(100.26.179.251) 您好!臺灣時間:2021/04/21 22:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:藍海銘
研究生(外文):LAN, HAI-MING
論文名稱:焚化底渣合成MCM-41同時吸附低濃度甲苯及甲醛之研究
論文名稱(外文):Simultaneous Adsorption of Low Concentrations of Toluene and Formaldehyde Using MCM-41 Synthesized by Incineration Bottom Ash
指導教授:劉禎淑
指導教授(外文):LIU, ZHEN-SHU
口試委員:周經棟程裕祥
口試委員(外文):CHOU, JING-DONGCHENG, YU-HSIANG
口試日期:2019-01-21
學位類別:碩士
校院名稱:明志科技大學
系所名稱:環境與安全衛生工程系環境工程碩士班
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:115
中文關鍵詞:中孔矽材料改質甲苯甲醛吸附
外文關鍵詞:Mesoporous silica materialModificationTolueneFormaldehydeAdsorption
相關次數:
  • 被引用被引用:2
  • 點閱點閱:69
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究再利用焚化底渣合成具六角結構之MCM-41,並分別以三種硝酸鹽金屬(硝酸銀、硝酸銅及硝酸亞錳)改質Original-MCM-41為5%Ag-MCM-41、5%Cu-MCM-41及5%Mn-MCM-41與三種胺劑(四乙烯戊胺、五乙烯六胺及鄰-胺基-2-甲基-1-丙醇)改質Original-MCM-41為5%TEPA-MCM-41、5%PEHA-MCM-41及5%AMP-MCM-41,探討上述吸附劑於室溫環境下對於25 ppm甲苯與1 ppm甲醛兩種常見室內污染物之吸附效益。並輔以BET、SEM、TEM、XRD、ESCA、FTIR、EA、TGA進行各材料之物化特性分析,探究改質劑對材料物化分析之影響及其如何影響吸附效能。吸附實驗先以Original-MCM-41於500、750及1000 sccm三種氣體進流量及0.5 、1及1.5 g三種吸附劑克數進行25 ppm甲苯吸附,接著以最佳之吸附條件進行各改質材料對甲苯及甲醛去除效率探討及探討甲苯、甲醛兩種污染物之競爭吸附影響。從各項物化分析結果中可得知,底渣合成之Original-MCM-41之比表面積為908 m2/g、孔洞體積為0.84 cm3/g及孔洞大小為3.7 nm;而物化結果也證實本實驗已成功將金屬及胺基改質劑擔載於材料上。由Original-MCM-41吸附甲苯實驗結果得知,以氣體進流量為750 sccm、吸附劑克重為1.5 g時,具有最高之飽和吸附量8.13 mg/g;另外於飽和吸附曲線圖觀察到,此條件下具較低質傳阻力影響。但經金屬與胺基改質之各吸附劑,於此吸附條件下並未明顯提升對甲苯之吸附效能。另經胺基改質Original-MCM-41具有提升甲醛吸附之效果,且以5%PEHA-MCM-41有最高之飽和吸附量0.34 mg/g。於競爭吸附試驗得知,甲苯及甲醛飽和吸附量分別為11.65 mg/g及1.21 mg/g,且甲醛於1505 min仍持續進行吸附反應,此結果證實焚化底渣合成之資源化MCM-41於室溫環境下具同時吸附甲苯及甲醛兩種常見室內污染物之潛力。
In this study, we reuse the incinerator bottom ashes to make the hexagonal synthesis, MCM-41. And we use three nitrates (silver nitrate, copper nitrate and manganous nitrate) to transform the original-MCM-41 into 5% Ag- MCM-41, 5% Cu-MCM-41 and 5% Mn-MCM-41 and three different amines (tetraethylenepentamine, pentaethylenehexamine and 2-amino-2-methyl-1-propanol) to transform the Original-MCM-41 into 5% TEPA- MCM-41, 5% PEHA-MCM-41 and 5% AMP-MCM-41. We are going to see the performance of above-mentioned absorbents for absorbing two commonly observable indoor contaminants: 25ppm of toluene and 1ppm of formaldehyde in room temperature. In addition, the BET, SEM, TEM, XRD, ESCA, FTIR, EA and TGA are used to analyze physicochemical properties of each material and to study the influence of modifiers on