(18.206.177.17) 您好!臺灣時間:2021/04/23 05:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊文傑
研究生(外文):ZHUANG,WEN-JIE
論文名稱:自pET表現系統中純化於包涵體之重組幾丁質酶AsChi61
論文名稱(外文):Recombinant Chitinase AsChi61 Purified From Inclusion Bodies In The pET Expression System
指導教授:劉昭麟劉昭麟引用關係
指導教授(外文):LIU,CHAO-LIN
口試委員:丁慧如劉昭麟陳錫金
口試委員(外文):TING,HUEI-JULIU,CHAO-LINCHEN,HSI-JIEN
口試日期:2019-05-29
學位類別:碩士
校院名稱:明志科技大學
系所名稱:化學工程系生化工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:60
中文關鍵詞:蛋白質表現幾丁質酶包涵體AsChi61
外文關鍵詞:proteins expressionchitinaseinclusionAsChi61
相關次數:
  • 被引用被引用:0
  • 點閱點閱:24
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大腸桿菌表現系統是目前生產異源蛋白的最佳途徑,但瓶頸是有時會在胞內形成了包涵體。大量的重組蛋白中因而出現不可溶的部分,此問題可利用8 M尿素或6 M鹽酸胍之變性劑溶液,將包涵體溶解之,使變性的蛋白質重新摺疊,恢復原來蛋白質的結構與活性。
重組型幾丁質酶AsChi61產物中以N-乙醯幾丁六醣活性最高且具有SDS耐受性,其結構較為堅固,在工業應用上不易被環境因子影響。在過去研究中可知N-乙醯幾丁六醣對於免疫反應與抗腫瘤是有相關的。重組型幾丁質酶AsChi61可符合所考慮之因素包含了高產量、生產時間短及製程簡易,可使其適用於工業應用並量產之。
本研究利用pET15b表現系統來生產出重組型幾丁質酶AsChi61,經SDS-PAGE電泳分析,篩選出誘導表現良好的菌株,再進行大量表現,但過程中有包涵體形成的情形,利用不同濃度之尿素,使胞內中的包涵體變性後再重新摺疊,使重組型幾丁質酶的表現活性能夠提升,並以鈷樹脂將其純化之。

The main host for over-expression of recombinant proteins in prokaryotic system is Escherichia coli. However, one of the major obstacles in E. coli is the recombinant in inclusion body formation. Then the target is an insoluble form. The strong protein denaturant such as 8 M urea or 6 M guanidinium hydrochloride is applied to denature the structure of protein for solving in an aqueous solution. Finally, urea or guanidinium hydrochloride is removed gradually by dialysis to allow refolding of the denatured proteins.
The chitinase, AsChi61, possess high chitolytic activity and SDS resistance. This indicates its structure is too rigid to tolerate the environmental factors when applied in industry. In addition, the major products obtained from chitin digested by AsChi61 are N-acetamidine hexahexose. Hexameric oligochitin was known to be immune enhancer with anti-tumor activity. The reAsChi61 with those advantages are expressed in inclusion body in Escherichia coli system.
In this study, reAsChi61 was expressed in the pET15b system, and then analyzed on SDS-PAGE electrophoresis. In the purification, urea was applied to solve the protein. With different concentration of urea, some inclusion bodies were denatured. However, the His-tag of reAsChi61 was still bound to the resin. After elution, the expression activity and amount of the recombinant chitinase can be improved.

