跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/20 07:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭珺鐸
研究生(外文):PENG, CHUN-TO
論文名稱:電紡聚丙烯腈奈米纖維膜表面改質的製備及其抗菌活性
論文名稱(外文):Preparation and Antibacterial Activity of Surface Modification of Electrospun Polyacrylonitrile Nanofiber Membrane
指導教授:張煜光張煜光引用關係蔡榮進
指導教授(外文):CHANG, YU-KUANGTSAI, JUNG-CHIN
口試委員:劉炳嵐張煜光蔡榮進
口試委員(外文):LIU, BING-LANCHANG, YU-KUANGTSAI, JUNG-CHIN
口試日期:2019-01-23
學位類別:碩士
校院名稱:明志科技大學
系所名稱:化學工程系生化工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:71
中文關鍵詞:奈米纖維薄膜幾丁聚醣聚六亞甲基雙胍抗菌率大腸桿菌
外文關鍵詞:NanofiberChitosanPoly(hexamethylene biguanide)Antibacterial activityE. coli
相關次數:
  • 被引用被引用:0
  • 點閱點閱:112
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用靜電紡絲技術製備聚丙烯腈(PAN)奈米纖維膜,經過熱處理和鹼水解後,可得離子交換膜(P-COOH),再以幾丁聚醣分子接枝,即得改質型幾丁聚醣膜(P-COOH-CS)。此兩種膜(即P-COOH和P-COOH-CS)最後分別與聚(六亞甲基雙胍)(PHMB)共價固定,即P-COOH-PHMB和P-COOH-CS-PHMB膜。本研究的主要工作包括:(1)不同分子量的殼聚醣分子耦聯得到的胺根含量;(2)膜抗菌活性最佳改質pH值;(3)最佳抗菌活性固定化PHMB的含量;(4)PHMB膜所需的最短抗菌時間;(5)PHMB膜可達到100%抗菌活性的大腸桿菌數量;(6)重複使用PHMB膜來評估其抗菌效率。研究結果顯示,膜片改質過程水溶性幾丁聚醣分子量50 kDa,PHMB改質最佳pH值為7, PHMB改值濃度為0.05%。處理2.0±0.7 x 107 CFU/mL E. coli,在 10 分鐘內,即可達到100%的抗菌率。在相同的條件下,P-COOH-CS-PHMB膜的抗菌效率優於P-COOH-PHMB膜。當最高處理菌量提升2000倍時,二者膜片仍能維持100%抗菌率。經過5個循環的重複抗菌操作後,P-COOH-PHMB抗菌率為96%,而P-COOH-CS-PHMB抗菌率為83%。實驗結果顯示,PHMB膜可用於水消毒和生物污垢控制,尤其適用於水處理應用。
In this study, polyacrylonitrile (PAN) nanofiber membrane was prepared by an electrospinning technique. After heat treatment and alkaline hydrolysis, the ion exchange membrane (P-COOH) was grafted with chitosan molecule, namely modified chitosan membrane (P-COOH-CS). The two kinds membranes (i.e., P-COOH and P-COOH-CS) and finally covalently immobilized onto the membranes with a poly(hexamethylene biguanide)(PHMB), respectively, namely P-COOH-PHMB and P-COOH-CS-PHMB membranes. The membranes were subjected to a series of surface analysis and qualitative and quantitative evaluation of the antibacterial activity of E. coli. The main work in this study included: (1) the contents of amine functional groups provided by coupling with different molecular weights of chitosan molecules, (2) the modification pH of the optimal antibacterial activity for membranes, (3) the optimal antibacterial activity of the amount for the immobilized PHMB membranes, (4) The shortest antibacterial time required for the PHMB membranes, (5) the amount of E. coli bacteria that can be processed by PHMB membranes for 100% antibacterial activity, and (6) the repeated use of PHMB membrane for evaluation its antibacterial efficiency. The results showed that the optimal modification conditions for PHMB were water-soluble chitosan with molecular weight of 50 kDa, coupling pH value of 7, and the PHMB concentration of 0.05% (v/v). Within 10 minutes, 100% antibacterial rate can be achieved under treatment of 2.0±0.7 x 107 CFU/mL E. coli. Under the same antibacterial conditions, the P-COOH-CS-PHMB membrane has better antibacterial efficiency than the P-COOH-PHMB membrane. When the number of bacteria is increased by 2,000 times, the two membranes can still maintain 100% antibacterial rate. After 5 cycles of repeated antibacterial procedures, the P-COOH-PHMB antibacterial rate was 96%, while the P-COOH-CS-PHMB antibacterial rate was 83%. The experimental results revealed that the PHMB modified membranes can be applied in water disinfection and biofouling control, especially for water treatment applications.
