銅和鎳空位所致。本研究藉由製作異質接面二極體,例如:p-Cu2O/n-ZnO, p-NiO(50%-O2)/n-Cu2O, p-NiO/n-ZnO及 p-Cu3N/n-ITO等等。將這些p型薄膜進一步應用於白光感測,顯示Al/p-Cu2O/n-ZnO, Al/p-NiO(50%-O2)/n-Cu2O及Al/p-NiO/n-ZnO並無明顯地白光感測反應;而Al/p-Cu3N/n-ITO異質接面元件,則觀察到白光感測反應,在-5伏特時,可獲得較高Ion/Ioff比,其值為35.3。對於白光感測應用來說,Al/p-Cu3N/n-ITO異質接面元件較Al/p-Cu2O/n-ZnO, Al/p-NiO(50%-O2)/n-Cu2O及Al/p-NiO/n-ZnO元件為佳,這是因為氮化物比氧化物具有較佳之太陽光吸收及電荷傳輸性質。接著,我們也透過p-Cu3N/n-ITO異質接面元件作Cu2+離子感測,研究發現,在-4伏特時,表現出較高的I5uM/I5nM比,其值為4.2。
Rapidly growing applications of p-oxide and nitride thin films in many disciplines have motivated us to study p-type oxide and nitride films which were deposited on glass and silicon substrates by high power impulse magnetron sputtering (HiPIMS) from a metallic (Cu and Ni) target. Until now, few researchers have focused on the application of p-type conductivity of copper oxide and nickel oxide films deposited by HiPIMS. But nobody worked on the copper nitride films deposited by HiPIMS which, motivated us to work on that. In this study, we examine the effects of the parameters such as oxygen flow rate, or nitrogen flow rate and duty cycle on the chemical composition, phase structure, electrical and optical properties of the films. Meanwhile, varying the parameter the conduction type turns from n-type to p-type because of copper, and nickel vacancies in the film. These p-type films are further used for white light sensing application by fabricating heterojunction diodes such as p-Cu2O/n-ZnO, p-NiO(50%-O2)/n-Cu2O, p-NiO/n-ZnO, and p-Cu3N/n-ITO. We found that heterojunction devices Al/p-Cu2O/n-ZnO, Al/p-NiO(50%-O2)/n-Cu2O, and Al/p-NiO/n-ZnO do not show significant white light sensing. Whereas, in Al/p-Cu3N/n-ITO heterojunction devices, we have observed white light sensing. At -5 Volts the Ion/Ioff a higher of 35.3 is achieved. Al/p-Cu3N/n-ITO heterojunction devices overshadow Al/p-Cu2O/n-ZnO, Al/p-NiO(50%-O2)/n-Cu2O, and Al/p-NiO/n-ZnO heterojunction devices for white light sensing application. As, nitrides shows better solar absorption and electrical transport properties than oxides, as well as the potential for better scalability. Later, we have also worked on the Cu2+ ion sensing over p-Cu3N/n-ITO heterojunction devices and found unique performance showing I5uM/I5nM at -4 Volts was a higher value of 4.2.
Table of Contents

Recommendation Letter from the Thesis Advisor i
Thesis/Dissertation Oral Defense Committee Certification ii
Abstract iii
Acknowledgement v
Table of Contents vi
List of Figures ix
List of Tables xiii
1. Introduction 1
2. Experimental Details 13
2.1. Substrate cleaning process 13
2.2. Deposition using HiPIMS 14
2.3. Thickness measurement 15
2.4. Thin film analysis 16
2.5. Introduction of Light sensing device structure and setup 25
2.6. Introduction of Cu2+ ion sensing device structure and setup 26
3. Results and Discussion 27
 Introduction of Copper Oxide (Cu2O) 27
3.1. Experiment (I) – Cu2O (changing O2 flow rate) 28
• Characterizations 29
a. α-step (deposition rate analysis) and Electron Probe Micro Analyzer (chemical composition analysis) 29
b. Hall Effect Measurement (analyze electrical properties) 30
c. X-Ray Diffraction (analyze phase structure) 31
d. UV-Visible Spectroscopy (analyze optical properties) 32
• White Light Sensing Application 34
 Introduction of Nickel Oxide (NiO) 36
3.2. Experiment (II) – NiO (changing O2 flow rate) 37
• Characterizations 38
a. α-step (deposition rate analysis) and Electron Probe Micro Analyzer (chemical composition analysis) 38
b. Hall Effect Measurement (analyze electrical properties) 39
c. X-Ray Diffraction (analyze phase structure) 40
d. UV-Visible Spectroscopy (analyze optical properties) 41
3.3. Experiment (III) – NiO (changing duty cycle) 42
• Characterizations 43
a. α-step (deposition rate analysis) and Electron Probe Micro Analyzer (chemical composition analysis) 43
b. Hall Effect Measurement (analyze electrical properties) 44
c. X-Ray Diffraction (analyze phase structure) 45
d. UV-Visible Spectroscopy (analyze optical properties) 46
• White Light Sensing Application 47
 Introduction of Copper Nitride (Cu3N) 48
3.4. Experiment (IV) – Cu3N (changing N2 flow rate) 49
• Characterization 50
