(100.24.122.117) 您好!臺灣時間:2021/04/12 05:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳奎諾
研究生(外文):Kui-Nuo Chen
論文名稱:不同光強度和長期施肥處理之土壤對大花咸豐草生長、功能和植化素含量的影響
論文名稱(外文):Effect of different light intensities and soils long-term applied with different fertilization treatments on the growth, functions and phytochemicals contents of Biden pilosa
指導教授:楊秋忠楊秋忠引用關係
指導教授(外文):Chiu-Chung Young.
口試委員:譚鎮中簡宣裕
口試委員(外文):Chen-Chung TanShiuan-Yuh Chien
口試日期:2018-09-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土壤環境科學系所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:83
中文關鍵詞:大花咸豐草長期施肥土壤抗氧化抗發炎綠原酸木犀草素
外文關鍵詞:Biden pilosaLong-term fertilizationAntioxidantAnti-inflammatoryChloeogenic acidLuteoliin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:92
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
大花咸豐草 (Bidens pilosa var. radiata) 是一種易於種植的草藥,且廣泛分佈於世界各地,其所含的黃酮類和酚酸具有降低心血管疾病、關節炎、慢性炎症和癌症風險的潛力,是人類豐富的食藥來源。近年來,植物性藥材的需求量及品質要求不斷增加,過去利用野外採集的方式,數量有限,因此必須藉由人工栽培來增加產量和有效成分。由於氣候條件、光照和施肥方式等因素均會影響植物成分。因此本研究的目的是探討大花咸豐草種植在不同長期施肥土壤 (無施肥、化學肥料、豬糞堆肥、豬糞堆肥+1/3化肥、泥炭+1/3化肥) 中,在不同光強度 (正常光和低光強度分別為 544 和90 μmol mol−1) 大處理下花咸豐草在產量、養分成分、抗氧化、抗發炎以及植化素量(綠原酸、木犀草素)變化。結果顯示咸豐草在種植45天後,土壤之pH值除了無施肥之處理其餘處理皆以正常光強度下較高之pH值,而在磷、鉀、鈣、鎂、鐵、錳、銅、鋅濃度則無顯著上之差異。各個肥料處理在低光強度下的產量均高於正常光強度下之相對應的肥料處理,其中又以豬糞堆肥混1/3化學肥料處理有最高之乾物重 (20.89 g plant-1) ;而在正常光強度下大花咸豐草可以產生較高之綠原酸含量和抗氧化能力,其中又以豬糞堆肥之處理有較高之綠原酸含量 (252μg g-1) 和抗氧化能力 (IC50: 30.3 μg ml-1);而低光下亦產生較多主要之抗發炎的木犀草素,其中以無施肥處理產生最高之木犀草素含量 (16.67μg g-1)。在低光強度下生長的咸豐草之抗發炎能力均高於正常光強度者,但皆無抗氧化之能力,其中又以無施肥之處理產生最佳之抗發炎能力 (IC50: 35.1 μg ml-1)。
Biden pilosa is an easy-to-grow herb and widely distributed all over the world. It is considered to be a rich source of food and medicine for humans, because its flavonoids and phenolic acids have the plantential to reduce the risk of cardiovascular disease, arthritis, chronic inflammation and cancer. In recent years, the demand and quality of botanical herbs continuely increases. The collection of herb from the wild land is limited. Therefore, it is necessary to increase the yield and phytochemicals by artificial cultivation. It is known that many factors such as climatic conditions, light and fertilization will affect plant phytochemicals. The purpose of this study is investigate the effects of different light intensities (normal and low light intensities: 544 and 90 μmol mol−1, respectively) and long-term fertilization (including no fertilizer, chemical fertilizer, swine manure compost and peat) and therefore growth, nutrient content, functions (anti-oxidation and anti-inflammatory), and amount of phytochemicals (chlorogenic acid and luteolin) in B. pilosa. The dry matter of Biden pilosa under low light intensity were highrt than corroponding treatment under normal light intensity; and swine manure compost mix 1/3 chemical fertilizer treatment was the hightest (20.89 g plant-1). Under normal light intensity, the chlorogenic acid concentration and antioxidant capacity of Biden pilosa were higher than low light intensity; and swine manure compost treatment was the hightest (252μg g-1 and IC50: 30.3 μg ml-1, respectively). While, the luteolin concentration and anti-inflammatory capacity of Biden pilosa were higher under low light intensity than normal light intensity, and treatment without fertilization was the hightest (16.67μg g-1 and IC50: 35.1μg ml-1, respectively).