明志科技大學碩士學位論文口試委員審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目錄 vi
圖目錄 x
表目錄 xii
縮寫對照表 xiii
第一章 文獻回顧 1
第二章 緒論 3
2.1 奈米纖維膜介紹 3
2.1.1 奈米纖維薄膜應用與發展 3
2.1.2 奈米纖維膜技術 3
2.1.3 靜電紡絲纖維技術原理 4
2.2 抗菌技術 5
2.2.1 奈米光觸媒(TiO2) 5
2.2.2 銀離子(Ag+) 6
2.2.3 幾丁聚醣(Chitosan) 6
2.2.4 聚六亞甲基雙胍(PHMB) 7
2.3 抗菌動力學 11
2.3.1 擬一階動力學抗菌速率常數 11
2.3.2 擬二階動力學模式 12
2.4 實驗架構 13
第三章 實驗方法與材料 14
3.1 實驗藥品與設備 14
3.1.1 實驗藥品 14
3.1.2 實驗設備 15
3.2 奈米靜電紡絲機 16
3.2.1 介紹 16
3.2.2 PAN奈米纖維薄膜之配製 16
3.2.3 PAN奈米纖維薄膜紡絲參數 18
3.3 奈米纖維薄膜 19
3.3.1 P-COOH薄膜製備 19
3.3.2 P-COOH-Chitosan薄膜製備 20
3.3.3 P-COOH-PHMB/ P-COOH-CS-PHMB薄膜製備 21
3.4 奈米纖維薄膜官能基含量之測定 23
3.4.1 TBO染料 23
3.4.2 TBO檢量線製作 24
3.4.3 TBO染料定量羧基之含量 25
3.4.4 AO7染料 26
3.4.5 AO7檢量線製作 26
3.4.6 AO7染料定量胺基之含量 27
3.4.7 聚六亞甲基雙胍(PHMB)檢量線製作 28
3.4.8 聚六亞甲基雙胍(PHMB)含量測定 30
3.5 奈米纖維膜物性分析 30
3.5.1 傅立葉轉換紅外光譜儀(FTIR) 30
3.5.2 掃描式電子顯微鏡(SEM) 30
3.5.3 熱重量分析(TGA) 31
3.6 奈米纖維膜抗菌測試 31
3.6.1 膜片前處理 31
3.6.2 液態培養基配製 31
3.6.3 半固態培養基配製 32
3.6.4 0.85% 生理食鹽水配製 33
3.6.5 大腸桿菌之活化 33
3.6.6 大腸桿菌之保存 33
3.6.7 大腸桿菌之培養 34
3.6.8 實驗方法 34
3.6.8.1 AATCC 147抗菌定性測試 34
3.6.8.2 AATCC 100抗菌定量測試( 0 hr and 24 hr) 34
3.6.8.3 重複循環抗菌測試 36
第四章 結果與討論 37
4.1 奈米纖維薄膜物性分析 37
4.1.1 羧基含量測定 37
4.1.2 胺根含量測定 38
4.1.3 PHMB含量測定 39
4.1.4 掃描式電子顯微鏡(SEM)測定膜片表面狀態 39
4.1.5 傅立葉轉換紅外光譜儀(FTIR)測定膜片官能基 46
4.1.6 熱種分析(TGA)測定膜片裂解溫度 48
4.2 奈米纖維薄膜抗菌定性測試(AATCC 147) 49
4.2.1 PAN膜片定性測試 49
4.2.2 P-COOH膜片定性測試 49
4.2.3 P-COOH-CS膜片定性分析 49
4.2.4 P-COOH-PHMB/ P-COOH-CS-PHMB膜片定性分析 50
4.3 奈米纖維薄膜抗菌定量測試(AATCC 100) 51
4.3.1 不同耦合之PHMB pH值膜片對於抗菌效果之影響 53
4.3.2 PHMB添加量與固定化量之關係 54
4.3.3 不同耦合PHMB濃度對於抗菌效果之影響 55
4.3.4 不同PHMB固定化量對於膜片抗菌效果之影響 56
4.3.5 膜片與E. coli接觸不同時間對於抗菌效果之影響 57
4.3.6 提升大腸桿菌濃度對於膜片抗菌效果之影響 60
4.3.7 膜片重複循環抗菌 61
第五章 結論及未來展望 62
參考文獻 65


圖目錄
圖 2-1薄膜紡絲原理 4
圖 2-2幾丁聚醣結構式 7
圖 2-3 PHMB結構式 7
圖 2-4 PHMB結構式 10
圖 2-5實驗架構圖 13
圖 3-1對紡型奈米靜電紡絲機示意圖 16
圖 3-2奈米纖維膜之結構示意圖 19
圖 3-3 P-COOH 膜官能基改質過程 20
圖 3-4 P-COOH 膜上官能基示意圖 20
圖 3-5 P-COOH-CS膜官能基改質過程 21
圖 3-6 P-COOH-CS膜上官能基示意圖 21