a. α-step (deposition rate analysis) 50
b. Electron Probe Micro Analyzer (EPMA) (chemical composition analysis) 51
c. X-Ray Diffraction (analyze phase structure) 52
d. UV-Visible Spectroscopy (analyze optical properties) 53
• White Light Sensing Application 54
3.5. Experiment (V) – Cu3N (changing duty cycle) 55
• Characterization 56
a. α-step (deposition rate analysis) 56
b. Electron Probe Micro Analyzer (chemical composition analysis) 57
c. X-Ray Diffraction (analyze phase structure) 58
d. UV-Visible Spectroscopy (analyze optical properties) 59
• White Light Sensing Application 60
a. Photocurrent vs. Time (Photo-response) 61
b. Incident Light intensity vs. Photocurrent 62
c. Stability Test 62
d. Ultraviolet photoelectron spectroscopy (UPS) 63
e. Transmission Electron Microscopy (TEM) 65
• Cu2+ ion sensing 66
• Reproducibility Test 68
4. Conclusions 69
5. Recommendations 70
References 71


List of Figures
Figure 1. 1 Normalized current density according to (a) bending cycles (bending radius of curvature: ~ 7.5 mm, bending strain: ~ 1.33%) and (b) bending strain (inset: optical image of flexible OLEDs with bending test machine). (c) Optical images of flexible OLEDs with a graphene anode wrapped on cylinders with different curvatures [1]. 2
Figure 1. 2 Bone screw and bone plate [3]. 3
Figure 1. 3 Schematic diagram of artificial hip joint and the screw-shaped artificial tooth [3]. 4
Figure 1. 4 Link between material, left, and cluster model structure, right. Atoms represented as black spheres indicate where the cluster model would connect to the remainder of the material [4]. 4
Figure 1. 5 Thin-film tin dioxide gas sensor, showing schematically the principal energy states and the notation [5]. 5
Figure 1. 6 Characteristics of Solar Panel (a) Voc vs. Sunlight Intensity and Vop vs. Sunlight Intensity (b) Voc vs. Photo-Resistor Value [6]. 6
Figure 1. 7 ACEL devices on textile fibres: a Intensity of the emitted light as a function of bias voltage fitted to the Alfrey–Taylor relation between ACEL brightness (L) and voltage (V): L = L0 exp(−b/(V) 1/2), where L0 and b are empirical constants, fitted with the with good agreement (R2 = 0.9982).34,35 Photograph of the device in bending b and torsion c. Change in emission as a function of: d the bending radius and corresponding fibre strain; e repeated bending cycles; f repeated twisting cycles. Two approaches to ACEL arrays and corresponding photos in light and dark conditions: g large pixels (scale bars: left 5 mm; right 20 mm) and h small pixels (scale bars: top 10 mm; bottom 1 mm) [7]. 7
Figure 1. 8 I-V characteristics of the device measured under dark condition and under white light. (b) Photocurrent response of Ag/Cu3N/ITO and (c) Ag/Mn-Cu3N/ITO as a function of time obtained by sudden application and removal of white light at a bias of 1 V. (d) Rise and fall time of Ag/Mn-Cu3N/ITO [24]. 8
Figure 1. 9 (a) Schematic diagram illustrating the photodetector fabrication procedure of the Cu2O/ZnO hybrid nanofilms on SWNT-based PET. (b) I–V characteristics of the Cu2O/ZnO photodetector with an ITO/Cu2O/ZnO/SWNT structure under dark conditions. (c) Time-resolved photoresponse of the device upon four monochromic LED light sources without applied bias. The LED light sources used here are UV (365 nm, 0.3mWcm-2), blue (425 nm, 3.2 mW cm-2), green (525 nm, 6.9 mW cm-2) and red (625 nm, 2.3 mW cm-2). (d) Time-resolved photoresponse of the device upon different intensities of white LED light without applied bias. (e) Enlarged portion of one photocurrent rising and reset under white LED illumination of 28.7 mW cm-2[25]. 9
Figure 1. 10 Experiment on the repeatability and photocurrent response of the H-NiO/IGZO photodetector under the bias of −0.2 V, at the wavelength of 365 nm and with various UV light intensities [26]. 10
Figure 1. 11 Schematic representation of Cu (II) interaction onto TPCBZ/Nafion/GCE electrode. Mechanism of the probable interaction of Cu (II) with TPCBZ with conducting nafion binders embedded onto flat-GCE. (a) Fabricated electrode, (b) π-π inter-molecular bonding interactions between lone-pair of nitrogen (TPCBZ) and Cu (II), and (c) I-V responses of fabricated TPCBZ/Nafion/GCE electrode [56]. 12