明志科技大學碩士學位論文指導教授推薦書 i
明志科技大學碩士學位論文口試委員審定書 ii
誌謝 iii
中文摘要 iv
Abstract v
目錄 vi
圖目錄 xi
表目錄 xii
縮寫對照表 xiii
第一章 緒論 1
第二章 文獻回顧 3
2.1 幾丁質及其衍生物 3
2.2.1 幾丁質(chitin) 3
2.1.2 幾丁聚醣(chitosan) 3
2.2 幾丁質結構 4
2.2.1 化學結構 4
2.2.2 晶體結構 4
2.3 幾丁質在自然界的分佈 5
2.3.1 節肢動物 5
2.3.2 軟體動物 5
2.3.3 腔腸動物 5
2.3.4 海藻類 6
2.3.5 真菌類 6
2.4 幾丁質及其衍生物的製備 6
2.4.1 化學修飾法 7
2.4.2 超音波降解法 7
2.4.3 酸水解法 7
2.5 幾丁質酵素 7
2.5.1 幾丁質酵素 7
2.5.2 動物幾丁質酵素 8
2.5.3 植物幾丁質酵素 8
2.5.4 微生物幾丁質酵素 8
2.6 幾丁質酶之命名 9
2.6.1 Family 18 9
2.6.2 Family 19 9
2.6.3 Family 20 10
2.7 幾丁質酶水解模式分類 10
2.7.1 內切型幾丁質酶(endo-chitinase) 10
2.7.2 外切型幾丁質酶(exo-chitinase) 10
2.7.3 任意型幾丁質酶(random chitinase) 11
2.7.4 轉醣型幾丁質酶(transglycosylation-catalyzingchitinase) 11
2.8 幾丁質酶之純化 11
2.8.1 野生型幾丁質酶純化 11
2.8.2 重組型幾丁質酶純化 11
2.8.2.1 His-tag重組蛋白質純化 12
2.8.2.2 GST融合重組蛋白質純化 12
2.9 幾丁質酵素活性分析方法 12
2.9.1 還原醣測定法 12
2.9.2 DNS測定法 13
2.9.3 幾丁質藍測定法(chitin azure) 13
2.9.4 膠態幾丁質藍測量法(colloidal chitin azure) 13
2.9.5 CM-chtitn-RBV測量法 13
2.9.6 N-乙醯葡萄糖胺生成量測定法 14
2.9.7 濁度計測定法 14
2.9.8 黏度計測定法 14
2.9.9 螢光光度測定法 14
2.9.10 電子掃描測定法 14
2.10 以大腸桿菌表現重組蛋白質的系統 15
2.10.1 pET表現系統 15
2.10.2 包涵體(inclusion bodies) 15
2.11 蛋白質的鑑定 15
2.11.1 質譜法 15
2.11.2 蛋白質之N端胺基酸定序 16
2.12 幾丁質酵素AsChi61 16
2.12.1 於pET表現系統表現 17
第三章 實驗規劃 19
3.1 實驗目的及方法 19
3.2 實驗器材 20
3.2.1 儀器 20
3.2.2 藥品 21
3.2.3 材料 22
3.3 實驗方法 23
3.3.1 菌種來源 23
3.3.2 dTB粉末 23
3.3.3 dTB(amp)培養液配製 23
3.3.4 dTB(amp)培養基配製 23
3.3.5 LB(amp)培養液配製 23
3.3.6 轉型(transformation) 24
3.3.7 液態培養 24
3.3.8 IPTG誘導重組蛋白生產 24
3.3.9 小量表現(small-scale expression) 24
3.3.9.1 樣品取樣 24
3.3.10 SDS-PAGE 24
3.3.10.1 鑄膠玻璃板之裝備 25
3.3.10.2 濃度10%分離性膠體之配製 25
3.3.10.3 堆積性膠體之配製 25
3.3.10.4 蛋白質電泳操作 26
3.3.10.5 蛋白質電泳膠體CBB染劑 26
3.3.10.6 蛋白質電泳膠體CBB染色 26
3.3.10.7 蛋白質電泳膠體CBB褪染 26
3.3.11 蛋白質大量表現(large scale protein expression) 26
3.3.11.1 試劑製備 26
3.3.11.1.1 濃度10 mg/ml溶菌酶之配製 26
3.3.11.1.2 濃度10 mg/ml DNase I之配製 26
3.3.11.1.3 濃度10 mg/ml RNase A之配製 27
3.3.11.1.4 磷酸緩衝液(PB)之配製 27
3.3.11.1.5 磷酸緩衝生理食鹽水溶液(PBS)之配製 27
3.3.11.1.6 咪唑(imidazole)沖提液之配製 27