圖 3-7 P-COOH-PHMB膜官能基改質過程 22
圖 3-8 P-COOH-PHMB膜上官能基示意圖 22
圖 3-9 P-COOH-CS-PHMB膜官能基改質過程 22
圖 3-10 P-COOH-CS-PHMB膜上官能基示意圖 23
圖 3-11 Toluidine blue O分子結構式 23
圖 3-12 Toluidine blue O (TBO)檢量線 24
圖 3-13 Acid orange 7分子結構式 26
圖 3-14 Acid orange 7 (AO7)檢量線 27
圖 3-15 PHMB特徵吸收波長 28
圖 3-16 PHMB檢量線 29
圖 4-1 不同倍率PAN SEM圖(a) 10 k, (b) 5 k 41
圖 4-2 不同倍率P-COOH SEM圖(a) 10 k, (b) 5 k 42
圖 4-3 不同倍率P-COOH-CS SEM圖(a) 10 k, (b) 5 k 43
圖 4-4 不同倍率P-COOH-PHMB SEM圖(a) 7 k, (b) 5 k 44
圖 4-5 不同倍率P-COOH-CS-PHMB SEM圖(a) 7 k, (b) 5 k 45
圖 4-6 PAN、P-COOH、P-COOH-CS、P-COOH-PHMB、P-COOH-CS-PHMB FTIR光譜圖比較 47
圖 4-7 各階段改質膜片TGA熱穩定性比較 48
圖 4-8定性抗菌測試圖(a) PAN, (b) P-COOH, (c) P-COOH-CS 50
圖 4-9 定性抗菌測試圖(a) P-COOH-IB, (b) P-COOH-CS-IB 50
圖 4-10各階段膜片抗菌率比較 52
圖 4-11 P-COOH-PHMB/ P-COOH-CS-PHMB不同耦合pH值的抗菌效率 53
圖 4-12 PHMB添加量與固定化量之關係 54
圖 4-13 PHMB添加量與抗菌效率之關係 55
圖 4-14 PHMB固定化量與抗菌效率之關係 56
圖 4-15 P-COOH-PHMB/P-COOH-CS-PHMB與大腸桿菌不同接觸時間的抗菌效率 57
圖 4-16 P-COOH-PHMB/P-COOH-CS-PHMB抗菌的擬一階動力學 58
圖 4-17 P-COOH-PHMB/P-COOH-CS-PHMB抗菌的擬二階動力學 59
圖 4-18 P-COOH-PHMB/ P-COOH-CS-PHMB接觸不同菌量之抗菌效果 60
圖 4-19 膜片重複循環次數對抗菌率之影響 61


表目錄
表 3-1實驗藥品 14
表 3-2實驗設備 15
表 3-3 PAN靜電紡絲機參數 18
表 4-1薄膜中羧基含量 37
表 4-2薄膜中胺根含量 38
表 4-3 P-COOH-PHMB及P-COOH-CS-PHMB薄膜中PHMB含量 39
表 4-4各階段膜片纖維直徑 40
表 4-5膜上各官能基之吸收波峰 46
表 4-6定量實驗條件 51
表 4-7不同膜片之抗菌動力學參數 59



Abdelgawad, A.M., Hudson, S.M., Rojas, O.J., 2014. Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydr. Polym. 100, 166–178.
Ahmed, F.E., Lalia, B.S., Hashaikeh, R., 2015. A review on electrospinning for membrane fabrication: Challenges and applications. Desalination 356, 15–30.
Ali, S.W., Rajendran, S., Joshi, M., 2011. Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydr. Polym. 83, 438–446.
Allen, M.J., Morby, A.P., White, G.F., 2004. Cooperativity in the binding of the cationic biocide polyhexamethylene biguanide to nucleic acids. Biochem. Biophys. Res. Commun. 318, 397–404.