壹、前言 1
貳、前人研究 2
一、永續農業 2
二、不同有機質肥料之特性及對作物之影響 2
三、大花咸豐草簡介 3
四、大花咸豐草藥理與生理活性之研究 4
五、影響有效成分產量之要素 7
參、材料與方法 9
肆、結果與討論 20
一、 大花咸豐草種植於盆栽土壤並以不同光強度照射對土壤性質的影響 20
二、長期不同施肥處理土壤與光照強度對大花咸豐草生長與養分吸收之影響 23
三、長期不同施肥處理之土壤與光照強度對大花咸豐草抗氧化能力的影響 52
四、長期不同施肥處理之土壤與光照強度對大花咸豐草抗發炎能力的影響: 54
五、長期不同施肥處理之土壤與光照強度對大花咸豐草活性成分濃度的影響: 57
伍、結論 66
陸、參考文獻 67
柒、附錄 79
王敏昭。1998。土壤生態變異對土壤溶液有機碳情況之改變。土壤與環境。 1: 247-268。
行政院農業委員會農業試驗所年報。2015。
林俊義。1995。台灣非農藥方法防治植物病蟲害。永續農業研究與推廣之進展研討會專輯。台中區農業改良場編印。150-166。
林俊義 1999 台灣永續農業發展概況。永續農業作物和永續農業作物合理化施肥技術專輯。
胡南輝。2004。有機質肥料之選擇及施用技術。台中區農業專訊。50: 14-15。
姜樹興。1993。豬對銅之需求;利用及排泄。台灣省畜產試驗所專輯。22: 1-9。
徐水泉、林敬德。1960。臺灣泥炭作為肥料利用之研究-(第一報)臺灣泥炭之理化的組成。台中區農業試驗所。16-23。
黃山內。1989。有機農業的發展及其中要性。有機農業研課會專輯。台中區農業改良場出版。12-30。
黃智生。2008。發炎反應-現代文明病的使用傭者。科學發展。442: 6-10。
黃涵靈。2008。比較生長在不同海拔高度咸豐草 (Biden pilosa) 族群間的差異。
國立台灣大學生態學與演化生物學研究所碩士論文。台北市。
楊秋忠。2015。土壤與肥料(第九版)。農世股份有限貿易公司。台中台灣。
楊秋忠。2002。總論:農業土壤生態品質與生產力關係。水旱田輪作系統及有機質應用對土壤品質及生產力之影響。農業土壤生態品質及生產力研討會專輯。國立中興大學土壤環境科學系。1-19
陳仁炫、吳振記。1998。增進土壤生產力策略下之磷循環探討。土壤與環境。1 : 99-114。
賴威安。2010。Azospirillum rugosum新種與耐鹽根圈細菌的植物生長促進特性之篩選及對植物接種的效益。國立中興大學土壤環境科學系博士論文。台中市。
謝國研。2000。不同有機質肥料與水旱輪作制度下之土壤中磷和鉀行為之探討。國立中興大學土壤環境科學系碩士論文。台中市。
Ahmed, I. M., N. U. Aktari, B. Noreen, C. Fangbin, H. Xiaoyan, Z. Guoping and W. Feibo. 2015. Secondary metabolism and antioxidants are involved in the tolerance to drought and salinity, separately and combined, in Tibetan wild barley. Environ. Exp. Bot. 11: 1-12.
Alcaraz, M. J and M. J. Jimenez. 1988. Flavonoids as antiinflammatory agents. Fitoterapia 59: 25–38.
Ali, M. B., E. Hahn and K. Paek. 2005. Effects of light intensities on antioxidant enzymes and malondialdehyde content during short-term acclimatization on micropropagated Phalaenopsis plantlet. Environ. Exp. Bot. 54: 109–120.
Ames, B. N., M. K. Shigenaga and T. M. Hagen. 1993. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. U. S. A. 17: 7915-7922.
Apgar, G. A., E. T. Kornegay, M. D. Lindemann and D. R. Notter. 1995. Evaluation of copper sulfate and a copper lysine complex as growth promoters for weanling swine. J. Anim. Sci. 73(9): 2640-2646.
