(3.238.186.43) 您好!臺灣時間:2021/03/05 22:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊惠晴
研究生(外文):Yang, Hui-Ching
論文名稱:預測資訊分享與半導體零件通路商績效
論文名稱(外文):The Role of Forecast Sharing in Semiconductor Distributor Performance
指導教授:張欣綠張欣綠引用關係周彥君周彥君引用關係
指導教授(外文):Chang, Hsin-LuChou, Yen-Chun
口試委員:張欣綠周彥君余峻瑜
口試委員(外文):Chang, Hsin-LuChou, Yen-ChunYu, Jun-Yu
口試日期:2018-08-27
學位類別:碩士
校院名稱:國立政治大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:42
中文關鍵詞:預測分享供應鏈管理半導體產業
外文關鍵詞:Forecast sharingSupply chain managementSemiconductor industry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:84
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
We cooperate with a leading semiconductor distributor, and find out they make replenishment decisions based on past orders instead of forecasts from their customers. We therefore study the role of forecast sharing in semiconductor distributor, and examine if forecast information is relevant to inventory and sale management of semiconductor distributors. We also examine how external and internal complexity which are specified as forecast fluctuation and hubs’ order diversification moderate the relationships among forecasts, inventory and sales. We collect orders and forecasts of one main customer of W company, and the associated inventory records prepared by W company from 2016/10 to 2017/10. The data shows a hierarchical relationship: orders of a component belonged to a storage hub. We discover that forecast information is relevant to the semiconductor distributor’s inventories and sales. Our findings also show that forecast signal decreases by forecast fluctuation and hubs’ order diversification which give semiconductor distributors some management implications.
Table of Content i
List of Figures ii
List of Tables iii
CHAPTER 1: INTRODUCTION 1
CHAPTER 2: LITERATURE REVIEW 5
2.1 Forecast sharing between manufacturers and retailers 5
2.2 The credibility of forecast sharing 7
CHAPTER 3: RESEARCH FRAMEWORK 11
3.1 Forecast sharing, inventory and sales. 13
3.2 The moderating effect of forecast fluctuation on forecast sharing. 14
3.3 The moderating effect of order diversification on forecast sharing. 16
CHAPTER 4: DATA AND MEASUREMENT 17
4.1 Company Backgroud 17
4.2 Data 18
CHAPTER 5: ANALYSIS AND RESULTS 24
5.1 Models 24
5.2 Estimation Results 26
CHAPTER 6: CONCLUSION 35
REFERENCE 38
[1] Ali, M. M., Boylan, J. E., & Syntetos, A. A. (2012). Forecast errors and inventory performance under forecast information sharing. International Journal of Forecasting, 28(4), 830-841.
[2] Angulo, A., Nachtmann, H., & Waller, M. A. (2004). Supply chain information sharing in a vendor managed inventory partnership. Journal of business logistics, 25(1), 101-120.
[3] Aviv, Y., & Federgruen, A. (1998). The operational benefits of information sharing and vendor managed inventory (VMI) programs. Olin School of Business Working Paper.
[4] Aviv, Y. (2001). The effect of collaborative forecasting on supply chain performance. Management science, 47(10), 1326-1343.
[5] Bourland, K. E., Powell, S. G., & Pyke, D. F. (1996). Exploiting timely demand information to reduce inventories. European journal of operational research, 92(2), 239-253.
[6] Bozarth, C. C., Warsing, D. P., Flynn, B. B., & Flynn, E. J. (2009). The impact of supply chain complexity on manufacturing plant performance. Journal of Operations Management, 27(1), 78-93.
[7] Cachon, G. P., & Fisher, M. (2000). Supply chain inventory management and the value of shared information. Management science, 46(8), 1032-1048.
[8] Cachon, G. P., & Lariviere, M. A. (2001). Contracting to assure supply: How to share demand forecasts in a supply chain. Management science, 47(5), 629-646.
[9] Carr, A. S., & Kaynak, H. (2007). Communication methods, information sharing, supplier development and performance: an empirical study of their relationships. International Journal of Operations & Production Management, 27(4), 346-370.
[10] Cattani, K., & Hausman, W. (2000). Why are forecast updates often disappointing?. Manufacturing & Service Operations Management, 2(2), 119-127.
[11] Dong, Y., Dresner, M., & Yao, Y. (2014). Beyond information sharing: An sManagement, 23(5), 817-828.
[12] Duray, R., Ward, P.T., Milligan, G.W., Berry, W.L., 2000. Approaches to mass customization: configurations and empirical validation. Journal of Operations Management 18 (6), 605–625.
[13] Ebrahim‐Khanjari, N., Hopp, W., & Iravani, S. M. (2012). Trust and information sharing in supply chains. Production and Operations Management, 21(3), 444-464.
[14] Frohlich, M. T., & Westbrook, R. (2001). Arcs of integration: an international study of supply chain strategies. Journal of operations management, 19(2), 185-200.
[15] Fu, X., Dong, M., Liu, S., & Han, G. (2016). Trust based decisions in supply chains with an agent. Decision Support Systems, 82, 35-46.
