跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/16 12:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱鳴巍
研究生(外文):CHU, MING-WEI
論文名稱(外文):Development of Ag Diffusion Inhibited Glass-Ceramics for 5G Antenna
指導教授:馮奎智
指導教授(外文):FENG, KUEI-CHIH
口試委員:杜繼舜陳炳宜馮奎智陳正劭古家豪
口試委員(外文):TU, CHI-SHUNCHEN, PIN-YIFENG, KUEI-CHIHCHEN, CHENG-SAOKU, CHIA-HAOJESURAJ ANTHONIAPPEN
口試日期:2019-06-17
學位類別:碩士
校院名稱:明志科技大學
系所名稱:機械工程系機械與機電工程碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:92
外文關鍵詞:DiopsideGlass-CeramicLTCCSilver Diffusion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Glass-ceramic materials reveal the excellent millimeter-wave dielectric properties for LTCC devices for the 5G system. However, the mechanisms and characteristics of silver diffusions are not precise while glass-ceramics co-fired with the silver electrodes. In this study, the behaviors and inhibitions of silver diffusions will be investigated into diopside glass-ceramics (CaMgSi2O6) with 0wt%~2wt% SiO2 additions co-fired with silver electrodes.
The DSC results show nucleation and crystal growth temperature of CaMgSi2O6 are at 900℃~930℃. Moreover, the additions of SiO2 promote the transition temperatures of CaMgSi2O6 to increase, which demonstrates the high activation energies of viscosities in the glass-ceramics with SiO2 additions. EPMA-WDS mappings show extreme inter-diffusions of Ag and Zn in the CaMgSi2O6 without SiO2 addition. However, CaMgSi2O6 with SiO2 additions exhibit low inter-diffusions of Ag and Zn, indicating SiO2 additions in the CaMgSi2O6 inhibit the diffusions of Ag and Zn. SEM-WDS mappings illustrate high contents of Ca, Mg congest around the SiO2 particle and gradually decrease in the heart of the SiO2 particle, besides, Si ions from the SiO2 particle diffuse into the material, furthermore, TEM data exhibit the similar phenomenon. Silver diffusions in the CaMgSi2O6 substrates do not affect millimeter wave dielectric properties dramatically at 30GHz~90GHz. Besides, the CaMgSi2O6 with SiO2 additions co-fired with Ag electrodes exhibit better microwave dielectric properties of silver electrodes and S11 data than materials without SiO2 addition, indicating the high potential for applications in 5G communication components.

CONTENTS
Thesis Oral Defense Committee Certification i
Abstract ii
Contents iii
Figures List vi
Tables List x
Chapter 1 Introduction 1
Prefaces 1
Objectives 2
Chapter 2 Literatures Review 3
Theories of Microwave Dielectric Materials 3
Characteristics of Microwave Dielectric Materials 5
Dielectric Constant (ε_γ) 5
Quality Factor (Q×f) and Dissipation Factor (DF) 8
Temperature Coefficient of the Resonant Frequency (τ_f) 9
Formations of Glass-Ceramics 11
Structures and Compositions of Diopside in Glass-Ceramics 12
Low Temperature Co-Fired Ceramics (LTCC) 14
Microstrip Patch Antennas 17
Introduction 17
Feeding Methods 18
Antenna Design 21

Silver Diffusions in LTCC Materials 23
Properties of CaO-MgO-SiO2 Glass-Ceramic 23
Silver Diffusions in CaO-MgO-SiO2 Glass-Ceramic 25
Control of Silver Diffusions in LTCC Materials 29
Chapter 3 Experimental Procedures and Analyzing Approaches 33
Experimental Processes 33
Tape Casting Methods 34
Procedures of Microstrip Antennas 35
Experimental Drugs and Instruments 37
Analyzing Instruments 38
Differential Scanning Calorimetry, DSC 39
X-ray Diffraction, XRD 41
Vector Network Analyzer 43
Scanning Electron Microscope, SEM 45
Transmission Electron Microscope, TEM 46
Electron Probe Microanalysis, EPMA 47
Wavelength Dispersive Spectroscopy, WDS 49
Energy Dispersive Spectroscopy, EDS 51
Chapter 4 Results and Discussions 52
Microwave Dielectric Properties of Diopside Glass-Ceramic 52
XRD Results for Diopside Glass-Ceramic 54
DSC Results for Diopside Glass-Ceramic 55
EPMA-WDS Results for Diopside Glass-Ceramic 56
SEM-WDS Results for Diopside Glass-Ceramic 58