Ashafa, A. O. T and A. J. Afolayan. 2009. Screening the root extracts from Biden pilosa L. var. radiata (Asteraceae) for antimicrobial plantentials. J. Med. Plants. Res. 3: 568–572.
Ayyanar, M. and S. Ignacimuthu. 2005. Traditional knowledge of kani tribals in kouthalai of tirunelveli hills, tamil nadu, india. J. Ethnopharmacol. 102: 246–255.
Barker, D. E and M. C. Amacher. 1982. Nickel, copper, zinc, and cadmium. Methods of soil analysis. Part 2. Chemical and microbiological properties : 323-336.
Beutler, J. A., E. Hamel, A. J. Vlietinck, A. Haemers, P. Rajan, J. N. Roitman, J. H. Cardellina and M. R. Boyd. 1998. Structure-activity requirements for flavone cytotoxicity and binding to tubulin. J. Med. Chem. 41: 2333–2338.
Beutler, J. A., J. H. Cardellina, C. M. Lin, E. Hamel, G. M. Cragg and M. R. Boyd. 1993. Centaureidin, a cytotoxic flavone from Polymnia fruticosa, inhibits tubulin
polymerization. Bioogr. Med. Chemlett. 3: 581–584.
Blatt, M. R and F. Amstrong. 1994. K+ channels of stomatal guard cells : Bscisic -acid-evoked control of the outward rectifier mediated by cytoplasmic pH. Planta. 191: 33-41.
Briskin, D. P and M. C. Gawienowski. 2001. Differential effects of light and nitrogen on production of hypericins and leaf glands in Hypericum perforatum. Plant Physiol. 39: 1075–1081.
Buff, C. E., D. W. Bollinger, M. R. Ellersieck, W. A. Brommelsiek and T. L. Veum. 2005. Comparison of growth performance and zinc absorption, retention, and excretion in weanling pigs fed diets supplemented with zinc polysaccharide or zinc oxide. J. Anim. Sci. 83: 2380-2386.
Bulluck, L. R., M. Brosius, G. K. Evanylo and J. B. Ristaino. 2002. Organic and synthetic fertility amendments influence soil microbial, physical and chemical properties on organic and conventional farms. Appl. Soil Ecol. 19: 147-160.
Champagnat, P. 1951. Role of the terminal bud in the action exercised by the cotyledon of Bidens pilosus L. var. radiatus on its axillary bud. C. R. Seances Soc. Bio. 145: 1374–1376.
Chang, C. L., T. S. L. Chang, Y. M. Lee, Y. M. Chiang, D. Y. Chuang, H. K. Kuo and W. C. Yang. 2007. Cytopiloyne, a polyacetylenic glucoside, prevents type 1 diabetes in nonobese diabetic mice. J. Immunol. 178: 6984– 6993.
Chang, J. S., L. C. Chiang, C. C. Chen, L. T. Liu, K. C. Wang and C. C. Lin. 2001. Atileukemic activity of Bidens pilosa l. var. minor (blume) sherff and Houttuynia cordata thumb. Am. J. Chinese. Med. 29: 303–312.
Chiang, Y. M., C. L. T. Chang, S. L. Chang, W. C. Yang and L. F. Shyur. 2007. Cytopiloyne, a novel polyacetylenic glucoside from Bidens pilosa, functions as a T helper cell modulator. J. Ethnopharmacol. 110: 532–538.
Chiang, Y. M., C. P. Lo, Y. P. Chen, S. Y. Wang, N. S. Yang, Y. H. Kuo and L.F. Shyur. 2005. Ethyl caffeate suppresses NF-kB activation and its downstream inflammatory mediators, iNOS, COX-2, and PGE2 in vitro or in mouse skin. Brit. J. Pharmacol. 146: 352–363.
Chiang, Y. M., D. Y. Chuang, S. Y. Wang, Y. H. Kuo, P. W. Tsai and L. F. Shyur. 2004. Metabolite profiling and chemopreventive bioactivity of plant extracts from Bidens pilosa. J. Ethnopharmacol. 95: 409–419.
Chien, S. C., P. H. Young, Y. J. Hsu, C. H. Chen, Y. J. Tien, S. Y. Shiu, T. H. Li, C. W, P. Marimuthu, L. F. Tsai and W. C. Yang. 2009. Anti-diabetic properties of three common Bidens pilosa variants in Taiwan. Phytochemistry 70: 1246–1254.