Ampawong, S., Aramwit, P., 2017. A study of long-term stability and antimicrobial activity of chlorhexidine, polyhexamethylene biguanide, and silver nanoparticle incorporated in sericin-based wound dressing. J. Biomater. Sci. Polym. Ed. 28, 1286–1302.
Balamurugan, R., Sundarrajan, S., Ramakrishna, S., 2011. Recent trends in nanofibrous membranes and their suitability for air and water filtrations. Membranes. 1, 232–248.
Bernardelli De Mattos, I., Holzer, J.C.J., Tuca, A.-C., Groeber-Becker, F., Funk, M., Popp, D., Mautner, S., Birngruber, T., Kamolz, L.-P., 2018. Uptake of PHMB in a bacterial nanocellulose-based wound dressing: A feasible clinical procedure. Burns 1–7.
Bhardwaj, N., Kundu, S.C., 2010. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 28, 325–347.
Bueno, C.Z., Moraes, Â.M., 2018. Influence of the incorporation of the antimicrobial agent polyhexamethylene biguanide on the properties of dense and porous chitosan-alginate membranes. Mater. Sci. Eng. C 93, 671–678.
Cardenas, G., Miranda, S.P., 2004. FTIR and TGA studies of chitosan composite films. J. Chil. Chem. Soc. 49, 291–295.
Cheah, W.Y., Show, P.L., Ng, I.S., Lin, G.Y., Chiu, C.Y., Chang, Y.K., 2019. Antibacterial activity of quaternized chitosan modified nanofiber membrane. Int. J. Biol. Macromol. 126, 569–577.
Chen, L., Xu, J., Chen, J., 2015. Applications of scanning electron microscopy in earth sciences. Sci. China Earth 45, 1347–1358.
Chindera, K., Mahato, M., Kumar Sharma, A., Horsley, H., Kloc-Muniak, K., Kamaruzzaman, N.F., Kumar, S., McFarlane, A., Stach, J., Bentin, T., Good, L., 2016. The antimicrobial polymer PHMB enters cells and selectively condenses bacterial chromosomes. Sci. Rep. 6, 1–13.
Daels, N., DeVrieze, S., Sampers, I., Decostere, B., Westbroek, P., Dumoulin, A., Dejans, P., DeClerck, K., VanHulle, S.W.H., 2011. Potential of a functionalised nanofibre microfiltration membrane as an antibacterial water filter. Desalination 275, 285–290.
Dilamian, M., Montazer, M., Masoumi, J., 2013. Antimicrobial electrospun membranes of chitosan/poly(ethylene oxide) incorporating poly(hexamethylene biguanide) hydrochloride. Carbohydr. Polym. 94, 364–371.
Goy, R.C., Morais, S.T.B., Assis, O.B.G., 2016. Evaluation of the antimicrobial activity of chitosan and its quaternized derivative on E. Coli and S. aureus growth. Brazilian J. Pharmacogn. 26, 122–127.
Henly, E.L., Dowling, J.A.R., Maingay, J.B., Lacey, M.M., Smith, T.J., Forbes, S., 2019. Biocide Exposure Induces Changes in Susceptibility, Pathogenicity, and Biofilm Formation in Uropathogenic Escherichia coli. Antimicrob. Agents Chemother. 63, 1–15.
Huang, Z.M., Zhang, Y.Z., Kotaki, M., Ramakrishna, S., 2003. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223–2253.
Kawabata, A., Taylor, J.A., 2007. The effect of reactive dyes upon the uptake and antibacterial efficacy of poly(hexamethylene biguanide) on cotton. Part 3: Reduction in the antibacterial efficacy of poly(hexamethylene biguanide) on cotton, dyed with bis(monochlorotriazinyl) reactive dyes. Carbohydr. Polym. 67, 375–389.
Kong, M., Chen, X.G., Xing, K., Park, H.J., 2010. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 144, 51–63.
Li, Q., Mahendra, S., Lyon, D.Y., Brunet, L., Liga, M.V, Li, D., Alvarez, P.J.J., 2008. Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res. 42, 4591–4602.
Liu, M., Duan, X.P., Li, Y.M., Yang, D.P., Long, Y.Z., 2017. Electrospun nanofibers for wound healing. Mater. Sci. Eng. C 76, 1413–1423.