physicochemical properties as well as how it affects the absorbing performance. In the absorption experiment, three different air flows, including 500, 750 and 1000 sccm, are accompanied with Original-MCM-41 and three 0.5, 1 and 1.5g of absorbent, to see the absorbing performance of toluene 25ppm. Through the usage of the best absorbing conditions, we will discuss the removal efficiency of toluene and formaldehyde on each modified material and also analyze the competitive adsorption effect of these two contaminants: toluene and formaldehyde. From the result of each physicochemical analysis, we know that the details of synthesis of incinerator bottom ashes, Original-MCM-41: surface area 908 m2/g, pore volume 0.84 cm3/g and pore size 3.7 nm. The physicochemical results also show that this experiment has successfully carried the metals and amino modifiers on materials. According to the result of Original-MCM-41 toluene absorption experiment, when the air flow is 750 sccm with 1.5g of absorbent, the highest adsorption capacity is: 8.13 mg/g. In addition, from the graph of adsorption capacity, we notice that mass transfer resistance is pretty low in this condition. However, each absorbent of metals and amino modifiers doesn’t elevate obviously the performance of absorbing toluene. The Original-MCM-41 transformed by amines does elevate the performance of absorbing formaldehyde: with the highest adsorption capacity 0.34 mg/g for 5%PEHA-MCM-41. After the competitive adsorption experiment, we know that the adsorption capacity of toluene and formaldehyde is 11.65 mg/g and 1.21 mg/g, respectively. The absorption reaction of formaldehyde is still working at 1,500 min. This result shows that the synthetic resource of incinerator bottom ashes, MCM-41, has the potential to absorb both common indoor contaminants, toluene and formaldehyde, in room temperature.
目錄
明志科技大學碩(博)士學位論文指導教授推薦書 i
明志科技大學碩(博)士學位論文口試委員審定書 ii
誌謝 iii
摘要 iv
Abstract v
目錄 vii
圖目錄 x
表目錄 xii
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
1.3 研究架構 4
第二章 文獻回顧 5
2.1 室內空氣品質介紹 5
2.1.1 室內空氣品質重要性及定義 5
2.1.2 室內空氣污染物常見之來源 5
2.1.3 室內污染物的特性及危害 6
2.1.4 相關之環保法規 9
2.2 VOCs定義及特性 10
2.2.1 甲苯特性及危害 11
2.2.2 甲醛之特性及危害 11
2.3 焚化底渣之特性 13
2.3.1 焚化底渣之物化性質 13
2.3.2焚化底渣資源化應用 14
2.4中孔材料 15
2.4.1中孔材料形成機制 15
2.4.2中孔材料種類及特性 17
2.5 VOCs 去除之相關文獻 20
第三章 實驗設備與方法 36
3.1 利用底渣合成中孔分子篩MCM-41 36