TEM Results for Diopside Glass-Ceramic 60
Fabry-Perot Open Resonator Millimeter Wave Dielectric Properties of Diopside Glass-Ceramic 64
Split-Post Dielectric Resonator Microwave Dielectric Properties of Diopside Glass-Ceramic 67
S11 Measurements of Diopside Glass-Ceramic Antennas 70
Chapter 5 Conclusions 73
References 75

FIGURES LIST
Fig. 1-1 Applications and distributions at frequency. 3
Fig. 2-1 Dielectric constants as functions at frequency for polarization mechanisms. 7
Fig. 2-2 Relaxation time as functions of voltages, electric charges and currents. 8
Fig. 3-1 Manufacturing processes of glass-ceramics. 11
Fig. 4-1 Flow chart for ideal site-occupancy of cations among the T, M1 and M2 sites in pyroxenes. 13
Fig. 5-1 Configuration of microstrip antenna. 18
Fig. 5-2 Configuration of microstrip line feed. 18
Fig. 5-3 Configuration of coaxial feed. 19
Fig. 5-4 Configuration of aperture-coupled feed. 20
Fig. 5-5 Configuration of proximity-coupled feed. 21
Fig. 6-1 DSC result of CaO-MgO-SiO2 glass-ceramic at different temperatures from 20℃ to 900℃. 24
Fig. 6-2 X-ray diffraction patterns of CaO-MgO-SiO2 glass-ceramic sintered
at different temperatures from 780℃ to 870℃ for 2 hrs. 24
Fig. 6-3 Microstructural features of CaO-MgO-SiO2 glass-ceramics sintered at (a) 780℃ (b) 800℃ (c) 830℃ (d) 850℃ (e) 870℃ for 2 hrs. 25
Fig. 6-4 Diopside glass-ceramic co-fired with silver electrode at 870℃ for 2hrs, and then polished the Ag layer. 26
Fig. 6-5 XRD-Refinement results of pure glass-ceramic and glass-ceramic with Ag diffusion sintered at 870℃ for 2hrs. 27
Fig. 6-6 EPMA-mapping results of a diopside glass-ceramics co-fired with Ag electrode sintered at temperatures from 780℃ to 870℃ for 30 minutes. 27
Fig. 6-7 EPMA-mapping results of a diopside glass-ceramics co-fired with Ag electrode sintered at 870℃ for 30 minutes. 28
Fig. 6-8 Raman results of a diopside glass-ceramics co-fired with Ag electrode sintered at temperatures from 800℃ to 850℃ for 2hrs. 28
Fig. 7-1 DSC thermal analyses of glass transition temperatures (Tg) for different amounts of SiO2 additions in CaO-Al2O3-B2O3-SiO2 glasses. 30
Fig. 7-2 Plots of ln(D) versus reciprocal of absolute temperature (1/T) for different amounts of Al2O3, SiO2 and Al2O3 with SiO2 additions in CaO-Al2O3-B2O3-SiO2 glasses. “D” is diffusion coefficient. 31
Fig. 7-3 Distances of silver diffusions were determined by the EPMA-WDS line scan method for (a) 8wt% Al2O3, (b) 8wt% SiO2 and (c) 8wt% Al2O3 with 8wt% SiO2 additions in CaO-Al2O3-B2O3-SiO2 glasses. All specimens were co-fired with silver electrodes at 900℃ for 0.5hr. 31
Fig. 7-4 (a) CaO-Al2O3-B2O3-SiO2 glass without SiO2 additions formed a small amorphous network bond and less clusters of broken bonds, (b) CaO-Al2O3-B2O3-SiO2 glass without SiO2 additions formed a large amorphous network bond and more clusters of broken bonds, and (c) oxygen clusters indicated by the dashed lines trapped silver ions and formed Ag-O bonds. 32
Fig. 8-1 Experimental procedure of glass-ceramic and tape casting method. 34
Fig. 8-2 Configuration of tape casting method. 35
Fig. 8-3 Configuration of semi-finished antennas. 36
Fig. 9-1 Schematic of Bragg’s law. 41
Fig. 10-1 Schematic of cylindrical cavity. 44