3.3.11.2 pET系統大量表現 28
3.3.11.2.1 菌體發酵 28
3.3.11.2.2 樣品製備 28
3.3.11.2.3 樣品純化 28
3.3.12 以凝血酶水解His-tag 28
3.3.13 蛋白質轉漬法 29
3.3.13.1 試劑製備 29
3.3.13.1.1 CAPS轉漬緩衝液 29
3.3.13.1.2 轉漬染色液 29
3.3.13.1.3 轉漬褪色液 29
3.3.13.2 轉漬操作程序 29
3.3.14 蛋白質定量 29
第四章 實驗結果 31
4.1 菌種培養 31
4.2 於pET系統重組蛋白AsChi61 31
4.2.1 小量表現 31
4.2.2 大量表現 31
4.2.3 以尿素純化包涵體之重組蛋白質 31
4.2.4 重組蛋白質AsChi61純化後以凝血酶水解 32
4.2.5 重組蛋白質之濃度 32
第五章 討論 33
第六章 未來展望 34
第七章 參考文獻 56

圖目錄
圖一、纖維素、幾丁質、幾丁聚醣之化學結構 35
圖二、自然界中常見幾丁質之晶體型態結構 36
圖三、α-chitin與β-chitin的分子鏈排列情形 37
圖四、幾丁質酶之四種水解模式 38
圖五、蛋白質正確摺疊與錯誤摺疊和聚合的簡化模型 39
圖六、pET15b質體 40
圖七、表現載體pET15b轉型至大腸桿菌(BL21)之三區劃線 41
圖八、表現載體pET15b-AsChi61轉型至大腸桿菌(BL21)之三區劃線 42
圖九、以IPTG誘導大腸桿菌BL21(△DE3)在胞內產出重組蛋白質AsChi61 43
圖十、純化大量表現重組蛋白質pET15b-AsChi61凝膠電泳 44
圖十一、以尿素純化pET15b-AsChi61中包涵體之凝膠電泳 45
圖十二、以凝血酶水解純化後pET15b-AsChi61之凝膠電泳 46
圖十三、BSA標準曲線製備 47

表目錄
表一、各濃度的SDS-PAGE製作劑量表 48
表二、SDS-PAGE電泳試劑配置表 49
表三、dTB固態培養基配置表 50
表四、dTB培養液配置表 51
表五、LB培養液配置表 52
表六、CBB染色液及褪染液配置表 53
表七、蛋白質定量 54
表八、AsChi61之胺基酸序列 55
Abdel-Naby, M. A., Nefisa MA El-Shayeb, and A. A. Sherief. (1992). Purification and some properties of chitinase from Aspergillus carneus. Applied biochemistry and biotechnology, 37(2), 141-154.
Andreu, J. M., and Serge N. Timasheff. (1986). The measurement of cooperative protein self-assembly by turbidity and other techniques. Methods in enzymology, 130, 47-59.
Austin, P. R., Brine, C. J., Castle, J. E., & Zikakis, J. P. (1981). Chitin: new facets of research. Science, 212(4496), 749-753.
Boller, T., & Mauch, F. (1988). Colorimetric assay for chitinase. In Methods in enzymology (Vol. 161, pp. 430-435): Elsevier.
Cabib, E., Bowers, B., Sburlati, A., & Silverman, S. J. . (1988). Fungal cell wall synthesis: the construction of a biological structure. Microbiological sciences, 5(12), 370-375.
Caprioli, R. M., Farmer, T. B., & Gile, J. (1997). Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Analytical chemistry, 69(23), 4751-4760.