Figure 2. 1 Schematic presentation of the Experimental Details. 13
Figure 2. 2 Schematic diagram of HiPIMS [57]. 15
Figure 2. 3 α-step setup (a) operation panel (b) machine. 15
Figure 2. 4 Schematic diagram of α-step film thickness measurement. 16
Figure 2. 5 EPMA equipment setup. 17
Figure 2. 6 XRD device setup. 18
Figure 2. 7 Schematic diagram of the XRD principle [62]. 19
Figure 2. 8 Schematic diagram of UV-Vis penetration [63]. 21
Figure 2. 9 Schematic diagram of Hall Effect measurement [64]. 22
Figure 2. 10 TEM instrument setup. 23
Figure 2. 11 Schematic diagram of the ESCA mechanism. 24
Figure 2. 12 Schematic diagram of heterojucntion devices (a) (p-type Cu3N/ n-type ITO), (b) (p-type NiO/n-type Cu2O/ITO), (c) (p-type Cu2O/n-type ZnO/ITO), (d) (p-type NiO/n-type ZnO/ITO), and (e) Light sensing setup. 25
Figure 2. 13 Schematic diagram of Copper (II) ion sensing setup by heterojucntion devices (p-type Cu3N/n-type ITO). 26

Figure 3. 1 Crystal Structure of Cu2O [70]. 27
Figure 3. 2 Deposition rate and Chemical composition of Cu2O thin films at different oxygen flow rate. 29
Figure 3. 3 Electrical properties of Cu2O thin films by Hall measurement. 30
Figure 3. 4 X-Ray Diffraction pattern showing the phase structure of Cu2O thin films deposited at glass substrate with different oxygen flow rate. 31
Figure 3. 5 Absorbance and Transmittance data of p-NiO (50%-O2)/n-Cu2O (a), (b) and p-Cu2O/n-ZnO (30%-O2) heterojunction (c) and (d) respectively, deposited by varying oxygen flow rates. 33
Figure 3. 6 J–V characteristics of Al/p-Cu2O/n-ZnO(30%-O2) heterojunction device deposited by varying oxygen flow rate of Cu2O in the presence of white light (W) and dark (D) are shown in (a), (b), (c) and (d) respectively. 34
Figure 3. 7 J–V characteristics of Al/p-NiO(50%-O2)/n-Cu2O heterojunction device deposited by varying oxygen flow rate of Cu2O in the presence of white light (W) and dark (D) are shown in (a), (b), (c), (d) and (e) respectively. 35
Figure 3. 8 Crystal Structure of NiO [75]. 36
Figure 3. 9 Chemical composition and deposition rate of NiO thin films at different O2 flow rate. 38
Figure 3. 10 Electrical properties of NiO thin films by Hall measurement. 39
Figure 3. 11 X-Ray Diffraction pattern showing the phase structure of NiO thin films deposited at glass substrate with different oxygen flow rate. 40
Figure 3. 12 Transmittance and reflectance data of NiO thin films prepared at different oxygen flow rate. 41
Figure 3. 13 Chemical composition and deposition rate of NiO thin films at different duty cycle. 43
Figure 3. 14 Electrical properties of NiO thin films by Hall measurement. 44
Figure 3. 15 X-Ray Diffraction pattern showing the phase structure of NiO thin films deposited at glass substrate with different duty cycle. 45
Figure 3. 16 Absorbance and transmittance data of NiO thin films prepared at different duty cycle. 46
Figure 3. 17 I–V characteristics of Al/p-type NiO/n-type ZnO/ITO heterojunction device deposited by varying duty cycle of NiO in the presence of white light (W) and dark (D) are shown in (a), (b), (c) and (d) respectively. 47
Figure 3. 18 Crystal Structure of Cu3N [83]. 48
Figure 3. 19 Deposition rate of Cu3N thin films at different nitrogen flow rate. 50
Figure 3. 20 Chemical composition of Cu3N thin films at different nitrogen flow rate. 51
Figure 3. 21 X-Ray Diffraction pattern showing the phase structure of Cu3N thin films deposited at glass substrate with different nitrogen flow rate. 52
Figure 3. 22 Absorbance and Transmittance data of Cu3N thin films prepared at different nitrogen flow rate. 53
Figure 3. 23 I–V characteristics of p-type Cu3N/n-type ITO diode devices with 40%, 50% and 60% nitrogen flow rate in the presence of white light (W) and dark (D) are shown in (a), (b) and (c) respectively, (d) shows the Ion/Ioff of the devices at -5V for comparison. 54
Figure 3. 24 Deposition rate of Cu3N thin films at different duty cycle. 56
Figure 3. 25 Chemical composition of Cu3N thin films at different duty cycle. 57