Fig. 11-1 Densities, quality factors and dielectric constants of CaMgSi2O6 with 0wt%~2wt% SiO2 additions. 53
Fig. 12-1 XRD results for CaMgSi2O6 with 0wt%~2wt% SiO2 additions. 54
Fig. 13-1 DSC results for CaMgSi2O6 powders with 0wt% ~ 2wt% SiO2 additions. 55
Fig. 14-1 (a) & (b) Ag and Zn diffusions of CaMgSi2O6 without SiO2 addition.
(c) & (d) Ag and Zn diffusions of CaMgSi2O6 with 2wt% SiO2 additions. 57
Fig. 15-1 SEM image of SiO2 particle in CaMgSi2O6 materials. 58
Fig. 15-2 SEM-WDS mappings of Ca and Ag are accumulated around the SiO2 particle. 59
Fig. 15-3 SEM-WDS mappings of Mg and Zn are accumulated around the SiO2 particle. 59
Fig. 16-1 TEM bright-field image of CaMgSi2O6 glass-ceramic with SiO2 additions. 61
Fig. 16-2 DP-1 shows the single crystal structure in the heart of SiO2 particle. 61
Fig. 16-3 DP-2 shows the single crystal structure gradually alters to the polycrystalline structure at the boundary. 62
Fig. 16-4 DP-3 shows the polycrystalline structure in the matrix. 62
Fig. 16-5 Variations of Ca, Mg, Si and O from Area “1” to Area “7”. 63
Fig. 17-1 Configuration of Fabry-Perot Open Resonator. 64
Fig. 17-2 (a) Image of transparent CaMgSi2O6 substrate. (b) Image of CaMgSi2O6 substrate co-fired with silver electrode. (c) Image of CaMgSi2O6 substrate with silver diffusion after polish Ag electrode. 65
Fig. 17-3 Dielectric constants of transparent CaMgSi2O6 substrate and CaMgSi2O6 substrate with Ag diffusion at 30GHz to 90GHz. 66

Fig. 17-4 Loss tangents of transparent CaMgSi2O6 substrate and CaMgSi2O6 substrate with Ag diffusion at 30GHz to 90GHz. 66
Fig. 18-1 Configuration of Split-Post Dielectric Resonator. 67
Fig. 18-2 Mode-1 shows LTCC materials co-fired with Ag electrode. Mode-2 shows LTCC materials were sintered as substrates, and then Ag pastes were sintered on the surfaces of substrates. 68
Fig. 19-1 Configuration and dimension of CaMgSi2O6 antenna. 70
Fig. 19-2 S11 measurements of Mode-1 and Mode-2 at ~28GHz. 71
Fig. 19-3 S11 measurements of CaMgSi2O6 antennas with 0wt% (MA0), 1wt% (MA1) and 2wt% (MA2) SiO2 additions at~28GHz. 72

Tables List
Table 1-1 Three types of phase structure in pyroxene group. 12
Table 2-1 Microwave dielectric ceramics added with low melting point glasses or
powders in LTCC (<1000℃). 15
Table 2-2 Application of microwave dielectric glass-ceramics in LTCC (<100
℃). 16
Table 3-1 Experimental drugs specification table. 37
Table 3-2 Experimental instruments specification table. 37
Table 4-1 Analyzing instruments specification table. 38
Table 5-1 Variations of Ca, Mg, Si and O from Area “1” to Area “7”. 63
Table 6-1 Microwave dielectric properties of Mode-1 and Mode-2 at ~8GHz. 69
Table 6-2 Microwave dielectric properties of substrates with 0w%, 1wt% and
2wt% SiO2 additions at ~8GHz. 69