3.2 實驗設備及藥品 37
3.3 實驗試程 40
3.3.1實驗流程 40
3.3.2 硝酸鹽金屬改質中孔分子篩MCM-41 41
3.3.3 胺基官能基改質中孔分子篩MCM-41 41
3.3.4 MCM-41吸附甲苯及甲醛之實驗 41
3.4 中孔分子篩之物化特性分析 47
3.4.1 比表面積分析儀(Micromeritics ASAP 2020) 47
3.4.2 場發射掃描式電子顯微鏡與EDS分析(Hitachi Tabletop TM-3000) 48
3.4.3 穿透式電子顯微鏡(JEOL-JEM2100 High Resolution STEM) 49
3.4.4 X光粉末繞射分析儀(Bruker D8) 50
3.4.5 化學分析電子能譜儀(ULVAC-PHI PHI 5000 Versaprobe II) 51
3.4.6傅立葉轉換紅外線光譜(PerkinElmer Spectrum One FT-IR Spectrometer) 51
3.4.7 元素分析儀(Elementar vario EL CUBE) 51
3.4.8 熱重分析儀(PerkinElmer STA 6000 simultaneous TGA-DSC) 53
第四章 結果與討論 54
4.1 中孔材料之物化特性分析 54
4.1.1比表面積分析結果 54
4.1.2 SEM結果 60
4.1.3 TEM結果 62
4.1.4 XRD結果 64
4.1.5 ESCA結果 71
4.1.6 FTIR結果 74
4.1.7元素分析結果 75
4.1.8 TGA結果 77
4.2甲苯吸附實驗 81
4.2.1 吸附劑克數及氣體進流量之結果 81
4.2.2 不同甲苯濃度之結果 83
4.2.3金屬改質及胺基改質之結果 84
4.3甲醛吸附實驗 89
4.4 甲苯及甲醛競爭吸附實驗 90
第五章 結論與建議 92
5.1 結論 92
5.2 建議 93
參考文獻 94

圖目錄
圖1- 1 研究架構圖 4
圖2- 1 中孔材合成法 A:自組裝合成法 B:液態晶體模板合成法 16
圖2- 2中孔材合成法:硬板合成法 16
圖2- 3 多孔分子篩之晶格群示意圖 18
圖2- 4 M41S系列結構示意圖 19
圖3- 1 焚化底渣合成中孔分子篩實驗流程圖 36
圖3- 2 固定床反應器串聯GC-FID系統 37
圖3- 3 固定床反應器串聯吸收液系統及HPLC分析 38
圖3- 4 實驗流程圖 40
圖3- 5 飽和吸附曲線圖 43
圖3- 6 晶體產生X射線繞射幾何圖 50
圖4- 1 MCM-41之孔徑分佈圖 57
圖4- 2 MCM-41之吸脫附曲線圖 60
圖4- 3 MCM-41之SEM分析結果 62
圖4- 4 MCM-41之TEM分析結果 63
圖4- 5 MCM-41之XRD分析結果 69
圖4- 6 金屬改質 MCM-41之XRD金屬相鑑定分析結果 71
圖4- 7 金屬改質 MCM-41之XPS分析圖譜 74
圖4- 8 MCM-41之FTIR分析結果 75
圖4- 9 MCM-41之TGA分析結果 80
圖4- 10 MCM-41之DTG分析結果 81
圖4- 11 不同氣體進流量及不同吸附劑克重之飽和吸附曲線 82
圖4- 12 Original-MCM-41及純Si-MCM-41之甲苯飽和吸附曲線 83
圖4- 13 不同甲苯濃度之飽和吸附曲線 84
圖4- 14 不同金屬改質之飽和吸附曲線 85
圖4- 15 不同胺基改質之飽和吸附曲線 86
圖4- 16 各吸附劑之甲醛飽和吸附曲線 90
圖4- 17 甲苯及甲醛之飽和競爭吸附曲線 91

表目錄
表2- 1 室內空氣汙染物常見來源 6
表2- 2 台灣室內空氣污染物標準 9
表2- 3 1989年WHO之揮發性有機化合物定義 10
表2- 4 甲苯不同濃度對人體之危害表 11
表2- 5 甲醛對人體危害資料表 12
表2- 6 底渣資源利用分級表 14
表2- 7 IUPAC多孔材料定義 17
表2- 8 常見之中孔分子篩系列 17
表2- 9 VOCs去除之相關文獻表(續1) 27
表2- 10 VOCs去除之相關文獻表(續2) 28
表2- 11 VOCs去除之相關文獻表(續3) 29
表2- 12 VOCs去除之相關文獻表(續4) 30
表2- 13 VOCs去除之相關文獻表(續5) 31
表2- 14 VOCs去除之相關文獻表(續6) 32
表2- 15 VOCs去除之相關文獻表(續7) 33
表2- 16 VOCs去除之相關文獻表(續8) 34
表2- 17 VOCs去除之相關文獻表(續9) 35
表3- 1 實驗藥品及氣體整理表 39
表3- 2 甲苯吸附實驗試程表 45
表3- 3甲醛吸附試程表 46
表4- 1 Original-MCM-41及改質MCM-41之BET結果 54
表4- 2 胺基改質Original-MCM-41之EA元素分析表 76
表4- 3 各吸附劑對甲苯之飽和吸附量表 87
表4- 4 各吸附劑對甲醛之飽和吸附量表 90

Abboud, M.; Bel-Hadj-Tahar, R.; Fakhri, N.; Sayari, A., Synthesis of ferrocenylazobenzene-functionalized MCM-41 via direct co-condensation method. Microporous and Mesoporous Materials 2018, 265, 179-184.
