(3.235.25.169) 您好!臺灣時間:2021/04/18 03:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李慶龍
研究生(外文):Ching-Lung Lee
論文名稱:板岩隧道異向依時行為數值分析研究
論文名稱(外文):Numerical Analysis of Tunneling in Slates with Anisotropic Time-Dependent Behavior
指導教授:壽克堅壽克堅引用關係
指導教授(外文):K-Jen Shou
口試委員:潘以文馮正一吳建宏葛宇甯陳立憲
口試委員(外文):Yi-Wen PanChen- I FengJen-Hon WuYu-Nion KoLi-SHen Chen
口試日期:2019-01-10
學位類別:博士
校院名稱:國立中興大學
系所名稱:土木工程學系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:83
中文關鍵詞:異向依時行為遍佈節理模式Burger潛變黏塑性模式計測資料
外文關鍵詞:Anisotropic time-dependent behaviorUbiquitous joint modelBurger modelMonitoring data
相關次數:
  • 被引用被引用:0
  • 點閱點閱:81
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
板岩具緻密劈理片狀構造的弱面,隧道於板岩中開挖產生異向變形,且因解壓隧道會依時變形,因此板岩隧道必需考慮異向依時行為,才能更適當估計隧道開挖變位量。本論文藉FLAC軟體以遍布節理模式(UBI model ) 先考慮異向性變形行為,分析隧道變形支撐效果及隧道安全;其後因隧道依時行為明顯,故於FLAC軟體中結合Burger潛變黏塑性模式(CVISC model),發展出UBI/BUR混合新模式,並藉反算分析取得分析模式所需之適當參數。新模式以台灣電力公司萬松工程隧道計測資料比對校核,結果顯示本研究之混合模式優於傳統模式,可作為類似隧道岩層異向依時變形行為之數值模擬分析,以利隧道設計施工回饋及營運安全。
Slate is a metamorphic rock with well developed sheeted texture called slaty cleavages. The ease of split along the cleavages weakens the slate and its resistance to weathering and erosion. For the tunnel excavation in slate formations, it is common to observe anisotropic deformation; in addition, the deformation caused by stress release also shows time-dependent behavior. Hence, Anisotropic and time-dependent behaviors must be taken into account to more properly estimate the deformation of tunnel excavation in slate formation. In this paper, the computer software FLAC was adopted for the analysis. Firstly, tunnel deformation was analyzed by numerical analysis to evaluate tunnel support effect and safety. The ubiquitous joint (UBI) model was adopted for the analysis of the anisotropic tunnel deformation. Secondly, the the Burger-creep viscoplastic (CVISC) model was coupled with the UBI model and is implemented for the analysis of the time-dependent anisotropic behavior of slate formations. Back calculations were performed to obtain relevant parameters of the new hybrid model. The new model was calibrated by the monitoring data from a slate tunnel excavation project, i.e., the Wanta-Sunglin Project in Taiwan Power Company, and then was applied for detailed analyses. The results indicate that the hybrid model developed in this study is better than the conventional models, and can be used for the simulation of tunnel excavation in similar anisotropic time-dependent slate formations.