Figure 3. 26 X-Ray Diffraction pattern showing (a) the phase structure of Cu3N thin films deposited at glass substrate with different duty cycle (b) max. peak intensity of peak (100) at different duty cycle. 58
Figure 3. 27 (a) Absorbance, (b) Transmittance, (c) (ahv) 0.5 vs (hv) and (d) indirect band gap of Cu3N thin films prepared at different duty cycle. 59
Figure 3. 28 I–V characteristics of p-type Cu3N/n-type ITO diode devices with decreasing duty cycle in the presence of white light (W) and dark (D) are shown in (a)-(h) respectively. 60
Figure 3. 29 (a) Shows the Ion/Ioff of the devices at -5V for comparison and (b) shows linear I-V characteristic of duty cycle = 4.76% p-type Cu3N/n-type ITO diode device. 61
Figure 3. 30 Photocurrent vs. Time response of p-type Cu3N/n-type ITO diode devices deposited at 4.76% of duty cycle. 61
Figure 3. 31 Photocurrent vs. Incident Light Intensity over the p-type Cu3N/n-type ITO diode devices deposited at 4.76% of duty cycle. 62
Figure 3. 32 Resistivity vs. aging time (days) measurement for stability test of the p-type Cu3N/n-type ITO diode devices deposited at 4.76% of duty cycle. 62
Figure 3. 33 (a), (b), (c) showing UPS spectra and (d) energy band gap of Cu3N films deposited by DCMS and HiPIMS (duty cycle 4.76%). 63
Figure 3. 34 Energy band diagram of ITO/Cu3N (DCMS) & Cu3N (HiPIMS)/Al. 65
Figure 3. 35 Cross-sectional TEM images of (a) Cu3N (DCMS)/ITO and (b) Cu3N (HiPIMS)/ITO device. 65
Figure 3. 36 Analysis of Cu2+ cationic responses by measuring the I-V responses of concentration variations (5nM – 5µM) of Cu2+ ions by p-Cu3N/n-ITO with Cu3N films deposited by (a) 100%, (b) 9.09%, (c) 4.76%, (d) 3.22% and (e) 2.34% duty cycle respectively and (f) collective analysis of Cu2+ Cu3N films deposited by different duty cycles. 67
Figure 3. 37 p-type Cu3N/n-type ITO diode devices with decreasing duty cycle shows the I5uM/I5nM of the devices at -4V for comparison. 68
Figure 3. 38 Reproducibility study with analytes using p-Cu3N/n-ITO device with Cu3N films deposited by 4.76% duty cycle sensor. I-V responses of all reproducible signals with different Cu2+ concentrations. 68

Figure 5.1 (a) Schematic diagram illustrating the photodetector fabrication procedure of the Cu2O/ZnO hybrid nanofilms on SWNT-based PET. (b) I– V characteristics of the Cu2O/ZnO photodetector with an ITO/Cu2O/ZnO/SWNT structure under dark conditions. (c) Time-resolved photoresponse of the device upon four monochromic LED light sources without applied bias. The LED light sources used here are UV (365 nm, 0.3 mW cm2 ), blue (425 nm, 3.2 mW cm2 ), green (525 nm, 6.9 mW cm2 ) and red (625 nm, 2.3 mW cm2 ). (d) Time-resolved photoresponse of the device upon different intensities of white LED light without applied bias. (e) Enlarged portion of one photocurrent rising and reset under a white LED illumination of 28.7 mW cm2 [25]. 70


List of Tables

Table 1. 1 Important steps in development of hard coatings [2] 3

Table 3. 1 Sputtering parameters maintained during deposition of Cu2O thin films 28
Table 3. 2 Sputtering parameters maintained during deposition of NiO thin films 37
Table 3. 3 Sputtering parameters maintained during deposition of NiO thin films 42
Table 3. 4 Sputtering parameters maintained during deposition of Cu3N thin films 49
Table 3. 5 Sputtering parameters maintained during deposition of Cu3N thin films 55


[1]Wuu DS, Chen TN, Wu CC, Chiang CC, Chen YP, Horng RH, Juang FS. Transparent barrier coatings for flexible organic light‐emitting diode applications. Chemical vapor deposition. 2006 Apr;12(4):220-224.
[2]Musil J. Hard and superhard nanocomposite coatings. Surface and Coatings Technology. 2000 Mar 1;125(1-3):322-330.
[3]Liu X, Chu PK, Ding C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials science and engineering: R: Reports. 2004 Dec 24;47(3-4):49-121.
[4]Butchosa C, Guiglion P, Zwijnenburg MA. Carbon nitride photocatalysts for water splitting: a computational perspective. The journal of physical chemistry C. 2014 Oct 20;118(43):24833-24842.
[5]Adamian ZN, Abovian HV, Aroutiounian VM. Smoke sensor on the base of Bi2O3 sesquioxide. Sensors and actuators B: chemical. 1996 Sep 1;35(1-3):241-243.