Coffey, R. D., G. L. Cromwell and H. J. Monegue. 1994. Efficacy of a copper-lysine complex as a growth promotant for weanling pigs. J. Anim. Sci. 72: 2880-2886.
Deba, F., T. D. Xuan, M. Yasuda and S. Tawata. 2008. Chemical composition and antioxidant, antibacterial and antifungal activities of the essential oils from Bidens pilosa Linn. var. Radiata. Food Control 19: 346–352.
Dey, L., A. S. Attele and C. S. Yuan. 2002. Alternative therapies for type 2 diabetes. Altern. Med. Rev. 7: 45–58.
Dharmananda, S. 2013. A popular remedy ecapes notice of western practitioners. http://www.itmonline.org/arts/bidens.htm
Dimo, T., J. Azay, P. V. Tan, T. Dimo, J. Azay, P. V. Tan, J. Pellecuer, G. Cros, M. Bopelet and J. J. Serrano. 2001. Effects of the aqueous and methylene chloride extracts of Bidens pilosa leaf on fructose-hypertensive rats. J. Ethnopharmacol. 76: 215–221.
FAO. 1997. Agriculture food and nutrition for Africa—a resource book for teachers of agriculture. Publishing management group. FAO information division. Rome. Italy.
Fonseca, J. M., J. W. Rushing and N. C. Rajapakse. 2006. Plantential implications of medicinal plants production in controlled environments: the case of feverfew (Tanacetum parthenium). Horticult. Sci. 41: 531–535.
Fukuda, N., M. Fujita, Y. Ohta, S. Sase, S. Nishimura amd H. Ezura. 2008. Directional blue light irradiation triggers epidermal cell elongation ofabaxial side resulting in inhibition of leaf epinasty in geranium underred light condition. Sci. Hortic. 115: 176–182.
Ghasemzadeh, A., H. Z. E. Jaafar, A. Rahmat, P. E. M. Wahab, M. Ridzwan and A. Halim. 2010. Effect of different light intensities on total phenolics and flavonoids synthesis and anti-oxidant activities in young ginger varieties (Zingiber officinale roscoe). Int. J. Mol. Sci. 11: 3885-3897.
Goins, G., N. Yorio, M. Sanwo and C. Brown. 1997. Photomorphogenesis photosynthesis, and seed yield of wheat plants grown under red lightemitting diodes (LEDs) with and without supplemental blue lighting. J. Exp. Bot. 48: 1407–1413.
Graham, T. L. 1998. Flavonoid and flavonol glycoside metabolism in Arabidopsis. Plant Physiol. Biochem. 36: 135–144.
Gyamfi, M. A., M. Yonamine and Y. Aniy. 1999. Free-radical scavenging action of medicinal herbs from Ghana: Thonningia sanguinea on experimentally-induced liver injuries. Gen. Pharmacol-Vasc. S. 32: 661-667.
Habeck, M. 2003. Diabetes treatments get sweet help from nature. Nat. Med. 9: 1228.
Horiuchi. M and Y. Seyama. 2008. Improvement of the antiinflammatory and antiallergic activity of Bidens pilosa L. var. radiata SCHERFF treated with enzyme (Cellulosine). J. Health Sci. 54: 294–301.
Hornok, L. 1992. Cultivation and processing of medical plants. John wiley&Sons. New York. USA.
Hsu,Y. J., T. H. Lee, C. L. T. Chang, Y. T. Huang and W. C. Yang. 2009. Anti-hyperglycemic effects and mechanism of Bidens pilosa water extract. J. Ethnopharmacol. 122: 379–383.
Hwang, S. J., Y. W. Kim, Y. Park, H. J. Lee and K. W. Kim. 2014. Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflamm. Res.63: 81–90.
Jeffrey, R. S., T. D. Sharkey, J. Wang and C. B. Osmond. 1987. Environmental Effects on Photosynthesis, Nitrogen-Use Efficiency, and Metabolite Pools in Leaves of Sun and Shade Plants. Plant Physiol. 84: 796-802.
Karis, P. O. and O. Ryding. 1994. Asteraceae Cladistics and Classification. Bremer. K. Eds. Timber press. Portland. Ore. USA. 559–569.
Keeney, D. R. and D. W. Nelson. 1982. Nitrogen-Inorganic Form. In: Page A. L., R. H. Miller and D. R. Keeney. (eds.). Methods of Soil Analysis, Part 2, 2nd edition. ASA, Madison, Wisconsin, 659-663.