Ahmed, S.; Ramli, A.; Yusup, S.; Farooq, M., Adsorption behavior of tetraethylenepentamine-functionalized Si-MCM-41 for CO2 adsorption. Chemical Engineering Research and Design 2017, 122, 33-42.
Akpotu, S. O.; Moodley, B., Application of as-synthesised MCM-41 and MCM-41 wrapped with reduced graphene oxide/graphene oxide in the remediation of acetaminophen and aspirin from aqueous system. Journal of environmental management 2018, 209, 205-215.
Bahri, M.; Haghighat, F.; Kazemian, H.; Rohani, S., A Comparative Study on Metal Organic Frameworks for Indoor Environment Application: Adsorption Evaluation. Chemical Engineering Journal 2016.
Bartolomé, A. M. M. High Accesibility and Chemical Homogeneity Mesoporous Materials: Silicas, Gold-containing Composites and Phosphates. Facultat de Ciències Químiques, 2015.
Beck, J.; Vartuli, J.; Kennedy, G.; Kresge, C.; Roth, W.; Schramm, S., Molecular or supramolecular templating: defining the role of surfactant chemistry in the formation of microporous and mesoporous molecular sieves. Chemistry of materials 1994, 6 (10), 1816-1821.
Beck, J.; Vartuli, J.; Roth, W. J.; Leonowicz, M.; Kresge, C.; Schmitt, K.; Chu, C.; Olson, D. H.; Sheppard, E.; McCullen, S., A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society 1992, 114 (27), 10834-10843.
Bellat, J. P.; Bezverkhyy, I.; Weber, G.; Royer, S.; Averlant, R.; Giraudon, J. M.; Lamonier, J. F., Capture of formaldehyde by adsorption on nanoporous materials. Journal of Hazardous Materials 2015, 300, 711-717.
Berenjian, A.; Chan, N.; Malmiri, H. J., Volatile organic compounds removal methods: a review. Am J Biochem Biotechnol 2012, 8 (4), 220-229.
Bernabe, D. P.; Herrera, R. A. S.; Doma Jr, B. T.; Fu, M.-L.; Dong, Y.; Wang, Y.-F., Adsorption of low concentration formaldehyde in air using ethylene-diamine-modified diatomaceous earth. Aerosol and Air Quality Research 2015, 15 (4), 1652-1661.
Cakiryilmaz, N.; Arbag, H.; Oktar, N.; Dogu, G.; Dogu, T., Catalytic Performances of Ni and Cu Impregnated MCM-41 and Zr-MCM-41 for Hydrogen Production Through Steam Reforming of Acetic Acid. Catalysis Today 2018.
Chen, D.; Qu, Z.; Lv, Y.; Lu, X.; Chen, W.; Gao, X., Effect of oxygen pretreatment on the surface catalytic oxidation of HCHO on Ag/MCM-41 catalysts. Journal of Molecular Catalysis A: Chemical 2015a, 404-405, 98-105.
Chen, D.; Qu, Z.; Lv, Y.; Lu, X.; Chen, W.; Gao, X., Effect of oxygen pretreatment on the surface catalytic oxidation of HCHO on Ag/MCM-41 catalysts. Journal of Molecular Catalysis A: Chemical 2015b, 404, 98-105.
Chen, D.; Qu, Z.; Sun, Y.; Gao, K.; Wang, Y., Identification of reaction intermediates and mechanism responsible for highly active HCHO oxidation on Ag/MCM-41 catalysts. Applied Catalysis B: Environmental 2013, 142, 838-848.
Chen, Y.-H.; Lu, D.-L., Amine modification on kaolinites to enhance CO2 adsorption. Journal of Colloid and Interface Science 2014, 436, 47-51.
Cheng, Z.; Li, J.; Yang, P.; Zuo, S., Preparation of MnCo/MCM-41 catalysts with high performance for chlorobenzene combustion. Chinese Journal of Catalysis 2018, 39 (4), 849-856.
