跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/03/16 15:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳姿妤
研究生(外文):CHEN, TZU-YU
論文名稱:硫硒化鉬光學躍遷溫度變化特性探討
論文名稱(外文):Temperature Dependent Excitonic Transition Energy of MoSxSe2-x Alloys
指導教授:許宏彬許宏彬引用關係
指導教授(外文):HSU, HUNG-PIN
口試委員:吳亞芬倪澤恩
口試委員(外文):WU,YA-FENNEE, TZER-EN
口試日期:2019-05-29
學位類別:碩士
校院名稱:明志科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:53
中文關鍵詞:二維材料過渡金屬硫族化合物化學氣相傳導法
外文關鍵詞:two-dimensional materialtransition metal dichalcogenideschemical vapor transport
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
層狀二維(Two-dimensional, 2D)過渡金屬硫族化合物(Transition Metal Dichalcogenides, TMDCs)之所以受到關注是因為其層與層的三明治結構,可簡易的薄化厚度並同時具有直接能隙性質,層與層之間僅靠微弱的凡得瓦力(van der Waals Force, vdW)鍵結,相較於石墨烯(Graphene),層狀二維過渡金屬硫族化合物具有半導體及金屬性質,透過減少厚度至單層,其半導體性質能隙可由間接能隙改變為直接能隙,此特殊性質具有很大的應用潛力,被視為下一世代半導體產業的新興材料。
本論文利用化學氣相傳導法(Chemical Vapor Transport, CVT)並加入傳導劑碘(I2)或溴(Br2)成長MoSxSe2-x(2≤x≤0)三元合金。利用掃描電子顯微鏡(Scanning Electron Microscope, SEM)及能量散射光譜分析儀(Energy Dispersive X-Ray Spectrometer, EDX)確認樣品元素比例及其表面樣貌。在光學量測方面,採用壓電調制反射光譜(Piezoreflectance, PzR)技術量測溫度於295 K至25 K激子躍遷訊號A及B的能量,分析激子躍遷訊號與成分之間的變化,以Varshni方程式探討激子躍遷訊號與溫度的相依性,獲得Varshni參數再與成分關係進行討論,分析其溫度相依相關參數隨硫成分變化,呈現出遞增的二次方曲線(Parabolic)變化。最後,不同硫成分的激子躍遷訊號隨溫度變化之情形可藉由修正的Varshni方程式來描述。

Two-dimensional transition metal chalcogenides (TMDCs) have attracted attention because of their layer-to-layer sandwich structure. This structure can be easily fabricated in atomic scale thickness. The layer is bonded by weak Van der Waals Force (vdW). Compare to graphene, TMDCs have both semiconductor and metal properties. The band gap can be changed from an indirect energy gap to a direct energy gap by varying the thickness from bulk to monolayer. The unique optoelectronic properties have great potential for the applications in next generation semiconductor industry.
In this study, the chemical vapor transport (CVT) is used to add the conductive agent iodine (I2) or bromine (Br2) to grow the MoSxSe2-x(2≤x≤0) ternary alloy. The composition and its surface morphology were confirmed by scanning electron microscope and energy dispersive X-ray spectrometer. In optical measurement, piezoreflectance (PzR) spectroscopy technology was used to measure the exciton transition energies. The PzR spectroscopy has been employed to study the temperature and compositional dependence of the excitonic transition energy of MoSxSe2-x alloys in the temperature range from 25 to 295 K. Their temperature dependences were analyzed using Varshni semi-empirical expressions. It is found that the values of Varshni coefficients obtained from MoSxSe2-x varied with bowing effects with increases sulfur composition. Based on the experimental results, the temperature and compositional dependence of excitonic transition energy of MoSxSe2-x alloys has been empirically deduced for the entire alloy range in this study.