Keeney, D. R and D. W. Nelson. 1982. Nitrogen-Inorganic Form. Methods of Soil Analysis. 659-663.
Kim, H. K., B. S. Cheon, Y. H. Kim, S. Y. Kim and H. P. Kim. 1999. Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure–activity relationships. Biochem. Pharmacol.
58: 759-765.
Kundsen, D and G. A. Peterson. 1982. Lithium, sodium, and plantassium. Methods of Soil Analysis. Academic Press. Inc. New York. 225-246.
Kumari, P., K. Misra, B. S. Sisodia, U. Faridi, S. Srivastava, S. Luqman, M. P. Darokar, A. S. Negi, M. M. Gupta, S. C. Singh and J. K. Kumar. 2009. A promising anticancer and antimalarial component from the leaves of Bidens pilosa. Planta. med. 75: 59– 61.
Kurata, H., S. Matsumura and S. Furusaki. 1997. Light irradiation causes physiological andmetabolic changes for purine alkaloid production by a Coffea Arabica cell suspension culture. Plant Sci. 123: 197–203.
Kviecinski, M. R., K. B. Felipe, T. Schoenfelder, L. P. L. Wiese, M. H. Rossi, E. Gonçalez, J. D. Felicio, D. W. Filho and R. C. edrosa. 2008. Study of the antitumor plantential of Bidens pilosa (Asteraceae) used in Brazilian folk medicine. J. Ethnopharmacol. 117: 69–75.
Ladha, J. K and P. M. Reddy. 2003. Nitrogen fixation in rice systems: state of knowledge and future prospects. Plant and Soil. 252: 151-167.
Lanyon, L. E. and W. R. Heald. 1982. Magnesium, calcium, strontium, and barium. p.247-262. In: Page, A. L., R. H. Miller and D. R. Keeney (eds.). Methods of Soil Analysis Part 2. Academic Press, Inc., New York.
Lanyon, L. E and W. R. Heald. 1982. Magnesium, calcium, strontium, and barium. Methods of Soil Analysis. Press. Inc. New York. 247-262
Lans, C. 2007. Comparison of plants used for skin and stomach problems in Trinidad and Tobago with Asian ethnomedicine. J. Ethnobiol. Ethnomed. 3: 3.
Lee, W. J., L. F. Wu, W. K. Chen, C. J. Wang and T. H. Tseng. 2006. Inhibitory effect of luteolin on hepatocyte growth factor/scatter factor-induced HepG2 cell invasion involving both MAPK/ERKs and PI3K-Akt pathways. Chem. Biol.
Interact. 160: 123–133.
Liu, B., C. Tu, S. J. Hu, M. Gumpertz and J. B. Ristaino. 2007. Effect of organic, sustainable and conventional management strategies in grower fields on soil physical, chemical and biological factors and the incidence of Southern blight. Appl. Soil Ecol. 37: 202-214.
Manna, M. C., A. Swarup, R. H. Wanjari, H. N. Ravankar, B. Mishra and M. N. Saha. 2005. Long-term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under sub-humid and semi-
arid tropical India. Field Crops Res. 93: 264-280.
Michel, H and K. Klaus. 2001. The protective functions of carotenoids and flavonoids pigments against excess visible radiation at chilling temperature investigated in Arabidopsis. Planta. 213: 953–966.
Mosaleeyanon, K., S. M. A. Zobayed and F. Afreen. 2005. Relationship between net photosynthesis rate and secondary metabolite content in Strawberry. Plant Sci. 169: 523–553.
Muchuweti, M., C. Mupure, A. Ndhlala, T. Murenje and M. A. N. Benhura. 2007. Screening of antioxidant and radical scavenging activity of Vigna ungiculata, Bidens pilosa and Cleome gynandra. Am. J. Food Technol. 2: 161– 168.
Nabavi, S. F., N. Braidy, O. Gortzi, E. Sobarzo-Sanchez, M. Dagliae, K. Skalicka-Woźniakf and S. M. Nabavia. 2017. Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Res. Bull. 119: 1-11.
Nguelefack, T. B., T. Dimo, E. P. Nguelefack Mbuyo, P. V. Tan, S. V. Rakotonirina and A. Kamanyi. 2005. Relaxant effects of the neutral extract of the leaves of Bidens pilosa linn on isolated rat vascular smooth muscle. Phytother. Res. 19: 207–210.