Han, B.; Zhang, F.; Feng, Z.; Liu, S.; Deng, S.; Wang, Y.; Wang, Y., A designed Mn2O3/MCM-41 nanoporous composite for methylene blue and rhodamine B removal with high efficiency. Ceramics International 2014, 40 (6), 8093-8101.
Kim, D. I.; Park, J. H.; Do Kim, S.; Lee, J.-Y.; Yim, J.-H.; Jeon, J.-K.; Park, S. H.; Park, Y.-K., Comparison of removal ability of indoor formaldehyde over different materials functionalized with various amine groups. Journal of Industrial and Engineering Chemistry 2011b, 17 (1), 1-5.
Kim, D. I.; Park, J. H.; Kim, S. D.; Lee, J.-Y.; Yim, J.-H.; Jeon, J.-K.; Park, S. H.; Park, Y.-K., Comparison of removal ability of indoor formaldehyde over different materials functionalized with various amine groups. Journal of Industrial and Engineering Chemistry 2011a, 17 (1), 1-5.
Kim, J. M.; Kim, J. H.; Lee, C. Y.; Jerng, D. W.; Ahn, H. S., Toluene and acetaldehyde removal from air on to graphene-based adsorbents with microsized pores. Journal of Hazardous Materials 2018, 344, 458-465.
Leofanti, G.; Padovan, M.; Tozzola, G.; Venturelli, B., Surface area and pore texture of catalysts. Catalysis Today 1998, 41 (1), 207-219.
Li, W.; Zhao, D., An overview of the synthesis of ordered mesoporous materials. Chemical Communications 2013, 49 (10), 943-946.
Li, Y.; Miao, J.; Sun, X.; Xiao, J.; Li, Y.; Wang, H.; Xia, Q.; Li, Z., Mechanochemical synthesis of Cu-BTC@ GO with enhanced water stability and toluene adsorption capacity. Chemical Engineering Journal 2016, 298, 191-197.
Liu, Y.; Chen, J.; Li, W.; Shen, D.; Zhao, Y.; Pal, M.; Yu, H.; Tu, B.; Zhao, D., Carbon functionalized mesoporous silica-based gas sensors for indoor volatile organic compounds. Journal of Colloid and Interface Science 2016, 477, 54-63.
Loganathan, S.; Tikmani, M.; Mishra, A.; Ghoshal, A. K., Amine tethered pore-expanded MCM-41 for CO2 capture: experimental, isotherm and kinetic modeling studies. Chemical Engineering Journal 2016, 303, 89-99.
Lopez, L.; Montes, V.; Kušar, H.; Cabrera, S.; Boutonnet, M.; Järås, S., Syngas conversion to ethanol over a mesoporous Cu/MCM-41 catalyst: Effect of K and Fe promoters. Applied Catalysis A: General 2016, 526, 77-83.
Ma, C.-M.; Ruan, R.-T., Adsorption of toluene on mesoporous materials from waste solar panel as silica source. Applied Clay Science 2013, 80–81, 196-201.
Na, C.-J.; Yoo, M.-J.; Tsang, D. C.; Kim, H. W.; Kim, K.-H., High-performance materials for effective sorptive removal of formaldehyde in air. Journal of Hazardous Materials 2018.
Nanda, B.; Pradhan, A. C.; Parida, K. M., A comparative study on adsorption and photocatalytic dye degradation under visible light irradiation by mesoporous MnO2 modified MCM-41 nanocomposite. Microporous and Mesoporous Materials 2016, 226, 229-242.
Nikpassand, M.; Fekri, L. Z.; Pourahmad, A., One-pot Synthesis of new azo-linked 4H-benzo [d][1, 3] oxazine-2, 4-diones from carbon dioxide using CuO@ RHA/MCM-41 nanocomposite in green media. Journal of CO2 Utilization 2018, 27, 320-325.
Organization, W. H., WHO guidelines for indoor air quality: selected pollutants. WHO: 2010.
Pak, S.-H.; Jeon, M.-J.; Jeon, Y.-W., Study of sulfuric acid treatment of activated carbon used to enhance mixed VOC removal. International Biodeterioration & Biodegradation 2016, 113, 195-200.