[6]Le AH, Dao VA, Pham DP, Kim S, Dutta S, Nguyen CP, Lee Y, Kim Y, Yi J. Damage to passivation contact in silicon heterojunction solar cells by ITO sputtering under various plasma excitation modes. Solar energy materials and solar cells. 2019 Apr 1;192:36-43.
[7]Alonso ET, Rodrigues DP, Khetani M, Shin DW, De Sanctis A, Joulie H, de Schrijver I, Baldycheva A, Alves H, Neves AI, Russo S. Graphene electronic fibres with touch-sensing and light-emitting functionalities for smart textiles. npj Flexible electronics. 2018 Sep 25;2(1):25.
[8]Sun H, Chen SC, Chen PJ, Ou SL, Liu CY, Xin YQ. p-type conductive NiOx: Cu thin films with high carrier mobility deposited by ion beam assisted deposition. Ceramics international. 2018 Feb 15;44(3):3291-3296.
[9]Sato H, Minami T, Takata S, Yamada T. Transparent conducting p-type NiO thin films prepared by magnetron sputtering. Thin solid films. 1993 Dec 15;236(1-2):27-31.
[10]Sun H, Wen CK, Chen SC, Chuang TH, Yazdi MA, Sanchette F, Billard A. Microstructures and optoelectronic properties of CuxO films deposited by high-power impulse magnetron sputtering. Journal of alloys and compounds. 2016 Dec 15;688:672-678.
[11]Mizuno K, Izaki M, Murase K, Shinagawa T, Chigane M, Inaba M, Tasaka A, Awakura Y. Structural and electrical characterizations of electrodeposited p-type semiconductor Cu2O films. Journal of the electrochemical society. 2005 Apr 1;152(4):C179-182.
[12]Sun H, Yazdi MA, Chen SC, Wen CK, Sanchette F, Billard A. Ag composition gradient CuCr0.93Mg0.07O2/Ag/CuCr0.93Mg0.07O2 coatings with improved p-type optoelectronic performances. Journal of materials science. 2017 Oct 1;52(19):11537-11546.
[13]Mahapatra S, Shivashankar SA. Low‐pressure metal–organic chemical vapor deposition of transparent and p‐type conducting CuCrO2 thin films with high conductivity. Chemical vapor deposition. 2003 Oct 16;9(5):238-240.
[14]Narita T, Tomita K, Yamada S, Kachi T. Quantitative investigation of the lateral diffusion of hydrogen in p-type GaN layers having NPN structures. Applied physics express. 2018 Dec 20;12(1):011006.
[15]Matsuzaki K, Harada K, Kumagai Y, Koshiya S, Kimoto K, Ueda S, Sasase M, Maeda A, Susaki T, Kitano M, Oba F. High‐mobility p‐type and n‐type copper nitride semiconductors by direct nitriding synthesis and in silico doping design. Advanced materials. 2018 Aug;30(31):1801968.
[16]Mendibide C, Steyer P, Millet JP. Formation of a semiconductive surface film on nanomultilayered TiN/CrN coatings and its correlation with corrosion protection of steel. Surface and coatings technology. 2005 Oct 1;200(1-4):109-112.
[17]Yu X, Marks TJ, Facchetti A. Metal oxides for optoelectronic applications. Nature materials. 2016 Apr;15(4):383.
[18]Zakutayev A. Design of nitride semiconductors for solar energy conversion. Journal of materials chemistry A. 2016;4(18):6742-6754.
[19]Yao J, Shao J, Wang Y, Zhao Z, Yang G. Ultra-broadband and high response of the Bi2 Te3–Si heterojunction and its application as a photodetector at room temperature in harsh working environments. Nanoscale. 2015;7(29):12535-12541.
[20]Lin KT, Chen HL, Lai YS, Yu CC. Silicon-based broadband antenna for high responsivity and polarization-insensitive photodetection at telecommunication wavelengths. Nature communications. 2014 Feb 11;5:3288.
[21]Xia F, Mueller T, Lin YM, Valdes-Garcia A, Avouris P. Ultrafast graphene photodetector. Nature nanotechnology. 2009 Dec;4(12):839.
[22]Mueller T, Xia F, Avouris P. Graphene photodetectors for high-speed optical communications. Nature photonics. 2010 May;4(5):297.
[23]Gabor NM, Song JC, Ma Q, Nair NL, Taychatanapat T, Watanabe K, Taniguchi T, Levitov LS, Jarillo-Herrero P. Hot carrier–assisted intrinsic photoresponse in graphene. Science. 2011 Nov 4;334(6056):648-652.
[24]Yu A, Hu R, Liu W, Zhang R, Zhang J, Pu Y, Chu L, Yang J, Li XA. Preparation and characterization of Mn doped copper nitride films with high photocurrent response. Current applied physics. 2018 Nov 1;18(11):1306-1312.
