|
[1] X. Wang, L. Xie, J. Zhang, “Preparation, Structure and Properties of Two-dimensional”, Acta Chimica Sinica, 73, 886-894 (2015). [2] P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, and G. Le Lay, “Silicene: compelling experimental evidence for graphenelike two-dimensional silicon”, Physical Review Letters, 108, 155501 (2012). [3] S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, and S. Ciraci, “Two- and one-dimensional honeycomb structures of silicon and germanium”, Physical Review Letters, 102, 236804 (2009). [4] V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus”, Physical Review B, 89, 235319 (2014). [5] S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, “Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene”, Small, 11, 640-652 (2015). [6] H. Liu, A. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. Ye, “Phosphorene: An unexplored 2D semiconductor with a high hole mobility”, ACS Nano, 8, 4033-4041 (2014). [7] L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, and P. M. Ajayan, “Large scale growth and characterization of atomic hexagonal boron nitride layers”, Nano Letters, 10, 3209-3215 (2010). [8] A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures”, Nature, 499, 419-425 (2013). [9] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films”, Science, 306, 666-669 (2004). [10] Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, “Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices”, Applied Physics Letters, 95, 063302 (2009). [11] Q. Liang, X. Yao, W. Wang, Y. Liu, and C. P. Wong, “A three-dimensional vertically aligned functionalized multilayer graphene architecture: An approach for graphene-based thermal interfacial materials”, ACS Nano, 5, 2392-2401 (2011). [12] X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells”, Nano Letters, 8, 323-327 (2008). [13] S. Bharech and R. Kumar, “A review on the properties and applications of graphene”, Journal of Material Science and Mechanical Engineering, 2, 70-73 (2015). [14] M. C. Lemme, T. J. Echtermeyer, M. Baus, and H. Kurz, “A graphene field-effect device”, IEEE Electron Device Letters, 28, 282-284 (2007). [15] K. Bullis, “Graphene transistors”, Cambridge: MIT Technology Review, Inc. (2008). [16] J. Kedzierski, P.-L. Hsu, P. Healey, P. Wyatt, C. Keast, M. Sprinkle, C. Berger, W. A. de Heer, “Epitaxial graphene transistors on SiC substrates”, IEEE Transactions on Electron Devices, 55, 2078-2085 (2008). [17] J. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties”, Advances in Physics, 18, 193-335 (1969). [18] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors”, Nature Nanotechnology, 6, 147-150 (2011). [19] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides”, Nature Reviews Materials, 2, 17033 (2017). [20] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. Coleman, and M. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides”, Nature Nanotechnology, 7, 699-712 (2012). [21] J. Kang, S. Tongay, J. B. Li, and J. Q. Wu, “Monolayer semiconducting transition metal dichalcogenide alloys: Stability and band bowing”, Journal of Applied Physics, 113,140703 (2013). [22] C Sergio, “Layered two-dimensional heterostructures and their tunneling characteristics”, Springer Theses, 7-8 (2017). [23] M. K. Agarwal and P. A. Wani, “Growth conditions and crystal structure parameters of layer compounds in the series Mo1-xWxSe2”, Materials Research Bulletin, 14, 825-830 (1979). [24] 羅聖全,科學基礎研究之重要利器-掃描式電子顯微鏡(SEM),科學研習,52-5,2013。 [25] 汪建銘,材料分析,中國材料科學學會,清華大學材料科學工程學系,2001。 [26] J. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. R. Michael, “Scanning electron microscopy and X-Ray microanalysis-third edition”, Springer, New York (2003). [27] 薛富盛、呂福興、吳宗明、許薰丰、黃榮鑫、趙文愷,掃瞄式電子顯微鏡實作訓練教材,五南圖書出版公司,2009。 [28] W. Franz, “Einfluß eines elektrischen feldes auf eine optische absorptionskante”, Zeitschrift für Naturforschung A, 13, 484-489 (1958). [29] L.V. Keldysh, “Behavior of non-metallic crystals in strong electric fields”, Journal of Experimental and Theoretical Physics, 6, 763-770 (1958). [30] B. O. Seraphin, R. B. Hess, and N. Bottka, Bulletin of the American Physical Society, Ser. II 9, 714 (1964). [31] B. O. Seraphin, “Proceedings of the international conference on the physics of semiconductors”, Paris (1964). [32] B. O. Seraphin, R. B. Hess, and N. Bottka, “Field Effect of the Reflectivity in Germanium”, Journal of Applied Physics, 36, 2242-2250 (1965). [33] B. O. Seraphin, “The effect of an electric field on reflectivivty of germannium”, Proc. 7th int. Conf. Phys. Semicond, Academic, Dunod, Paris, (1964). [34] A. K. Berry, D. K. Gaskill, G. T. Stauf, and N. Bottka, “Photoreflectance of semi-insulating InP: Resistivity effects on the exciton phase”, Applied Physics Letters, 58, 2824-2826 (1991). [35] S. E. Acosta-Ortiz and A. Lastras-Martínez, “Electro-optic effects in the optical anisotropies of (001) GaAs”, Physical Review B, 40, 1426-1429 (1989). [36] E. Hecht, “Optics-4th edition”, Addison Wesley (2001). [37] D. E. Aspones, “Handbook on Semiconductor”, “Handbook on semiconductors : Vo.2. edited by T. S. Moss Optical properties of solids”, North-Holland, New York (1980). [38] F. H. Pollak, “Handbook on Semiconductor”, edited by M. Balkanski, North-Holland, New York (1994). [39] B. O. Seraphin and N. Bottka, “Band-structure analysis from electro-reflectance studies”, Physical Review, 145, 628-636 (1966). [40] D. E. Aspnes and A. A. Studna, “Schottky-barrier electroreflectance: Application to GaAs”, Physical Review B, 7, 4605-4625 (1973). [41] B. O. Seraphin and D. E. Aspnes, “Electric field effects in optical and first-derivative modulation spectroscopy”, Physical Review B, 6, 3158-3160 (1972). [42] H. Shen, P. Parayanthal, Y. F. Liu, and F. H. Pollak, “New normalization procedure for modulation spectroscopy”, Review of Scientific Instruments, 58, 1429-1432 (1987). [43] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor”, Physical Review Letters, 105, 136805 (2010). [44] Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors”, Physica, 34, 149-154 (1967). [45] C. H. Ho, C. S. Wu, Y. S. Huang, P. C. Liao, and K. K. Tiong, “Temperature dependence of energies and broadening parameters of the band-edge excitons of Mo1-xWxS2 single crystals”, Journal of Physics: Condensed Matter, 10, 9317-9328 (1998). [46] M. Sigiro, “Effect of gold dopant on structural and optical properties of molybdenum disulfide single crystals”, AIP Conference Proceedings, 1855, 030003 (2017). [47] A. Arora, K. Nogajewski, M. Molas, M. Koperski, and M. Potemski, “Exciton band structure in layered MoSe2: From a monolayer to the bulk limit”, Nanoscale, 7, 20769-20775 (2015). [48] N. Lundt, A. Maryński, E. Cherotchenko, A. Pant, X. Fan, S. Tongay, G. Sęk, A. V. Kavokin, S. Höfling, and C. Schneider, “Monolayered MoSe2: a candidate for room temperature polaritonics”, 2D Materials, 4, 015006 (2017). [49] N. Nepal, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Temperature and compositional dependence of the energy band gap of AlGaN alloys”, Applied Physics Letters, 87, 242104 (2005).
|