Pham, X. N.; Nguyen, B. M.; Thi, H. T.; Van Doan, H., Synthesis of Ag-AgBr/Al-MCM-41 nanocomposite and its application in photocatalytic oxidative desulfurization of dibenzothiophene. Advanced Powder Technology 2018.
Rengga, W.; Sudibandriyo, M.; Nasikin, M., Adsorption of low-concentration formaldehyde from air by silver and copper nano-particles attached on bamboo-based activated carbon. International Journal of Chemical Engineering and Applications 2013, 4 (5), 332.
Romero-Anaya, A. J.; Lillo-Ródenas, M. A.; Linares-Solano, A., Activation of a spherical carbon for toluene adsorption at low concentration. Carbon 2014, 77, 616-626.
Sayari, A., Periodic mesoporous materials: synthesis, characterization and potential applications. Studies in Surface Science and Catalysis 1996, 102, 1-46.
Sheikhshoaie, I.; Ramezanpour, S.; Khatamian, M., Synthesis and characterization of thallium doped Mn3O4 as superior sunlight photocatalysts. Journal of Molecular Liquids 2017, 238, 248-253.
Sun, X.; Xia, Q.; Zhao, Z.; Li, Y.; Li, Z., Synthesis and adsorption performance of MIL-101(Cr)/graphite oxide composites with high capacities of n-hexane. Chemical Engineering Journal 2014, 239, 226-232.
Suryawanshi, S.; Chauhan, A. S.; Verma, R.; Gupta, T., Identification and quantification of indoor air pollutant sources within a residential academic campus. Science of The Total Environment 2016, 569–570, 46-52.
Taguchi, A.; Schüth, F., Ordered mesoporous materials in catalysis. Microporous and Mesoporous Materials 2005, 77 (1), 1-45.
Teiri, H.; Pourzamani, H.; Hajizadeh, Y., Phytoremediation of VOCs from indoor air by ornamental potted plants: A pilot study using a palm species under the controlled environment. Chemosphere 2018, 197, 375-381.
Tongon, W.; Chawengkijwanich, C.; Chiarakorn, S., Multifunctional Ag/TiO2/MCM-41 nanocomposite film applied for indoor air treatment. Building and Environment 2014, 82, 481-489.
Wang, L.; Ding, W.; Sun, Y., The preparation and application of mesoporous materials for energy storage. Materials Research Bulletin 2016, 83, 230-249.
Wang, S., Ordered mesoporous materials for drug delivery. Microporous and Mesoporous Materials 2009, 117 (1–2), 1-9.
Wang, W.; Wang, H.; Zhu, T.; Fan, X., Removal of gas phase low-concentration toluene over Mn, Ag and Ce modified HZSM-5 catalysts by periodical operation of adsorption and non-thermal plasma regeneration. Journal of Hazardous Materials 2015a, 292, 70-78.
Wang, X.; Guo, Q.; Kong, T., Tetraethylenepentamine-modified MCM-41/silica gel with hierarchical mesoporous structure for CO2 capture. Chemical Engineering Journal 2015b, 273, 472-480.
WHO, I., ndoor Air Quality: Organic Pollutants. Regional Office for Europe, Copen-hagen 1989.
Xie, Z.-Z.; Wang, L.; Cheng, G.; Shi, L.; Zhang, Y.-B., Adsorption properties of regenerative materials for low concentration toluene removal. Journal of the Air & Waste Management Association 2016, (just-accepted).
Xu, X.; Wang, P.; Xu, W.; Wu, J.; Chen, L.; Fu, M.; Ye, D., Plasma-catalysis of metal loaded SBA-15 for toluene removal: Comparison of continuously introduced and adsorption-discharge plasma system. Chemical Engineering Journal 2016, 283, 276-284.
Xu, X.; Wu, J.; Xu, W.; He, M.; Fu, M.; Chen, L.; Zhu, A.; Ye, D., High-efficiency non-thermal plasma-catalysis of cobalt incorporated mesoporous MCM-41 for toluene removal. Catalysis Today 2017, 281, Part 3, 527-533.
Xu, Z.; Yu, J.; Jaroniec, M., Efficient catalytic removal of formaldehyde at room temperature using AlOOH nanoflakes with deposited Pt. Applied Catalysis B: Environmental 2015, 163, 306-312.
Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. science 1998a, 279 (5350), 548-552.
Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society 1998b, 120 (24), 6024-6036.

王姵絜,(2013),多孔材料用於揮發性有機物質的吸脫附特性研究,國立中央大學,化學學系碩士論文。
行政院環保署底渣再利用資訊網(http://www.epa.gov.tw/ct.asp?xItem=44197&CtNode=34760&mp=epa)
行政院環境保護署室內空氣品質管理網(http://ivy5.epa.gov.tw/ePalaw/search/LordiDispFull.aspx?ltype=20&lname=0010)
行政院環境檢驗所,(2018),排放管道中醛、酮類標準檢測方法-2,4-二硝基苯胼衍生化/高效能液相層析法,NIEA A725.72B。
何志麒,(2014),垃圾焚化底渣資源化處理之研究-水溶性氯離子去除成效,國立台北科技大學,環境工程與管理研究所碩士學位論文。
李銘仁,(2015),甲苯於布料上之吸附及釋出特性探討,國立雲林科技大學,環境與安全衛生工程系環境與安全衛生工程組碩士論文。
杜建蒼,(2014),焚化底渣處理技術與處理廠營運管理之研究,國立中央大學,土木工程學系碩士論文。
林正大,(2015),焚化爐底渣應用於透水混凝土之研究,國立屏東科技大學,土木工程系碩士學位論文。
林佳慧,(2017),鎳鐵/鑭鍶錳氧化物雙層薄膜之磁性質及磁電傳輸特性研究,國立中興大學材料科學與工程學系碩士學位論文,
徐麗瀅,(2007),自製沸石玻纖濾網之特性分析及其甲醛吸附效能之研究,國立雲林科技大學,環境與安全衛生工程系碩士論文。
翁煜翔,(2017),商場室內空氣品質二氧化碳及甲醛調查分析之研究探討,國立中興大學,環境工程學系在職專班碩士學位論文。
國立中興大學貴儀中心。
(http://research.nchu.edu.tw/unit-news-detail/id/63/unit/9/mid/83#EA)
張庠睿,(2015),底渣細粒料中水尾土含量對底渣水泥砂漿之影響,國立屏東科技大學,土木工程系碩士學位論文。
郭祈男,(2010),稻草、膨發稻草及疏水性沸石對水、甲苯及氨的吸附探討,國立屏東科技大學,環境工程與科學系碩士學位論文。
陳煒政,(2014),高雄捷運的室內空氣品質甲醛濃度研究,國立屏東科技大學,環境工程與科學系碩士學位論文。
馮慧蕙,(2013),應用改質吸附劑去除室內環境中甲醛之研究,中原大學,生物環境工程學系碩士學位論文。
黃一明,(2013),焚化灰渣掩埋場滲出水特性之探討,國立屏東科技大學,環境工程與科學系碩士學位論文。
黃于珊,(2014),飛灰合成銀觸媒在生物氣膠除菌及其材料特性之研究,國立雲林科技大學,環境與安全衛生工程系環境與安全衛生工程組碩士論文。
黃婉綺,(2013),有害廢棄物焚化底渣之重金屬長期溶出行為,國立高雄應用科技大學,化學工程與材料工程系碩士班碩士論文。
經濟部工業局產業資訊網,環保技術與法規資訊電子報第104期室內空氣品質管理與改善簡介(https://proj.ftis.org.tw/eta/epaper/epaper/Eco-104.htm#item1-1)
蔡孟哲,(2012),胺基修飾中孔洞矽材和碳材料對二氧化碳捕集能力的評估,國立宜蘭大學,環境工程學系(研究所)碩士論文。
薛達懇撰,(2014),固結焚化底渣之長期穩定性影響,國立高雄大學,土木與環境工程學系碩士論文。
謝佳育,(2014),教育場所室內空氣品質調查之研究-以幼兒園為例,景文科技大學,環境與物業管理系暨研究所碩士學位論文。
蘇毅騰,(2014),利用廢石英砂製備中孔洞與微孔材料進行二氧化碳處理之研究,國立宜蘭大學,環境工程學系(所)碩士論文。

電子全文 電子全文(網際網路公開日期:20220131)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