摘要 -------------------------------------------------------------------------------- i
Abstract ---------------------------------------------------------------------------- ii
致謝 --------------------------------------------------------------------------------- iii
目錄 --------------------------------------------------------------------------------- iv
圖目錄 ------------------------------------------------------------------------------ vi
表目錄 ------------------------------------------------------------------------------- viii
符號說明 ---------------------------------------------------------------------------- ix
第一章 緒論 ----------------------------------------------------------------- 1
1.1研究背景及動機 --------------------------------------------------------- 1
1.2研究目的 --------------------------------------------------------------- 1
1.3研究流程及預期成果 ----------------------------------------------------- 2
第二章 文獻回顧 ------------------------------------------------------------- 4
2.1岩石隧道異向性相關研究 -------------------------------------------- 4
2.2岩石隧道依時變形相關研究 -------------------------------------- 7
第三章 板岩隧道工程案例 ---------------------------------------------- 11
3.1 萬松水力發電工程 -------------------------------------------------11
3.2 新武界引水隧道工程 -------------------------------------------------13
3.3萬松工程隧道開挖變形數值分析 ---------------------------15
3.4小結 --------------------------------------------------------------------17
第四章 研究方法 -----------------------------------------------------------------32
4.1 FLAC分析軟體簡述 -------------------------------------------------32
4.2 UBI模式及CVISC模式 -------------------------------------------34
4.3 UBI/CVISC複合模式及計算流程 ------------------------------------37
4.4 分析條件 ------------------------------------------------------------------38
第五章 板岩隧道計測分析--------------------------------------------44
5.1. 施工計測斷面設置-------------------------------------------------------44
5.2計測分析斷面選定----------------------------------------------44
5.3 計測結果-------------------------------------------------------44
5.4 計測討論 ------------------------------------------------------45
5.5 小結 ----------------------------------------------------------46
第六章 板岩隧道異向依時行為數值分析 ----------------------------55
6.1異向依時行為數值分析 ---------------------------------------55
6.2 分析網格及邊界條件 ---------------------------------------55
6.3 分析參數 ----------------------------------------------------56
6.4 UBI及CVISC反算分析 -------------------------------------------57
6.5 分析結果 ------------------------------------------------------------58
6.6 討論 ---------------------------------------------------------------60
6.7小結 ---------------------------------------------------------------61
第七章結論與建議 ----------------------------------------------76
7.1結論 -----------------------------------------------------------------76
7.2建議 ------------------------------------------------------------------76
參考文獻 ------------------------------------------------------------------------------78
1.Asadollahpour, E., Rahmannejad, R., Asghari, A., Abdollahipour, A., 2014. Back analysis of closure parameters of Panet equation and Burger''s model of Babolak water tunnel conveyance. International Journal of Rock Mechanics & Mining Sciences 68, 159-166.
2. Barla, G., Boninl, M., Debernardi, D., 2010. Time dependent deformationins in squeezing tunnels. International Journal of Geoengineering Case Histories 2, 40–65.
3. Bewick, R.P., Kaiser, P.K., 2009. Influence of rock mass anisotropy on tunnel stability. Proceedings of the 3rd CANUS Rock Mechanics Symposium, Toronto, 1–12.
4. Barla, G., Debernardi, D., Sterpi, D., 2012. Time-dependent modeling of tunnels in squeezing conditions. ASCE Int. J. Geomech. 12(6), 697–710.
5. Bosman, J.D., Malan, D.F., Drescher, K., 2000. Time-dependent tunnel deformation at Hartebeestfontein Mine. The Journal of The South African Institute of Mining and Metallurgy, 333–340.
6. Bozzano, F., Martino, S., Montagna, A., Prestininzi, A., 2012. Back analysis of a rock landslide to infer rheological parameters. Engineering Geology 131( 132), 45-56.
7. Cai, M., 2008. Influence of stress path on tunnel excavation response – Numerical tool selection and modeling strategy. Tunnelling and Underground Space Technology 23, 618–628.
8. Chen, Z.Q., He, C., Xu, G.W., Ma, G.Y., Wu, D., 2018. Asymmetric mechanical behavior and deformation mechanisms of deep-buried soft rock tunnels in layered strata. Engineering Geology 178, 132–158
9. Dadashi, E., Ahangari, K., Noorzad, A., Arab, A., 2012. Support system suggestion based on back-analysis. results case study Babolak water conveyance tunnel. Arab J. Geoscience 5, 1297–1306.
10. Dvila, J.M., Schubert, W., 2014. Rock layering influence on rock mass displacements in tunnelling, Shimizu, Kaneko, Kodama (Eds.), Rock Mechanics for Global Issues, Japanese Committee for Rock Mechanics, Japan.