[16] Gavirneni, S., R. Kapuscinski, S. Tayur. 1999. Value of information in capacitated supply chains. Management Sci. 45(1) 16-24.
[17] Gümüş, M. (2014). With or without forecast sharing: Competition and credibility under information asymmetry. Production and Operations Management, 23(10), 1732-1747.
[18] Hayes, R.H., Wheelwright, S.C., 1979. Link manufacturing and product life cycles. Harvard Business Review 57 (1), 133–140
[19] Hill, T., 1994. Manufacturing Strategy: Text and Cases, second ed. Irwin, Blue Ridge, IL.
[20] Hsu, C. C., Kannan, V. R., Tan, K. C., & Keong Leong, G. (2008). Information sharing, buyer-supplier relationships, and firm performance: a multi-region analysis. International Journal of Physical Distribution & Logistics Management, 38(4), 296-310.
[21] Hyndman, K., Kraiselburd, S., & Watson, N. (2013). Aligning capacity decisions in supply chains when demand forecasts are private information: Theory and experiment. Manufacturing & Service Operations Management, 15(1), 102-117.
[22] Inderfurth, K., Sadrieh, A., & Voigt, G. (2013). The impact of information sharing on supply chain performance under asymmetric information. Production and Operations Management, 22(2), 410-425.
[23] Jacquemin, A. P., & Berry, C. H. (1979). Entropy measure of diversification and corporate growth. The journal of industrial economics, 359-369.
[24] Jiang, B., Tian, L., Xu, Y., & Zhang, F. (2016). To share or not to share: Demand forecast sharing in a distribution channel. Marketing Science, 35(5), 800-809.
[25] Lee, H., & Whang, S. (1998). Information Sharing in a Supply Chain, Research Paper No. 1549, Graduate School of Business.
[26] Lee, H. L., & Whang, S. (2000). Information sharing in a supply chain. International Journal of Manufacturing Technology and Management, 1(1), 79-93.
[27] Lee, H. L., So, K. C., & Tang, C. S. (2000). The value of information sharing in a two-level supply chain. Management science, 46(5), 626-643.
[28] Li, L. (2002). Information sharing in a supply chain with horizontal competition. Management Science, 48(9), 1196-1212.
[29] Li, T., & Zhang, H. (2015). Information sharing in a supply chain with a make-to-stock manufacturer. Omega, 50, 115-125.
[30] Metters, R. (1997). Quantifying the bullwhip effect in supply chains. Journal of operations management, 15(2), 89-100.
[31] Mishra, B. K., Raghunathan, S., & Yue, X. (2009). Demand forecast sharing in supply chains. Production and Operations Management, 18(2), 152-166.
[32] Oh, S., & Özer, Ö. (2013). Mechanism design for capacity planning under dynamic evolutions of asymmetric demand forecasts. Management Science, 59(4), 987-1007.
[33] Özer, Ö., & Wei, W. (2006). Strategic commitments for an optimal capacity decision under asymmetric forecast information. Management science, 52(8), 1238-1257.
[34] Özer, Ö., Zheng, Y., & Chen, K. Y. (2011). Trust in forecast information sharing. Management Science, 57(6), 1111-1137.
[35] Palepu, K. (1985). Diversification strategy, profit performance and the entropy measure. Strategic management journal, 6(3), 239-255.
[36] Prajogo, D., & Olhager, J. (2012). Supply chain integration and performance: The effects of long-term relationships, information technology and sharing, and logistics integration. International Journal of Production Economics, 135(1), 514-522.
[37] Safizadeh, M.H., Ritzman, L.P., Sharma, D., Wood, C., 1996. An empirical analysis of the product–process matrix. Management Science 42 (11), 1576–1591.
[38] Sheffi, Y. (2002, October). The value of CPFR. In Proceedings of RIRL Conference, Lisboa.
[39] Småros, J. (2007). Forecasting collaboration in the European grocery sector: Observations from a case study. Journal of Operations Management, 25(3), 702-716.
[40] Spiliotopoulou, E., Donohue, K., & Gürbüz, M. Ç. (2016). Information reliability in supply chains: the case of multiple retailers. Production and Operations Management, 25(3), 548-567.
[41] Stank, T. P., Keller, S. B., & Daugherty, P. J. (2001). Supply chain collaboration and logistical service performance. Journal of Business logistics, 22(1), 29-48.
[42] Terwiesch, C., Ren, Z. J., Ho, T. H., & Cohen, M. A. (2005). An empirical analysis of forecast sharing in the semiconductor equipment supply chain. Management science, 51(2), 208-220.
[43] Vereecke, A., & Muylle, S. (2006). Performance improvement through supply chain collaboration in Europe. International journal of operations & production management, 26(11), 1176-1198.
[44] Voigt, G., & Inderfurth, K. (2012). Supply chain coordination with information sharing in the presence of trust and trustworthiness. Iie Transactions, 44(8), 637-654.
[45] Yue, X., & Liu, J. (2006). Demand forecast sharing in a dual-channel supply chain. European Journal of Operational Research, 174(1), 646-667.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