目錄
明志科技大學碩士學位論文指導教授推薦書 i
明志科技大學碩士學位論文口試委員會審定書 ii
致謝 iii
摘要 iv
Abstract v
目錄 vi
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1 前言 1
第二章 晶體成長 6
2.1 晶體成長方法 6
2.2 單晶成長之設備 8
2.2.1 晶體成長反應系統 8
2.2.2 真空系統 10
2.3 晶體成長 12
第三章 量測技術與原理 14
3.1 掃描電子顯微鏡(SEM) 14
3.1.1 SEM發展 14
3.1.2 SEM原理 15
3.2 能量散射光譜分析儀(EDX) 18
3.3 調制光譜(Modulation Spectroscopy) 20
3.3.1 調制光譜簡介 20
3.3.2 壓電調制反射光譜(PzR) 23
第四章 實驗結果與討論 29
4.1 MoSxSe2-x的變溫壓電調制反射光譜 29
4.2 MoSxSe2-x溫度相依參數分析 36
4.3 MoSxSe2-x溫度相依能隙分析 43
第五章 結論 47
參考文獻 48


圖目錄
圖1-1 元素週期表中常見二维材料的分佈圖。 4
圖1-2 石墨烯優點。 4
圖1-3 2H-TMDCs原子結構圖。 5
圖2-1 影響單晶成長及品質之條件。 7
圖2-2 三區域控溫高溫爐示意圖。 8
圖2-3 晶體成長溫度之管內實際溫度梯度圖。 9
圖2-4 晶體成長系統示意圖。 9
圖2-5 長晶真空系統構造圖。 11
圖2-6 石英管示意圖。 13
圖2-7 晶體成長流程圖。 13
圖3-1 掃描式電子顯微鏡(Phenom ProX)。 16
圖3-2 掃描式電子顯微鏡示意圖。 17
圖3-3 電子束與樣品作用所產生之訊號。 17
圖3-4 EDX光電子產生示意圖。 19
圖3-5 EDX產生之光譜圖。 19
圖3-6 壓電調制反射光譜樣品製備圖。 25
圖3-7 高壓放大器(TReK 609E-6)。 26
圖3-8 壓電調制反射光譜量測系統圖。 26
圖3-9 碘鎢燈之光譜分佈圖。 27
圖3-10 鎖相放大器(EG&G 7265)。 27
圖3-11 真空系統(Pfeiffer Vacuum TSH 071)。 28
圖3-12 壓縮機(CTI CRYOGENICS 8200 Compressor)。 28
圖4-1 MoS2的能帶結構圖。 30
圖4-2(a) MoSe2壓電調制反射光譜圖。 31
圖4-2(b) MoS0.6Se1.4壓電調制反射光譜圖。 32
圖4-2(c) MoSSe壓電調制反射光譜圖。 33
圖4-2(d) MoS1.4Se0.6壓電調制反射光譜圖。 34
圖4-2(e) MoS2壓電調制反射光譜圖。 35
圖4-3(a) MoSe2激子躍遷訊號對溫度變化以Varshni方程式擬合曲線。 37
圖4-3(b) MoS0.6Se1.4激子躍遷訊號對溫度變化以Varshni方程式擬合曲線。 38
圖4-3(c) MoSSe激子躍遷訊號對溫度變化以Varshni方程式擬合曲線。 39
圖4-3(d) MoS1.4Se0.6激子躍遷訊號對溫度變化以Varshni方程式擬合曲線。 40
圖4-3(e) MoS2激子躍遷訊號對溫度變化以Varshni方程式擬合曲線。 41
圖4-4(a) Varshni參數-α與MoSxSe2-x成分相依性。 44
圖4-4(b) Varshni參數-β與MoSxSe2-x成分相依性。 45


表目錄
表1-1 具有單層二維材料特性總表。 3
表4-2 MoSxSe2-x以Varshni方程式擬合得到的溫度相依性相關參數。 42
表4-2 Varshni參數α及β與溫度相依性擬合得到的曲率參數。 46

[1] X. Wang, L. Xie, J. Zhang, “Preparation, Structure and Properties of Two-dimensional”, Acta Chimica Sinica, 73, 886-894 (2015).