11. Dey, A., Basudhar, P.K., 2012. Estimation of Burger model parameters by inverse analysis of oedometer data. Rec. Trends Civil Eng. Technol 2 (2), 27–44.
12. Debecker B., Vervoort A., 2009. Experimental observation of fracture patterns in layered slate. Int. J. Fract. 59, 51–62.
13. Fahimifar, A., Karami, M., Fahimifar, A., 2015. Modifications to an elasto-visco-plastic constitutive model for prediction of creep deformation of rock samples. Soils and Foundations 55(6), 1364–1371.
14. Fortsakis, P., Nikas, K., Marinos, V., Marinos, P., 2012. Anisotropic behaviour of stratified rock masses in tunneling. Engineering Geology 141(142), 74–83.
15. Goodman, R.E., 1989. Introduction to Rock Mechanics. John.Wiley &Sons.
16. Goshtasbi, K., Ahmadi, M., Seyedi, J., 2006. Anisotropic strength behaviour of slates in the Sirjan-Sanandaj zone, The Journal of the South African Institute of Mining and Metallurgy 106, 71–75.
17. Hoek, E., Marinos P., 2000. Predicting tunnel squeezing problems in weak heterogeneous rock masses. Tunnels and Tunnelling International, 1–21.
18. Hoek, E., 2005. Uniaxial compressive strength versus Global strength in the Hoek-Brown criterion. Vancouver. www.rocscience.com , 1–5.
19. Huang, M., Wu, L., Song, L., 2014. Experimental study on the creep mechanical properties of carbonaceous slate. Electronic J. Geotechnical Engineering 19, 4615-4630.
20. Ismael, M.A., Imam, H.F., El-Shayeb, Y., 2014. A simplified approach to directly consider intact rock anisotropy in Hoek-Brown failure criterion. Journal of Rock Mechanics and Geotechnical Engineering 6,486–492.
21. Itasca Consulting Group, 2016. FLAC–Fast Laqrangian Analysis of Continua. constitutive models manual Ver. 8.0, Minneapolis.
22. Jiang, Q., Cui, J., Chen, J., 2012. Time-Dependent Damage investigation of Rock Mass in an In Situ Experimental tunnel. Materials 5, 1389-1403.
23. Kazakidis, V.N., Diederichs, M.S., 1993. Understanding jointed rock mass behaviour using a ubiquitous joint approach. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 30(2), 163–172.
24. Li, B., Wu, L., Xu, C., Yuan, Q., 2014. Rheological properties of different stress levels in deep slate of high-speed railway tunnel. Electronic J. Geotechnical Engineering 19, 6715–6728.
25. Li, G., Li, H., Kato, H., Mizuta, Y., 2003. Application of ubiquitous joint model in numerical modeling of Hilltop Mines in Japan. Chin J. Rock Mech. Eng. 22(6), 951–956.
26. Liu, X.R., Chen, H.J., Liu, K., He, C.M., 2017. Model test and stress distribution law of unsymmetrical loading tunnel in bedding rock mass. Arabian Journal of Geosciences 7, Artical 184.
27. Liu, Y.S., Zhang, X., Yin, Q., 2012. Mechanical Properties for the Anisotropy of Slate under the Influence of Different Bedding Orientations. Electronic J. Geotechnical Engineering 17, 3709–3716.
28. Lo, C.M., Feng, Z.Y., 2014. Deformation characteristics of slate slopes associated with morphology and creep. Engineering Geology 178, 132–154.
29. Malan, D.F., 1999. Time-dependent behaviour of deep level tabular excavations. Rock Mech. Rock Eng. 32(2), 123–155.
30. Manh, H.T., Sulem, J., Subrin, D., Billaux, D., 2015, Anisotropic time-dependent modeling of tunnel excavation in squeezing ground. Rock Mech. Rock Eng. 48, 2301–2317.