[25]Liu X, Du H, Wang P, Lim TT, Sun XW. A high-performance UV/visible photodetector of Cu2O/ZnO hybrid nanofilms on SWNT-based flexible conducting substrates. Journal of materials chemistry C. 2014;2(44):9536-9542.
[26]Li HK, Chen TP, Hu SG, Li XD, Liu Y, Lee PS, Wang XP, Li HY, Lo GQ. Highly spectrum-selective ultraviolet photodetector based on p-NiO/n-IGZO thin film heterojunction structure. Optics express. 2015 Oct 19;23(21):27683-27689.
[27]Sasada T, Nakakita Y, Takenaka M, Takagi S. Surface orientation dependence of interface properties of GeO2/Ge metal-oxide-semiconductor structures fabricated by thermal oxidation. Journal of applied physics. 2009 Oct 1;106(7):073716.
[28]Suni I, Sigurd D, Ho KT, Nicolet MA. Thermal oxidation of reactively sputtered titanium nitride and hafnium nitride films. Journal of the electrochemical society. 1983 May 1;130(5):1210-1214.
[29]Minegishi K, Koiwai Y, Kikuchi Y, Yano K, Kasuga M, Shimizu A. Growth of p-type zinc oxide films by chemical vapor deposition. Japanese journal of applied physics. 1997 Nov;36(11A):L1453.
[30]Shi Y, Hamsen C, Jia X, Kim KK, Reina A, Hofmann M, Hsu AL, Zhang K, Li H, Juang ZY, Dresselhaus MS. Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano letters. 2010 Sep 2;10(10):4134-4139.
[31]Vispute RD, Wu H, Narayan J. High quality epitaxial aluminum nitride layers on sapphire by pulsed laser deposition. Applied physics letters. 1995 Sep 11;67(11):1549-1551.
[32]Kim H, Pique A, Horwitz JS, Murata H, Kafafi ZH, Gilmore CM, Chrisey DB. Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices. Thin solid films. 2000 Dec 1;377:798-802.
[33]Mieno M, Yoshida T. Preparation of cubic boron nitride films by RF sputtering. Japanese journal of applied physics. 1990 Jul;29(7A):L1175.
[34]Duggan MJ, Saito T, Niwa T. Ionic conductivity of tantalum oxide by rf sputtering. Solid state Ionics. 1993 Jul 1;62(1-2):15-20.
[35]Lind DM, Berry SD, Chern G, Mathias H, Testardi LR. Growth and structural characterization of Fe3O4 and NiO thin films and superlattices grown by oxygen-plasma-assisted molecular-beam epitaxy. Physical review B. 1992 Jan 15;45(4):1838.
[36]Ristić J, Calleja E, Fernández-Garrido S, Cerutti L, Trampert A, Jahn U, Ploog KH. On the mechanisms of spontaneous growth of III-nitride nanocolumns by plasma-assisted molecular beam epitaxy. Journal of crystal growth. 2008 Aug 15;310(18):4035-4045.
[37]Chen TK, Shun TT, Yeh JW, Wong MS. Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering. Surface and coatings technology. 2004 Nov 1;188:193-200.
[38]Shigesato Y, Paine DC. A microstructural study of low resistivity tin-doped indium oxide prepared by dc magnetron sputtering. Thin solid films. 1994 Jan 15;238(1):44-50.
[39]Ehiasarian AP, Hovsepian PE, Hultman L, Helmersson U. Comparison of microstructure and mechanical properties of chromium nitride-based coatings deposited by high power impulse magnetron sputtering and by the combined steered cathodic arc/unbalanced magnetron technique. Thin solid films. 2004 Jun 15;457(2):270-277.
[40]Konstantinidis S, Dauchot JP, Hecq M. Titanium oxide thin films deposited by high-power impulse magnetron sputtering. Thin solid films. 2006 Nov 23;515(3):1182-1186.
[41]Lattemann M, Ehiasarian AP, Bohlmark J, Persson PÅ, Helmersson U. Investigation of high power impulse magnetron sputtering pretreated interfaces for adhesion enhancement of hard coatings on steel. Surface and coatings technology. 2006 Jun 20;200(22-23):6495-6499.
[42]Antonin O, Tiron V, Costin C, Popa G, Minea TM. On the HiPIMS benefits of multi-pulse operating mode. Journal of physics D: applied physics. 2014 Dec 3;48(1):015202.
[43]Poolcharuansin P, Bradley JW. The evolution of the IEDFs in a low-pressure HiPIMS discharge. Surface and coatings technology. 2011 Jul 25;205:S307-311.
[44]Santiago JA, Fernández-Martínez I, Kozák T, Capek J, Wennberg A, Molina-Aldareguia JM, Bellido-González V, González-Arrabal R, Monclús MA. The influence of positive pulses on HiPIMS deposition of hard DLC coatings. Surface and coatings technology. 2019 Jan 25;358:43-49.