Llorens, E., Calderón, S., DelValle, L.J., Puiggalí, J., 2015. Polybiguanide (PHMB) loaded in PLA scaffolds displaying high hydrophobic, biocompatibility and antibacterial properties. Mater. Sci. Eng. C 50, 74–84.
Mashat, B.H., 2016. Polyhexamethylene Biguanide Hydrochloride: Features and Applications. Br. J. Environ. Sci. 4, 49–55.
Mei, Y., Yao, C., Fan, K., Li, X., 2012. Surface modification of polyacrylonitrile nanofibrous membranes with superior antibacterial and easy-cleaning properties through hydrophilic flexible spacers. J. Memb. Sci. 417–418, 20–27.
Moore, K., Gray, D., 2007. Using PHMB antimicrobial to prevent wound infection. Wounds UK 3, 96–102.
Müller, G., Koburger, T., Kramer, A., 2013. Interaction of polyhexamethylene biguanide hydrochloride (PHMB) with phosphatidylcholine containing o/w emulsion and consequences for microbicidal efficacy and cytotoxicity. Chem. Biol. Interact. 201, 58–64.
Müller, G., Kramer, A., 2008. Biocompatibility index of antiseptic agents by parallel assessment of antimicrobial activity and cellular cytotoxicity. J. Antimicrob. Chemother. 61, 1281–1287.
Murase, S.K., DelValle, L.J., Kobauri, S., Katsarava, R., Puiggalí, J., 2015. Electrospun fibrous mats from a l-phenylalanine based poly(ester amide): Drug delivery and accelerated degradation by loading enzymes. Polym. Degrad. Stab. 119, 275–287.
Niekraszewicz, A., 2005. Chitosan medical dressings. Fibres Text. East. Eur. 13, 16–18.
Ou, J., Wu, B., Xue, M., Wang, F., 2019. Silver ions anchored to fabric via coordination: Evaluation on washing durability and antibacterial activity. Mater. Lett. 237, 134–136.
Pelaez, M., Nolan, N.T., Pillai, S.C., Seery, M.K., Falaras, P., Kontos, A.G., Dunlop, P.S.M., Hamilton, J.W.J., Byrne, J.A., O’Shea, K., Entezari, M.H., Dionysiou, D.D., 2012. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B Environ. 125, 331–349.
Raafat, D., Sahl, H.G., 2009. Chitosan and its antimicrobial potential - a critical literature survey. Microb. Biotechnol. 2, 186–201.
Ristić, T., Zemljič, L.F., Novak, M., Kunčič, M.K., Sonjak, S., Cimerman, N.G., Strnad, S., 2011. Antimicrobial efficiency of functionalized cellulose fibres as potential medical textiles. Sci. against Microb. Pathog. Commun. Curr. Res. Technol. Adv. 36–51.
Shahid-ul-Islam, Butola, B.S., 2019. Recent advances in chitosan polysaccharide and its derivatives in antimicrobial modification of textile materials. Int. J. Biol. Macromol. 121, 905–912.
Soleimani, M., Ghorbani, M., Salahi, S., 2016. Antibacterial Activity of Polypyrrole-Chitosan Nanocomposite : Mechanism of Action. Int. J. Nanosci. Nanotechnol. 12, 191–197.
Sondi, I., Salopek-Sondi, B., 2004. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 275, 177–182.
Song, J., Jung, K.J., Yoon, S., Lee, K., Kim, B., 2019. Polyhexamethyleneguanidine phosphate induces cytotoxicity through disruption of membrane integrity. Toxicology 414, 35–44.
Stuar B Levy, Marshall, B., 2004. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med. Suppl. 10, S122–S129.
Wang, X., Hsiao, B.S., 2016. Electrospun nanofiber membranes. Curr. Opin. Chem. Eng. 12, 62–81.
Xu, J., Wang, Z., Yu, L., Wang, J., Wang, S., 2013. A novel reverse osmosis membrane with regenerable anti-biofouling and chlorine resistant properties. J. Memb. Sci. 435, 80–91.
Yasuda, K., Ohmizo, C., Katsu, T., 2003. Potassium and tetraphenylphosphonium ion-selective electrodes for monitoring changes in the permeability of bacterial outer and cytoplasmic membranes. J. Microbiol. Methods 54, 111–115.
Zdeněk, C., Vojtová, L., Michlovská, L., Jiří, K., 2016. Preparation and hydration characteristics of carbodiimide crosslinked lignite humic acids. Geoderma 274, 10–17.

電子全文 電子全文(網際網路公開日期:20240612)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