31. Miura, K., Okui, Y., Horii, H., 2003. Micromechanics-based prediction of creep failure of hard rock for long-term safety of high-level radioactive waste disposal system. Mech. Material 35(3–6), 587–601.
32. Moghaddam, M.N., 2013. Investigating the anisotropic equivalent modeling of discontinuous media around tunnel. Middle-East Journal of Scientific Research 15 (2), 291-301.
33. Osgoui, R.R., 2006. On the assessment of the effect of the anisotropy in in-situ Stress on support pressure in tunnels. International Symposium on In-Situ Rock Stress.Trondheim Norway, 1–10.
34. Pan, Y.W., Dong, J.J., 1991. Time-dependent tunnel convergence—I. Formulation of the model. Int. J. Rock Mech. Min. Sci. & Geomech. 28(6), 469–475.
35. Panet, M., 1996. Two case histories of tunnels through squeezing rocks. Rock Mech. Rock Eng. 29(3), 155–164.
36. Paraskevopoulou, C., Diederichsb, M., 2018. Analysis of Time -dependent deformation in tunnels using the convergence-confinement method. Tunnelling and Underground Space Technology 71, 62–80.
37. Plana, D., Lopez, C., Cornelles, J., Munoz, P., 2004. Numerical analysis of a tunnel in an anisotropy rock mass. Engineering Geology for Infrastructure Planning in Europe. Springer Berlin, 153–161.
38. Reches, Z., 1979. Deformation of a foliated medium. Tectonophysics 57, 119-129.
39. Russo, G., Repetto, L., Piraud, J., Laviguerie, R., 2009. Back-analysis of the extreme squeezing conditions in the exploratory adit to the Lyon–Turin Base Tunnel. Rock Engineering in Difficult Conditions – Toronto Canada, 9–14.
40. Sainsbury, B., Pierce, M., Ivars, D., 2008. Simulation of rock mass strength anisotropy and scale effects using a Ubiquitous Joint Rock Mass (UJRM) model. Continuum and Distinct Element Numerical Modeling in Geo-Engineering, Itasca Consulting Group Inc., 1–9.
41. Saroglou H., Tsiambaos G., 2008. A modifind Hoek-Brown failure criterion for anisotropic intact rock, Int. J. Rock Mechanics&Mining Sciences, 223–234.
42. Sharifzadeh, M., Tarifard, A., Moridi, M.A., 2013. Time-dependent behavior of tunnel lining in weak rock mass based on displacement back analysis method. Tunnelling and Underground Space Technology 38, 348–356.
43. Simanjuntak, T.D.Y.F., Marence, M., Mynett, A.E., Schleiss, A.J., 2014. Effects of Rock Mass Anisotropy on Deformations and Stresses around Tunnels during Excavation. Int. S. on Bali, Indonesia, June II , 129–136.
44. Sterpi, D., Gioda, G., 2009. Visco-plastic behaviour around advancing tunnels in squeezing rock. Rock Mechanics and Rock Engineering 42(2), 319–339.
45. Tao, Z.G., Zhu, C., Zheng, X.H., Wang, D.S., Liu, Y.P., He, M.C., Wang, Y.B., 2018. Failure mechanisms of soft rock roadways in steeply
inclined layered rock formations. Geomatics, Natural Hazard sand Risk
9(1), 1186–1206.
46. Vlachopoulos1, N., Diederichs, M.S., 2009. Improved longitudinal displacement profilesfor convergence confinement analysis of deep tunnels. Rock Mechanics and Rock Engineering 42, 131–14.
47. Vu, T.M., Sulem, J., Subrin, D., Monin, N., 2013. Anisotropic closure in squeezing rocks: The example of Saint-Martin-la-porte access gallery. Rock Mechanics and Rock Engineering 46, 231–246.
48.Wang, T.T., Huang, T.H., 2009. A constitutive model for the deformation of a rock mass containing sets of ubiquitous joints. Int. J. Rock Mech. Min. Sci. 46(3), 521–530.