[45]Nakamura S. Nobel Lecture: Background story of the invention of efficient blue InGaN light emitting diodes. Reviews of modern physics. 2015 Oct 5;87(4):1139.
[46]Awual MR, Ismael M, Yaita T, El-Safty SA, Shiwaku H, Okamoto Y, Suzuki S. Trace copper (II) ions detection and removal from water using novel ligand modified composite adsorbent. Chemical engineering journal. 2013 Apr 15;222:67-76.
[47]Zhou Y, Wang S, Zhang K, Jiang X. Visual detection of copper (II) by azide‐and alkyne‐functionalized gold nanoparticles using click chemistry. Angewandte chemie international edition. 2008 Sep 15;47(39):7454-7456.
[48]Chan YH, Chen J, Liu Q, Wark SE, Son DH, Batteas JD. Ultrasensitive copper (II) detection using plasmon-enhanced and photo-brightened luminescence of CdSe quantum dots. Analytical chemistry. 2010 Apr 8;82(9):3671-3678.
[49]Crisponi G, Nurchi VM, Fanni D, Gerosa C, Nemolato S, Faa G. Copper-related diseases: from chemistry to molecular pathology. Coordination chemistry reviews. 2010 Apr 1;254(7-8):876-889.
[50]World Health Organization. International Standards of Drinking Water; WHO: Geneva, 1971. There is no corresponding record for this reference 1971.
[51]Chan MS, Huang SD. Direct determination of cadmium and copper in seawater using a transversely heated graphite furnace atomic absorption spectrometer with Zeeman-effect background corrector. Talanta. 2000 Feb 7;51(2):373-380.
[52]Chow CW, Kolev SD, Davey DE, Mulcahy DE. Determination of copper in natural waters by batch and oscillating flow injection stripping potentiometry. Analytica chimica acta. 1996 Aug 30;330(1):79-87.
[53]Wu J, Boyle EA. Low blank preconcentration technique for the determination of lead, copper, and cadmium in small-volume seawater samples by isotope dilution ICPMS. Analytical chemistry. 1997 Jul 1;69(13):2464-2470.
[54]Dahlquist RL, Knoll JW. Inductively coupled plasma-atomic emission spectrometry: analysis of biological materials and soils for major, trace, and ultra-trace elements. Applied spectroscopy. 1978 Jan;32(1):1-30.
[55]Chu CS, Chuang CY. Optical fiber sensor for dual sensing of dissolved oxygen and Cu2+ ions based on PdTFPP/CdSe embedded in sol–gel matrix. Sensors and Actuators B: Chemical. 2015 Mar 31;209:94-99.
[56]Rahman MM, Alamry KA, Saleh TS, Asiri AM. Sensitive and selective Cu2+ sensor based on 4-(3-(thiophen-2-yl)-9H-carbazol-9-yl) benzaldehyde (TPCBZ) conjugated copper-complex. Journal of organometallic chemistry. 2016 Aug 15;817:43-49.
[57]He Z, Zhang S, Sun D. Effect of bias on structure mechanical properties and corrosion resistance of TiNx films prepared by ion source assisted magnetron sputtering. Thin solid films. 2019 Apr 30;676:60-67.
[58]Kawasaki H, Suda Y, Ohshima T, Yagyu Y, Ihara T. Preparation of Er2O3 and TiO2 multilayer films as optical filter using magnetron sputtering deposition. IEEE transactions on plasma science. 2016 Jun 13;44(12):3066-3070.
[59]Onimaru T, T. Matsumoto K, F. Inoue Y, Umeo K, Saiga Y, Matsushita Y, Tamura R, Nishimoto K, Ishii I, Suzuki T, Takabatake T. Superconductivity and structural phase transitions in caged compounds RT2Zn20 (R= La, Pr, T= Ru, Ir). Journal of the physical society of Japan. 2010 Feb 25;79(3):033704.
[60]Azimi G, Dhiman R, Kwon HM, Paxson AT, Varanasi KK. Hydrophobicity of rare-earth oxide ceramics. Nature materials. 2013 Apr;12(4):315.
[61]Sun H, Jen SU, Chiang HP, Chen SC, Lin MH, Chen JY, Wang X. Investigation of optoelectronic performance in In, Ga co-doped ZnO thin films with various In and Ga levels. Thin solid films. 2017 Nov 1;641:12-18.
[62]Mbule PS. Sol-gel synthesis of and luminescent properties of Pr³⁺ in different host matrices (Doctoral dissertation, University of the Free State). 2009.
[63]Gohain N. Studies on the structure and function of phenazine modifying enzymes PhzM and PhzS involved in the biosynthesis of pyocyanin (Doctoral dissertation). 2009.
[64]Elzwawi SA. Cathodic Arc Zinc Oxide for Active Electronic Devices. 2015.
[65]Jiang T, Xie T, Zhang Y, Chen L, Peng L, Li H, Wang D. Photoinduced charge transfer in ZnO/Cu2O heterostructure films studied by surface photovoltage technique. Physical chemistry chemical physics. 2010;12(47):15476-15481.