[2] P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M. C. Asensio, A. Resta, B. Ealet, and G. Le Lay, “Silicene: compelling experimental evidence for graphenelike two-dimensional silicon”, Physical Review Letters, 108, 155501 (2012).
[3] S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, and S. Ciraci, “Two- and one-dimensional honeycomb structures of silicon and germanium”, Physical Review Letters, 102, 236804 (2009).
[4] V. Tran, R. Soklaski, Y. Liang, and L. Yang, “Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus”, Physical Review B, 89, 235319 (2014).
[5] S. Balendhran, S. Walia, H. Nili, S. Sriram, and M. Bhaskaran, “Elemental analogues of graphene: Silicene, germanene, stanene, and phosphorene”, Small, 11, 640-652 (2015).
[6] H. Liu, A. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tománek, and P. Ye, “Phosphorene: An unexplored 2D semiconductor with a high hole mobility”, ACS Nano, 8, 4033-4041 (2014).
[7] L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, and P. M. Ajayan, “Large scale growth and characterization of atomic hexagonal boron nitride layers”, Nano Letters, 10, 3209-3215 (2010).
[8] A. K. Geim and I. V. Grigorieva, “Van der Waals heterostructures”, Nature, 499, 419-425 (2013).
[9] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films”, Science, 306, 666-669 (2004).
[10] Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, “Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices”, Applied Physics Letters, 95, 063302 (2009).
[11] Q. Liang, X. Yao, W. Wang, Y. Liu, and C. P. Wong, “A three-dimensional vertically aligned functionalized multilayer graphene architecture: An approach for graphene-based thermal interfacial materials”, ACS Nano, 5, 2392-2401 (2011).
[12] X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells”, Nano Letters, 8, 323-327 (2008).
[13] S. Bharech and R. Kumar, “A review on the properties and applications of graphene”, Journal of Material Science and Mechanical Engineering, 2, 70-73 (2015).
[14] M. C. Lemme, T. J. Echtermeyer, M. Baus, and H. Kurz, “A graphene field-effect device”, IEEE Electron Device Letters, 28, 282-284 (2007).
[15] K. Bullis, “Graphene transistors”, Cambridge: MIT Technology Review, Inc. (2008).
[16] J. Kedzierski, P.-L. Hsu, P. Healey, P. Wyatt, C. Keast, M. Sprinkle, C. Berger, W. A. de Heer, “Epitaxial graphene transistors on SiC substrates”, IEEE Transactions on Electron Devices, 55, 2078-2085 (2008).
[17] J. Wilson and A. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties”, Advances in Physics, 18, 193-335 (1969).
[18] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors”, Nature Nanotechnology, 6, 147-150 (2011).
[19] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, and A. Kis, “2D transition metal dichalcogenides”, Nature Reviews Materials, 2, 17033 (2017).
[20] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. Coleman, and M. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides”, Nature Nanotechnology, 7, 699-712 (2012).
[21] J. Kang, S. Tongay, J. B. Li, and J. Q. Wu, “Monolayer semiconducting transition metal dichalcogenide alloys: Stability and band bowing”, Journal of Applied Physics, 113,140703 (2013).
[22] C Sergio, “Layered two-dimensional heterostructures and their tunneling characteristics”, Springer Theses, 7-8 (2017).
[23] M. K. Agarwal and P. A. Wani, “Growth conditions and crystal structure parameters of layer compounds in the series Mo1-xWxSe2”, Materials Research Bulletin, 14, 825-830 (1979).
[24] 羅聖全,科學基礎研究之重要利器-掃描式電子顯微鏡(SEM),科學研習,52-5,2013。
[25] 汪建銘,材料分析,中國材料科學學會,清華大學材料科學工程學系,2001。
[26] J. Goldstein, D. E. Newbury, D. C. Joy, C. E. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. R. Michael, “Scanning electron microscopy and X-Ray microanalysis-third edition”, Springer, New York (2003).