References

1.R. J. Cava, “Dielectric materials for applications in microwave communications”, J. Mater. Chem. 11 (2001) 54-62.
2.J. Daniels, K. H. Hardtl, D. Hennings, R. Wernicke, “Defect chemistry and electrical conductivity of doped barium titanate ceramics”, Philips Res. Rep. 31 (1976) 487-559.
3.R. T. Hsu, J. H. Jean, “Key Factors Controlling Camber Behavior during the Cofiring of Bi-Layer Ceramic Dielectric Laminates”, J. Am. Ceram. Soc. 2005, 88, 2429-2434.
4.J. C. Chang, J. H. Jean, “Camber Development during the Cofiring of Bi-Layer Glass-Based Dielectric Laminate”, J. Am. Ceram. Soc. 2005, 88, 1165-1170.
5.李浩維, “透輝石相(CaMgSi2O6)玻璃陶瓷與銀電極共燒之銀擴散現象及其微觀結構之研究”, 明志科技大學碩士論文. 2017.
6.C. S. Hsi, Y. R. Chen, H. I. Hsiang, “Diffusivity of silver ions in the low temperature co-fired ceramic (LTCC) substrates”, J. Mater. Sci. 46 (2011) 4695-4700.
7.K. C. Feng, P. Y. Chen, C. S. Tu, C. S. Chen, R. R. Chien, C. C. Chiang, W. S. Chang, “Ag diffusion inhibition and enhanced flexural strength in low temperature co-fired CaO-Al2O3-B2O3-SiO2 glasses”, J. Alloys Compd. 782 (2019) 1094-1102.
8.J. M. Osepchuk, “A History of Microwave Heating Applications”, Microwave Theory & Tech. 9, 1200-1224, 1984.

9.R. D. Richtmyer, “Dielectric Resonator”, Japanese Journal of Applied Physics. 10, 391-398, 1939.
10.A. Okaya, “The Rutile Microwave Resonator”, Proceeding of the IRE. 48, 1921, 1960.
11.H. M. O. Bryan JR, and J. Thomson JR, “A new BaO-TiO2 Compound with temperature-Stable High Permittivity and Low Microwave Loss”, Journal of American Ceramic Society. 57, 522-526, 1974.
12.S. H. Kim, D. W. Cho, S. Y. Hong, and K. S. Yoon, “Phase analysis and microwave dielectric properties of LTCC TiO2 with glass system”, Journal of the European Ceramic Society. 23, 2549-2552, 2003.
13.X. M. Chen, Y. H. Sun, and X. H. Zheng, “High permittivity and low loss dielectric ceramics in the BaO-La2O3-TiO2-Ta2O5 system”, Journal of the European Ceramic Society. 23, 1571-1575, 2003.
14.C. L. Pan, C. L. Shium, and S. J. Huang, “Liquid phase sintering of MgTiO3-CaTiO3 microwave dielectric ceramics”, Materials Chemistry and Physics. 78, 111-115, 2003.
15.W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to ceramics”, John Wiley and Sons. New York, 1975.
16.李俊遠, 電子與材料雜誌, 第14期, 第102至108頁.
17.S. X. Dai, R. F. Huang, and D. L. Wilcox, “Use of Titanates to Achieve a Temperature‐Stable Low‐Temperature Cofired Ceramic Dielectric for Wireless Applications”, Journal of American Ceramic Society. 85, 828-832, 2002.
18.W. D. Callister and D. G. Rethwisch, “Material science and engineering”, John Wiley and Sons. New York, 2016.
19.G. H. Beall, “Design and properties of glass-ceramics”, Annual Review Materials Science. 22, 91-119, 1992.
20.陳文照, 廖金喜, 蔡明雄, 蔡丕樁, 材料科學與工程 (第三版), 全華圖書, 1996.
21.王守誠, “澎湖群島斜輝石偉晶之化學特性在岩漿演化之應用”, 國立成功大學碩士論文. 2007.
22.W. A. Deer, R. A. Howie, and J. Zussman, “Rock-Forming Minerals”, John Wiley and Sons. New York, 1978.
23.S. F. Wang, T. C. K. Yang, Y. R. Wang, Y. Kuromitsu, “Effect of glass composition on the densification and dielectric properties of BaTiO3 ceramics”, Ceramics International. 27, 157-162, 2001.
24.Q. L. Zhang, H. Yang, and J. X. Tong, “Low-temperature firing and microwave dielectric properties of MgTiO3 ceramics with Bi2O3-V2O5”, Material Letters. 60, 1188-1191, 2006.
25.M. Ohsahi, H. Ogawa, A. Kan and E. Tanaka, “Microwave dielectric properties of low-temperature sintered Li3AlB2O6 ceramic”, Journal of the European Ceramic Society. 25, 2877–2881, 2005.
26.J. Y. Ha, J. W. Choi, S. J. Yoon, D. J. Choi, K. H, Yoon, and H. J. Kim, “Microwave dielectric properties of Bi2O3-doped Ca[(Li1/3Nb2/3)1-xTix]O3 ceramics”, Journal of the European Ceramic Society. 23, 2413–2416, 2003.
27.J. S. Kim, M. E. Song, M. R. Joung, J. H. Choi, and S.Nahm, “Effect of B2O3 addition on the sintering temperature and microwave dielectric properties of Zn2SiO4 ceramics”, Journal of the European Ceramic Society. 30, 375-379, 2010.