[66]Minami T, Nishi Y, Miyata T, Nomoto JI. High-efficiency oxide solar cells with ZnO/Cu2O heterojunction fabricated on thermally oxidized Cu2O sheets. Applied physics express. 2011 May 23;4(6):062301.
[67]Xu H, Wang W, Zhu W. Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties. The journal of physical chemistry B. 2006 Jul 20;110(28):13829-13834.
[68]Yang M, Xu J, Wei J, Sun JL, Liu W, Zhu JL. Fabrication of double-walled carbon nanotube film/Cu2O nanoparticle film/TiO2 nanotube array heterojunctions for photosensors. Applied physics letters. 2012 Jun 18;100(25):253113.
[69]Wang P, Ng YH, Amal R. Embedment of anodized p-type Cu2O thin films with CuO nanowires for improvement in photoelectrochemical stability. Nanoscale. 2013;5(7):2952-2958.
[70]Oku T, Motoyoshi R, Fujimoto K, Akiyama T, Jeyadevan B, Cuya J. Structures and photovoltaic properties of copper oxides/fullerene solar cells. Journal of physics and chemistry of solids. 2011 Nov 1;72(11):1206-1211.
[71]Zhao S, Shen Y, Zhou P, Zhang J, Zhang W, Chen X, Wei D, Fang P, Shen Y. Highly selective NO2 sensor based on p-type nanocrystalline NiO thin films prepared by sol–gel dip coating. Ceramics international. 2018 Jan 1;44(1):753-759.
[72]Fujimori A, Minami F. Valence-band photoemission and optical absorption in nickel compounds. Physical review B. 1984 Jul 15;30(2):957.
[73]Wittenauer MA, Van Zandt LL. Surface conduction versus bulk conduction in pure stoichiometric NiO crystals. Philosophical magazine B. 1982 Dec 1;46(6):659-667.
[74]Ohta H, Kamiya M, Kamiya T, Hirano M, Hosono H. UV-detector based on pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO/n-ZnO. Thin solid films. 2003 Dec 15;445(2):317-321.
[75]Sebbari K, Roques J, Domain C, Simoni E. Uranyl ion interaction at the water/NiO (100) interface: A predictive investigation by first-principles molecular dynamic simulations. The journal of chemical physics. 2012 Oct 28;137(16):164701.
[76]Nandy S, Saha B, Mitra MK, Chattopadhyay KK. Effect of oxygen partial pressure on the electrical and optical properties of highly (200) oriented p-type Ni1−xO films by DC sputtering. Journal of materials science. 2007 Jul 1;42(14):5766-5772.
[77]Nandy S, Maiti UN, Ghosh CK, Chattopadhyay KK. Enhanced p-type conductivity and band gap narrowing in heavily Al doped NiO thin films deposited by RF magnetron sputtering. Journal of physics: condensed matter. 2009 Feb 24;21(11):115804.
[78]Caskey CM, Richards RM, Ginley DS, Zakutayev A. Thin film synthesis and properties of copper nitride, a metastable semiconductor. Materials horizons. 2014;1(4):424-430.
[79]Maruyama T, Morishita T. Copper nitride thin films prepared by radio‐frequency reactive sputtering. Journal of applied physics. 1995 Sep 15;78(6):4104-4107.
[80]Reichert MD, White MA, Thompson MJ, Miller GJ, Vela J. Preparation and instability of nanocrystalline cuprous nitride. Inorganic chemistry. 2015 Jun 19;54(13):6356-6362.
[81]Xiao J, Li Y, Jiang A. Structure, optical property and thermal stability of copper nitride films prepared by reactive radio frequency magnetron sputtering. Journal of materials science & technology. 2011 Jan 1;27(5):403-407.
[82]Chen H, Zhao J, Wu Z, Yang T, Ma Y, Huang W, Yao K. First principles study on the influence of electronic configuration of M on Cu3NM: M= Sc, Ti, V, Cr, Mn, Fe, Co, Ni. Computational and theoretical chemistry. 2014 Jan 1;1027:33-38.
[83]Panda C, Menezes PW, Zheng M, Orthmann S, Driess M. In situ formation of nanostructured core–shell Cu3N–CuO to promote alkaline water electrolysis. ACS energy letters. 2019 Feb 20;4(3):747-754.
[84]Maruyama T, Morishita T. Copper nitride thin films prepared by radio‐frequency reactive sputtering. Journal of applied physics. 1995 Sep 15;78(6):4104-4107.
[85]Nosaka T, Yoshitake M, Okamoto A, Ogawa S, Nakayama Y. Copper nitride thin films prepared by reactive radio-frequency magnetron sputtering. Thin solid films. 1999 Jul 6;348(1-2):8-13.

電子全文 電子全文(網際網路公開日期:20240801)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