Collinge, D. B., Kragh, K. M., Mikkelsen, J. D., Nielsen, K. K., Rasmussen, U., & Vad1, K. (1993). Plant chitinases. The Plant Journal, 3(1), 31-40.
DICKINSON, K., KEER, V., HITCHCOCK, C. A., & ADAMS, D. J. . (1989). Chitinase activity from Candida albicans and its inhibition by allosamidin. Microbiology, 135(6), 1417-1421.
Flach, J., Pilet, P. E., & Jolles, P. . (1992). What's new in chitinase research? Experientia, 48(8), 701-716.
Gardner, K. H., & Blackwell, J. (1975). Refinement of the structure of β‐chitin. Biopolymers: Original Research on Biomolecules, 14(8), 1581-1595.
Gortari, M. C., & Hours, R. A. (2013). Biotechnological processes for chitin recovery out of crustacean waste: a mini-review. Electronic Journal of Biotechnology, 16(3), 14-14.
Hackman, R. H., & Goldberg, M. (1964). New substrates for use with chitinases. Analytical Biochemistry, 8(3), 397-401.
Hackman, R. H., & Goldberg, M. . (1974). Light-scattering and infrared-spectrophotometric studies of chitin and chitin derivatives. Carbohydrate Research, 38, 35-45.
Hara, S., Yamamura, Y., Fujii, Y., Mega, T., & Ikenaka, T. . (1989). Purification and characterization of chitinase produced by Streptomyces erythraeus. The Journal of Biochemistry, 105(3), 484-489.
Henar, M. V., Durán, A., & Roncero, C. (1999). Chitin synthases in yeast and fungi. Exs, 87, 55-69.
Henrissat, B. (1991). A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal, 280(2), 309-316.
Herth, W., & Schnepf, E. (1982). Chitin-fibril formation in algae. In Cellulose and other natural polymer systems (pp. 185-206): Springer.
Hirano, S. (1988). Water-soluble glycol chitin and carboxymethylchitin. In Methods in enzymology (Vol. 161, pp. 408-410): Elsevier.
Imoto, T., & Yagishita, K. (1971). A simple activity measurement of lysozyme. Agricultural and Biological Chemistry, 35(7), 1154-1156.
Jang, M. K., Kong, B. G., Jeong, Y. I., Lee, C. H., & Nah, J. W. . (2004). Physicochemical characterization of α‐chitin, β‐chitin, and γ‐chitin separated from natural resources. Journal of Polymer Science Part A: Polymer Chemistry, 42(14), 3423-3432.
Jeuniaux, C. (1961). Chitinase: an addition to the list of hydrolases in the digestive tract of vertebrates. Nature, 192(4798), 135-136.
Kaya, M., Mujtaba, M., Ehrlich, H., Salaberria, A. M., Baran, T., Amemiya, C. T., Galli, R., Akyuz, L., Sargin, I., Labidi, J. . (2017). On chemistry of γ-chitin. Carbohydrate Polymers, 176, 177-186.
Khoushab, F., & Yamabhai, M. J. M. d. (2010). Chitin research revisited. 8(7), 1988-2012.
Koga, D., Tsukamoto, T., Sueshige, N., Utsumi, T., & Ide, A. . (1989). Kinetics of chitinase from yam, Dioscorea opposita THUNB. Agricultural and Biological Chemistry, 53(12), 3121-3126.
Kramer, K. J., & Koga, D. (1986). Insect chitin: physical state, synthesis, degradation and metabolic regulation. Insect Biochemistry, 16(6), 851-877.
Kumar, M. N. R. (2000). A review of chitin and chitosan applications. Reactive and functional polymers, 46(1), 1-27.
Leah, R., Tommerup, H., Svendsen, I., & Mundy, J. (1991). Biochemical and molecular characterization of three barley seed proteins with antifungal properties. Journal of Biological Chemistry, 266(3), 1564-1573.