28.R. Lebourgeoisa, S. Dugueyb, J. P. Gannea, and J. M. Heintz, “Influence of V2O5 on the magnetic properties of nickel-zinc-copper ferrites”, Journal of Magnetism and Magnetic Materials. 312, 328-330, 2007.
29.M. R. Joung, J. S. Kim, M. E. Song, S. Nahm, and J. H. Paik, “Microstructure and Microwave Dielectric Properties of the Li2CO3‐Added Sr2V2O7 Ceramics”, Journal of American Ceramic Society. 93, 2132-2135, 2010.
30.S. F. Wang, T. C. K. Yang, Y. R. Wang, Y. Kuromitsu, “Effect of glass composition on the densification and dielectric properties of BaTiO3 ceramics”, Ceramics International. 27, 157-162, 2001.
31.Q. L. Zhang, H. Yang, and J. X. Tong, “Low-temperature firing and microwave dielectric properties of MgTiO3 ceramics with Bi2O3-V2O5”, Material Letters. 60, 1188-1191, 2006.
32.H. Jantunen, A. Uusima¨ki, R. Rautioaho, and S. Leppa¨vuori, “Compositions of MgTiO3-CaTiO3 ceramic with two borosilicate glasses for LTCC technology”, Journal of the European Ceramic Society. 20, 2331-2336, 2000.
33.N. Mori, Y. Sugimoto, J. Harada, and Y. Higuchi, “Dielectric properties of new glass-ceramics for LTCC applied to microwave or millimeter-wave frequencies”, Journal of the European Ceramic Society. 26, 1925-1928, 2006.
34.M. Ohsahi, H. Ogawa, A. Kan and E. Tanaka, “Microwave dielectric properties of low-temperature sintered Li3AlB2O6 ceramic”, Journal of the European Ceramic Society. 25, 2877-2881, 2005.