49. Wang, T.T., Huang, T.H., 2011. Numerical simulation on anisotropic squeezing phenomenon of new Guanyin tunnel. Journal of GeoEngineering 6(3), 125–133.
50. Wang, T.T., Huang, T.H., 2014. Anisotropic deformation of a circular tunnel excavated in a rock mass containing sets of ubiquitous joints: theory analysis and numerical modeling. Rock Mechanics and Rock Engineering 47, 643–657.
51. Wu, F.Q., Miao, J.L., Bao, H., Wu, J., 2014. Large deformation of tunnel in slate-schistose rock. Engineering Geology for Society and Territory 6 , 17-23.
52. Yang, H., Jiang, X.L., Wen, C.P., Yin, J., 2013. Modeling the deformation of tunnel excavations in layered rock masses. Electronic J. Geotechnical Engineering 18, 723–734.
53. Yang, S.Q., Xu, P., Ranjith, P.J., Chen, G.F., Jing, H.W., 2015. Evaluation of creep mechanical behavior of deep-buried marble under triaxial cyclic loading. Arab J. Geoscience 8, 6567–6582.
54. Yang, W., Zhang, Q., Li, S., Wang, S., 2014. Time-dependent behavior of diabase and a nonlinear creep model. Rock Mechanics and Rock Engineering 47, 1211–1224.
55. Yang, S.Q., Chen,M., Jing, H.W., Chen, K.F., Meng, B., 2017. A case study on large deformation failure mechanism of deep soft rock roadway in Xin''An coal mine, China. Engineering Geology 217, 89–101.
56. Zhifa, Y., Zhiyin, W. Luqing, Z., Ruiguang, Z., 2001. Back-analysis of viscoelastic displacements in a soft rock road tunnel. International Journal of Rock Mechanics and Mining Sciences, 31-341.
57. 中興工程顧問社, 2009. 萬大電廠擴充暨松林分廠水力發電工程松林分廠頭水隧道D坑下游段1K+934.1m隧道安定分析報告.
58. 兄弟軟體, 2013, 按鍵精靈 ver9.0. 福州創意嘉和軟體有限公司.
59. 台灣電力公司, 2006. 新武界隧道及栗栖溪引水工程結案報告.
60. 台灣電力公司, 2014. 萬大電廠暨松林分廠水力發電工程結案報告.
61. 冷希喬, 史明, 姜群会, 2013. 層狀圍岩中隧道開挖變形特徵研究. 第十二屆海峽兩岸隧道與地下工程學術與技術研討會, A-22-1–5.
62. 李丹, 夏彬伟, 陈浩, 白世伟, 2009. 缓倾角层理各向异性岩体隧道稳定性的物理模型试验研究. 岩土力学30(7), 1933–1938.
63. 李慶龍, 黃偉光, 2010. 萬松進水口及濁水溪段隧道施工探討. 地工技術第126期, 73–82.
64. 李慶龍, 黃偉光, 2013. 萬松水力發電工程隧道施工計測及處理探討.第十二屆海峽兩岸隧道與地下工程學術與技術研討會, C-42-1–12.
65. 李慶龍, 黃本源, 賴融毅, 2013. 萬松水力發電工程隧道設計探討.
第十二屆海峽兩岸隧道與地下工程學術與技術研討會, B-20-1–8.
66. 高春玉, 徐进, 李忠洪, 邓建辉, 2011. 雪峰山隧道砂板岩各向异性力学特性的试验研究. 岩土力学32(5), 1360–136460.
67.陳錦清, 俞旗文, 蕭富元, 1996. 應力釋放率採「國內隧道支撐設計適當性與施工方法對隧道行為影響檢討. 中興工程顧問社工程研究基金報告, SEC/R-GT-97-01.
68.陳錦清, 俞旗文, 蕭富元, 1997. 岩體變形特性與RMR 岩體評分值關係之研究. 中興工程顧問社工程研究基金報告, SEC/R-GT-97-04.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