Liu, B.-L., Kao, P.-M., Tzeng, Y.-M., & Feng, K.-C. (2003). Production of chitinase from Verticillium lecanii F091 using submerged fermentation. Enzyme Microbial Technology, 33(4), 410-415.
Liu, C.-L., Tsung-Han Lin, and Ruey-Shin Juang. (2013). Optimization of recombinant hexaoligochitin-producing chitinase production with response surface methodology. International journal of biological macromolecules, 62, 518-522.
Liu, C. L., Lan, C. Y., Fu, C. C., & Juang, R. S. . (2014). Production of hexaoligochitin from colloidal chitin using a chitinase from Aeromonas schubertii. International journal of biological macromolecules, 69, 59-63.
Liu, C. L., Shen, C. R., Hsu, F. F., Chen, J. K., Wu, P. T., Guo, S. H., . . . Turk, J. (2009). Isolation and identification of two novel SDS‐resistant secreted chitinases from Aeromonas schubertii. Biotechnology progress, 25(1), 124-131.
Mali, B., Möhrlen, F., Frohme, M., & Frank, U. (2004). A putative double role of a chitinase in a cnidarian: pattern formation and immunity. Developmental Comparative Immunology, 28(10), 973-981.
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry, 31(3), 426-428.
Minke, R., & Blackwell, J. (1978). The structure of α-chitin. Journal of molecular biology, 120(2), 167-181.
Mommsen, T. P. (1980). Chitinase and β-N-acetylglucosaminidase from the digestive fluid of the spider, Cupiennius salei. Biochimica et Biophysica Acta -Enzymology, 612(2), 361-372.
Muzzarelli, R. A., & Rocchetti, R. (1985). Determination of the degree of acetylation of chitosans by first derivative ultraviolet spectrophotometry. Carbohydrate Polymers, 5(6), 461-472.
Ohtakara, A. (1979). Purification and some properties of chitinase from Vibrio sp. J. Ferment. Technol., 57, 169-177.
Omero, C., Horwitz, B. A., & Chet, I. (2001). A convenient fluorometric method for the detection of extracellular N-acetylglucosaminidase production by filamentous fungi. Journal of Microbiological Methods, 43(3), 165-169.
Ôtakara, A. (1964). Studies on the Chitinolytic Enzymes of Black-koji Mold Part VII. Degradation of Glycol Chitin and Chitin by the Chitinase System of Aspergilus nieger. Agricultural and Biological Chemistry, 28, 811-818.
Patel, S., & Goyal, A. (2017). Chitin and chitinase: Role in pathogenicity, allergenicity and health. International journal of biological macromolecules, 97, 331-338.
Peters, W. (1972). Occurrence of chitin in Mollusca. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 41(3), 541-550.
Ramírez, M., Rodríguez, A., Alfonso, L., & Peniche, C. (2010). Chitin and its derivatives as biopolymers with potential agricultural applications. Biotecnología Aplicada
27(4), 270-276.
Rinaudo, M. (2006). Chitin and chitosan: properties and applications. Progress in polymer science, 31(7), 603-632.
Roberts, G. A. (1992). Structure of chitin and chitosan. In Chitin chemistry (pp. 1-53): Springer.
Rosenberg, A. H., Lade, B. N., Dao-shan, C., Lin, S.-W., Dunn, J. J., & Studier, F. W. (1987). Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene, 56(1), 125-135.
Schimmelmann, A., DeNiro, M. J., Poulicek, M., Voss-Foucart, M.-F., Goffinet, G., & Jeuniaux, C. (1986). Stable isotopic composition of chitin from arthropods recovered in archaeological contexts as palaeoenvironmental indicators. Journal of Archaeological Science, 13(6), 553-566.
Seki, H. (1966). Seasonal fluctuation of heterotrophic bacteria in the sea of Aburatsubo Inlet. J. Oceanogr. Soc. Jpn, 22, 15-26.