[27] 薛富盛、呂福興、吳宗明、許薰丰、黃榮鑫、趙文愷,掃瞄式電子顯微鏡實作訓練教材,五南圖書出版公司,2009。
[28] W. Franz, “Einfluß eines elektrischen feldes auf eine optische absorptionskante”, Zeitschrift für Naturforschung A, 13, 484-489 (1958).
[29] L.V. Keldysh, “Behavior of non-metallic crystals in strong electric fields”, Journal of Experimental and Theoretical Physics, 6, 763-770 (1958).
[30] B. O. Seraphin, R. B. Hess, and N. Bottka, Bulletin of the American Physical Society, Ser. II 9, 714 (1964).
[31] B. O. Seraphin, “Proceedings of the international conference on the physics of semiconductors”, Paris (1964).
[32] B. O. Seraphin, R. B. Hess, and N. Bottka, “Field Effect of the Reflectivity in Germanium”, Journal of Applied Physics, 36, 2242-2250 (1965).
[33] B. O. Seraphin, “The effect of an electric field on reflectivivty of germannium”, Proc. 7th int. Conf. Phys. Semicond, Academic, Dunod, Paris, (1964).
[34] A. K. Berry, D. K. Gaskill, G. T. Stauf, and N. Bottka, “Photoreflectance of semi-insulating InP: Resistivity effects on the exciton phase”, Applied Physics Letters, 58, 2824-2826 (1991).
[35] S. E. Acosta-Ortiz and A. Lastras-Martínez, “Electro-optic effects in the optical anisotropies of (001) GaAs”, Physical Review B, 40, 1426-1429 (1989).
[36] E. Hecht, “Optics-4th edition”, Addison Wesley (2001).
[37] D. E. Aspones, “Handbook on Semiconductor”, “Handbook on semiconductors : Vo.2. edited by T. S. Moss Optical properties of solids”, North-Holland, New York (1980).
[38] F. H. Pollak, “Handbook on Semiconductor”, edited by M. Balkanski, North-Holland, New York (1994).
[39] B. O. Seraphin and N. Bottka, “Band-structure analysis from electro-reflectance studies”, Physical Review, 145, 628-636 (1966).
[40] D. E. Aspnes and A. A. Studna, “Schottky-barrier electroreflectance: Application to GaAs”, Physical Review B, 7, 4605-4625 (1973).
[41] B. O. Seraphin and D. E. Aspnes, “Electric field effects in optical and first-derivative modulation spectroscopy”, Physical Review B, 6, 3158-3160 (1972).
[42] H. Shen, P. Parayanthal, Y. F. Liu, and F. H. Pollak, “New normalization procedure for modulation spectroscopy”, Review of Scientific Instruments, 58, 1429-1432 (1987).
[43] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS2: a new direct-gap semiconductor”, Physical Review Letters, 105, 136805 (2010).
[44] Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors”, Physica, 34, 149-154 (1967).
[45] C. H. Ho, C. S. Wu, Y. S. Huang, P. C. Liao, and K. K. Tiong, “Temperature dependence of energies and broadening parameters of the band-edge excitons of Mo1-xWxS2 single crystals”, Journal of Physics: Condensed Matter, 10, 9317-9328 (1998).
[46] M. Sigiro, “Effect of gold dopant on structural and optical properties of molybdenum disulfide single crystals”, AIP Conference Proceedings, 1855, 030003 (2017).
[47] A. Arora, K. Nogajewski, M. Molas, M. Koperski, and M. Potemski, “Exciton band structure in layered MoSe2: From a monolayer to the bulk limit”, Nanoscale, 7, 20769-20775 (2015).
[48] N. Lundt, A. Maryński, E. Cherotchenko, A. Pant, X. Fan, S. Tongay, G. Sęk, A. V. Kavokin, S. Höfling, and C. Schneider, “Monolayered MoSe2: a candidate for room temperature polaritonics”, 2D Materials, 4, 015006 (2017).
[49] N. Nepal, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Temperature and compositional dependence of the energy band gap of AlGaN alloys”, Applied Physics Letters, 87, 242104 (2005).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top