Nielsen, S. F., S. B. Christensen, G. Cruciani, A. Kharazmi and T. Liljefors. 1998. Antileishmaniai chalcones: statistical design, synthesis, and three-dimensional
quantitative structure-activity relationship analysis. J. Med. Chem. 41: 4819–4832.
Olk, D and K. Casssman. 1995. Reduction of plantassium fixation by two humic acid fractions in vermiculitic soils. Soil Sci. Soc. Am. J. 59: 1250-1258.
Olsen, S. R and L. E. Sommers. 1982. Phosphorus. Methods of Soil Analysis. Academic Press, Inc. New York. 403-430.
Orhan, G. H and S. Sibel. 2015. Melatonin, its metabolites and its synthetic analogs as multi-faceted compounds: antioxidant, prooxidant and inhibitor of bioactivation reactions. Curr. Med. Chem. 22: 490-499.
Pareent, L. E. and P. Ilnicki. 2002. Organic soils and peat materials for sustainable Agricuitire CRC Press.
Pereira, R. L., C. T. Ibrahim, L. Lucchetti, A. J. R. Da Silva and V. L. G. De Moraes. 1999. Immunosuppressive and anti-inflammatory effects of methanolic extract and the polyacetylene isolated from Bidens pilosa L. Immunopharmacology 43: 31–37.
Pérez-López, U., C. Sgherri, J. Miranda-Apodaca, F. Micaelli, M. Lacuesta, A. Mena-Petite, M. F. Quartacci and A. Muñoz-Rued. 2018. Concentration of phenolic compounds is increased in lettuce grown underhigh light intensity and
elevated CO2. Plant Physiol. Bioch. 123: 232-241
Pozharitskaya, O. N., A. N. Shikov, M. N. Makarova, V. M. Kosman, N. M. Faustova, S. V. Tesakova, V. G. Makarov and B. Galambosi. 2010. Anti-inflammatory activity of a HPLC-fingerprinted aqueous infusion of aerial part of Bidens
tripartita L. Phytomedicine 17: 463–468.
Reich, P. B., M. A. Davis, K. J. Wrage, M. G. Tjoelker, T. Schaeffer and C. Muermann. 1999. Survival, growth, and photosynthesis of tree seedlings competing with herbaceous vegetation along a water-light-nitrogen gradient. Plant Ecol. 145: 341-350.
Roder, W., S. C. Mason, M. D. Cleff, J. W. Doran and K. R. Knieo. 1988. Plant and microbial responses to sorghum-soybean cropping systems and fertility management. Soil Sci. Soc. Am. J. 52: 1337-1342.
Rosebrg, R. J., N. W. Christensen and T. L. Jackson. 1986. Chloride, soil solution osmotic plantential, and soil pH effects on nitrification. Soil Sci. Soc. Am. J. 50: 941-945.
Samuolienė, G., R. Sirtautas, A. Brazaitytė, A. Viršilė and P. Duchovskis. 2012. Supplementary red-LED lighting and the changes in phytochemical content of two baby leaf lettuces varieties during three seasons. J. Food Agric. Environ. 10,
701- 706.
Seelinger, G., I. Merfort, U. Wolfle and C. M. Schempp. 2008. Anti- carcinogenic effects of the flavonoid luteolin. Molecules. 13: 2628–2651.
Seeman, J. R., T. D. Sharkey, J. Wang and C. B. Osmond. 1987. Environmental effects on photosynthesis, nitrogen-use efficiency, and metabolite pools in leaves of sun and shade plants. Plant Physiology. 84: 796-802.
Schneider, S., C. Ziegler and A. Melzer. 2006. Growth towards light as an adaptation to high light conditions in Chara branches. New Phytol. 172: 83–91.
Shui-Yuan, C., X. Feng and W. Yan. 2009. Advances in the study of flavonoids in Ginkgo biloba leaves. J. Med. Plants Res. 3: 1248–1252.
Sinkovicˇ, L., L. Demšar, D. Zˇnidarcˇicˇ, R. Vidrih, J. Hribar and D. Treutter. 2015. Phenolic profiles in leaves of chicory cultivars (Cichorium intybus L.) as influenced by organic and mineral fertilizers. Food Chem. 166: 507-513.