Sekiguchi, J., Matsumiya, M., & Mochizuki, A. (1995). Distribution of chitinolytic enzymes in seaweeds. Fisheries science, 61(5), 876-881.
Shen, C.-R., Chen, Y.-S., Yang, C.-J., Chen, J.-K., & Liu, C.-L. (2010). Colloid chitin azure is a dispersible, low-cost substrate for chitinase measurements in a sensitive, fast, reproducible assay. Journal of Biomolecular screening
15(2), 213-217.
Smith, T. F., & Waterman, M. S. (1981). Identification of common molecular subsequences. Journal of molecular biology
147(1), 195-197.
Sparkman, O. D. (2000). Mass spectrometry desk reference 2. Journal of the American Society for Mass Spectrometry, 12(11), 1144.
Stanley, W., Watters, G., Chan, B., Mercer, J., & Bioengineering. (1975). Lactase and other enzymes bound to chitin with glutaraldehyde. Biotechnology, 17(3), 315-326.
Studier, F. W. (1990). Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol.
, 185, 60-89.
Studier, F. W., & Moffatt, B. A. (1986). Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. Journal of molecular biology, 189(1), 113-130.
Taira, T., Ohnuma, T., Yamagami, T., Aso, Y., Ishiguro, M., & Ishihara, M. (2002). Antifungal activity of rye (Secale cereale) seed chitinases: the different binding manner of class I and class II chitinases to the fungal cell walls. Bioscience, biotechnology, and biochemistry, 66(5), 970-977.
Tsujibo, H., Endo, H., Miyamoto, K., & Inamori, Y. (1995). Expression in Escherichia coli of a gene encoding a thermostable chitinase from Streptomyces thermoviolaceus OPC-520. Bioscience, biotechnology,biochemistry, 59(1), 145-146.
Usui, T., Hayashi, Y., Nanjo, F., Sakai, K., & Ishido, Y. (1987). Transglycosylation reaction of a chitinase purified from Nocardia orientalis. Biochimica et Biophysica Acta -General Subjects
923(2), 302-309.
Vad, K., Mikkelsen, J. D., & Collinge, D. B. (1991). Induction, purification and characterization of chitinase isolated from pea leaves inoculated with Ascochyta pisi. Planta, 184(1), 24-29.
Vallejo, L. F., & Rinas, U. (2004). Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microbial cell factories
3(1), 11.
van Scheltinga, A. C. T., Hennig, M., & Dijkstra, B. W. (1996). The 1.8 Å resolution structure of hevamine, a plant chitinase/lysozyme, and analysis of the conserved sequence and structure motifs of glycosyl hydrolase family 18. Journal of molecular biology
262(2), 243-257.
Velasquez, L., & Hammerschmidt, R. (2004). Development of a method for the detection and quantification of total chitinase activity by digital analysis. Journal of microbiological methods
59(1), 7-14.
Wirth, S. J., & Wolf, G. A. (1990). Dye-labelled substrates for the assay and detection of chitinase and lysozyme activity. Journal of Microbiological Methods, 12(3-4), 197-205.
Zikakis, J. (2012). Chitin, chitosan, and related enzymes: Elsevier.
吳彰哲,黃瀚寧. (2010). 湛藍奇蹟:蝦蟹殼中的寶貝–幾丁質.科學發展,448期,12~19.
林宗翰. (2011). 利用實驗設計法探討重組幾丁質酵素生產之最佳化.
林楷洺. (2004). Aeromonas schubertii SDS 耐受性幾丁質酵素之基因選殖與表現. 長庚大學,
陳榮輝. (2001). 幾丁質,幾丁聚醣的生產製造,檢測與應用.科學發展月刊,29(10),776-787.
黃繼增. (2000). 在大腸桿菌中形成包涵體的蛋白質的重新摺疊.
藍志瑜. (2011). ASChi61 酵素水解幾丁質生產 N-乙醯幾丁六醣之最佳化.



電子全文 電子全文(網際網路公開日期:20240731)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