35.J. S. Kim, J. C. Lee, C. I. Cheon, and C. H. Lee, International Symposium on Research reactor and neutron science. Daejeon, Korea, 2005, 682-685.
36.R. Umemura, H. Ogawa, H. Ohsato, A. Kan, and A. Yokoi, “Microwave dielectric properties of low-temperature sintered Mg3(VO4)2 ceramic”, Journal of the European Ceramic Society. 25, 2865-2870, 2005.
37.R. Umemura, H. Ogawa, A. Yokoi, H. Ohsato, and A. Kan, “Low-temperature sintering-microwave dielectric property relations in Ba3(VO4)2 ceramic”, Journal of Alloys and Compounds. 424, 388-393, 2006.
38.C. Zhong, Y. Yuan, S. Zhang, Y. Pang, and B. Tang, “Low-fired BiNbO4 microwave dielectric ceramics modified by CuV2O6 addition sintered in N2 atmosphere”, Journal ceramics silikaty. 54, 103-107, 2010.
39.C. R. Chang, and J. J. Jean, “Crystallization Kinetics and Mechanism of Low‐Dielectric, Low‐Temperature, Cofirable CaO-B2O3-SiO2 Glass‐Ceramics”, Journal of American Ceramic Society. 82, 1725-1732, 1999.
40.J. J. Jean, and Y. C. Fang, “Devitrification Kinetics and Mechanism of K2O-CaO-SrO-BaO-B2O3-SiO2 Glass‐Ceramic”, Journal of American Ceramic Society. 84, 1354-1360, 2001.
41.S. Srivastava, A. Khandelwal and S. Sharma, “Microstrip Patch Antenna: A Survey”, IOSR Journal of Electrical and Electronics Engineering. 2014.
42.Y. Rhazi, S. Bri and R. Touahani, “Effect of Microstrip Antenna Feeding in the K-band”, International Journal of Engineering and Technology. 2013.
43.R. B. Raut and V. D. Nagrale, “Multilayer Microstrip Antenna for broadband Applications”, Journal of Science and Research. 2015.

44.C. S. Hsi, Y. R. Chen and H. I. Hsiang, “Diffusivity of silver ions in the low temperature co-fired ceramic (LTCC) substrates”, J. Mater. Sci. 2011, 46, 4695-4700.
45.P. Hudon, I. H. Jung and D. R. Baker, “Experimental investigation and optimization of thermodynamic properties and phase diagrams in the systems CaO-SiO2, MgO-SiO2, CaMgSi2O6-SiO2, and CaMgSi2O6-Mg2SiO4”, J. Petrol. 2005, 46, 1859-1880.
46.K. C. Feng, C. C. Chou, C. Y. Tsao, L. W. Chu, I. P. Raevski and H. Chen, “A novel phase-controlling-sintering route for improvement of diopside-based microwave dielectric materials”, Ceram. Int. 2015, 41, S526-S529.
47.K. C. Feng, C. C. Chou, L. W. Chu and H. Chen, “Zirconia nucleating agent on microstructural and electrical properties of a CaMgSi2O6 diopside glass-ceramic for microwave dielectrics”, Mater. Res. Bull. 2012, 47, 2851-2855.
48.T. Sugiyama, T. Tsunooka, K. Kakimoto, and H. Ohsato, “Microwave dielectric properties of forsterite-based solid solutions”, J. Eur. Ceram. Soc. 2006, 26, 2097-2100.
49.T. Tsunooka, T. Sugiyama, H. Ohsato, K. Kakimoto, M. Andou, Y. Higashida, and H. Sugiura, “Development of Forsterite with High Q and Zero Temperature Coefficient for Millimeterwave Dielectric Ceramics”, Key Eng. Mater. 2004, 269, 199-202.
50.M. E. Song, J. S. Kim, M. R. Joung and S. Nahm, “Synthesis and Microwave Dielectric Properties of MgSiO3 Ceramics”, J. Am. Ceram. Soc. 2008, 91, 2747-2750.
51.H. P. Wang, Q. L. Zhang, H. Yang and H. P. Sun, “Synthesis and microwave dielectric properties of CaSiO3 nanopowder by the sol-gel process”, Ceram. Int. 2008, 34, 1405-1408.
52.M. I. Ojovan, “Viscosity and glass transition in amorphous oxides”, Adv. Cond. Matter Phys. 817829 (2008) p.23.

電子全文 電子全文(網際網路公開日期:20240722)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