Sofo, A., B. Lundegårdh, A. Mårtensson, M. Manfra, G. Pepe, E. Sommella, M. D. Nisco, G. C. Tenore, P. Campiglia and A. 2016. Scopaa. Different agronomic and fertilization systems affect polyphenolic profile, antioxidant capacity and
mineral composition of lettuce. Sci. Hortic. 204: 10-115.
Steinger, T., B. Roy and M. Stanton. 2003. Evolution in stressful environments II: Adaptive value and costs of plasticity in response to low light in Sinapis arvensis. J. Evol. Biol. 16: 313–323.
Tan, k. 1980. The release of silicon, aluminu, and plantassium during decomposition of soil minerals by humic acid. Soil Sci. 129: 5-11.
Tan, P. V., T. Dimo and E. Dongo. 2000. Effects of methanol, cyclohexane and methylene chlo ride extracts of Bidens pilosa on various gastric ulcer models in rats. J. Ethnopharmacol. 73: 415-421.
Tewtrakul, S., H. Miyashiro, N. Nakamura, M. Hattori, T. Kawahata, T. Otake, T. Yoshinaga, T. Fujiwara, T. Supavita, S. Yuenyongsawad, P. Rattanasuwon and S. Dej‐Adisai. 2003. HIV-1 integrase inhibitory substances from Coleus Parvifolius. Phytotherapy Res. 17: 232–239.
Tobinaga, S., M. K. Sharma and W. G. L. Aalbersberg et al. 2009. Isolation and identification of a plantent antimalarial and antibacterial polyacetylene from Bidens pilosa. Planta. Med. 75: 624–628.
Ubillas, R. P., C. D. Mendez, S. D. Jolad, J. Luo, S. R. King, T. J. Carlson and D. M. Fort. 2000. Antihyperglycemic acetylenic glucosides from Bidens pilosa. Planta. Med. 66: 82–83.
Wattenberg, L. 1992. Inhibition of carcinogenesis by minor dietary constituents. Cancer Res. 52: 2085-2091.
Williams, D. J., D. Edwards. I. Hamernig, L. Jian, A. P. James, S. K. Johnson and L. C. Tapsell. 2013. Vegetables containing phytochemicals with plantential anti- obesity properties: A review. Food Res. Int. 52: 323-333.
Wu, L. W., Y. M. Chiang and H. C. Chuang. 2004. Polyacetylenes function as anti- angiogenic agents. Pharm. Res. 21: 2112–2119.
Wu, L., W. Y. M. Chiang, H. C. Chuang et al. 2007. A novel polyacetylene significantly inhibits angiogenesis and promotes apoptosis in human endothelial cells through activation of the CDK inhibitors and caspase-7. Planta. med.
73:655–661.
Xagorari, A., A. Papapetropoulos, A. Mauromatis, M. Economou, T. Fotsis and C. Roussos. 2001. Luteolin inhibits an endotoxin-stimulated phosphorylation cascade and proinflammatory cytokine production in macrophages. J. Pharm. Exp.Ther. 296: 181–187.
Xie, B. D and H. T. Wang. 2006. Effects of light spectrum and photoperiod on contents of flavonoid and terpene in leaves of Ginkgo biloba L. Nanjing Forestry Univ. 30: 51–54.
Yuan, L. P., F. H. Chen, L. Ling, H. Bo, Z. W. Chen, F. Li, M. M. Zhong and L. J. Xia. 2008. Protective effects of total flavonoids of Bidens bipinnata L. against carbon Tetrachloride induced liver fibrosis in rats. J. Pharm. Pharmacol. 60: 1393–1402.
Yoshida, N., T. Kanekura, Y. Higashi and T. Kanzaki. 2006. Bidens pilosa suppresses interleukin-1B-induced cyclooxygenase-2 expression through the inhibition of mitogen activated protein kinases phosphorylation in normal human dermal fibroblasts. J. Dermatol. 33: 676–683.
Yoshida, S., D. A. Forno, J. H. Cock and K. A. Gomez. 1976. Procedures for routine analysis of zinc, copper, manganese, calcium, magnesium, plantassium, and sodium by atomic absorption spectrophotometry and flame photometry. Laboratory manual for physiological studies of rice. 27-34
Zhang, S., K. Ma and L. Chen. 2003. Response of photosynthetic plasticity of Paeonia suffruticosa to changed light environments. Environ. Exp. Bot. 49: 121–133.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