|
王一雄,1997。土壤環境汙染與農藥。明文書局。
行政院環境保護署,1991。民國76-79年台灣地區土壤中重金屬含量調查資料參考手冊。
行政院環境保護署,1998。土壤、沈積物、污泥及油脂中金屬元素總量之檢測方法 -微波消化原子光譜法。行政院環境保護署。
林浩潭,2004。農作物篇(三)植物保護章。行政院農委會農業藥物毒物試驗所。
林晉卿、楊秋忠、林宏鋕、黃山內,2006。三種綠肥在浸水土壤可溶性有機碳的變化。台南區農業改良場研究彙報47:17-30。
高秋實、袁書玉,1989。環境化學。科技圖書股份有限公司,第170頁。
賀江舟、曲東、張莉利,2006。Fe (I) 的微生物異化還原。微生物學通報33(5)。
黃瀞儀,2015。烏溪流域與彰化沿海地區之重金屬分佈。東海大學環境科學與工程學系。
楊純明、林易署、陳俊桀,2013。簡介農地之重金屬污染及其復育,93期第7頁。行政院農委會農業藥物毒物試驗所。
謝俊明,2009。半導體產業勞工砷暴露尿中砷檢測方法推廣。行政院勞工委員會勞工安全衛生研究所。
Bohn, H. L., R. A. Myer, and G. A. O'Connor. 2002. Soil chemistry John Wiley & Sons.
Bostick, B. C., and S. J. G. e. c. A. Fendorf. 2003. Arsenite sorption on troilite (FeS) and pyrite (FeS2). Geochim. Cosmochim. Acta 67:909-921.
Burton, E. D., S. G. Johnston, and R. T. J. G. e. C. A. Bush. 2011. Microbial sulfidogenesis in ferrihydrite-rich environments: effects on iron mineralogy and arsenic mobility. Geochim. Cosmochim. Acta 75:3072-3087.
Burton, E. D., S. G. Johnston, and B. D. Kocar. 2014. Arsenic Mobility during Flooding of Contaminated Soil: The Effect of Microbial Sulfate Reduction. Environ. Sci. Technol. 48:13660-13667.
Burton, E. D., S. G. Johnston, and B. Planer-Friedrich. 2013. Coupling of arsenic mobility to sulfur transformations during microbial sulfate reduction in the presence and absence of humic acid. Chem. Geol. 343:12-24.
Buschmann, J., A. Kappeler, U. Lindauer, D. Kistler, M. Berg, and L. Sigg. 2006. Arsenite and arsenate binding to dissolved humic acids: Influence of pH, type of humic acid, and aluminum. Environ. Sci. Technol. 40:6015-6020.
Chao, T. T., and R. F. Sanzolone. 1977. CHEMICAL DISSOLUTION OF SULFIDE MINERALS. J. Res. U.S. Geol. Surv. 5:409-412.
Chen, S. Y., and J. G. Lin. 2001. Bioleaching of heavy metals from sediment: significance of pH. Chemosphere 44:1093-1102.
Cheng, Y., G. Zheng, C. Wei, Q. Mu, B. Zheng, Z. Wang, M. Gao, Q. Zhang, K. He, and G. J. S. A. Carmichael. 2016. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Sci. Adv. 2:e1601530.
Coates, J. D., D. J. Lonergan, E. J. Philips, H. Jenter, and D. R. J. A. o. m. Lovley. 1995. Desulfuromonas palmitatis sp. nov., a marine dissimilatory Fe (III) reducer that can oxidize long-chain fatty acids. Arch. Microbiol. 164:406-413.
Cord-Ruwisch, R., D. R. Lovley, B. J. A. Schink, and e. microbiology. 1998. Growth of Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Appl. Environ. Microbiol. 64:2232-2236.
Cornwell, J. C., and J. W. Morse. 1987. The characterization of iron sulfide minerals in anoxic marine-sediments. Mar. Chem. 22:193-206.
Couture, R.-M., and P. J. J. o. h. m. Van Cappellen. 2011. Reassessing the role of sulfur geochemistry on arsenic speciation in reducing environments. J. Hazard. Mater. 189:647-652.
Couture, R. M., D. Wallschlager, J. Rose, and P. Van Cappellen. 2013. Arsenic binding to organic and inorganic sulfur species during microbial sulfate reduction: a sediment flow-through reactor experiment. Environ. Chem. 10:285-294.
Cui, J. L., Y. P. Zhao, J. S. Li, J. Z. Beiyuan, D. C. W. Tsang, C. S. Poon, T. S. Chan, W. X. Wang, and X. D. Li. 2018. Speciation, mobilization, and bioaccessibility of arsenic in geogenic soil profile from Hong Kong. Environ. Pollut. 232:375-384.
Cullen, W. R., and K. J. Reimer. 1989. Arsenic speciation in the environment. Chem. Rev. 89:713-764.
Dickinson, W. W., G. B. Dunbar, and H. McLeod. 1996. Heavy metal history from cores in Wellington Harbour, New Zealand. Environ. Geol. 27:59-69.
Dixit, S., J. G. J. E. s. Hering, and technology. 2003. Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ. Sci. Technol. 37:4182-4189.
Dzombak, D. A., and F. Morel. 1990 Surface complexation modeling: hydrous ferric oxide John Wiley & Sons.
Fendorf, S., H. A. Michael, and A. van Geen. 2010. Spatial and Temporal Variations of Groundwater Arsenic in South and Southeast Asia. Science 328:1123-1127.
Gimenez, J., M. Martinez, J. de Pablo, M. Rovira, and L. Duro. 2007. Arsenic sorption onto natural hematite, magnetite, and goethite. J. Hazard. Mater. 141:575-580.
Goldberg, S. 2002. Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Sci. Soc. Am. J. 66:413-421.
Gorny, J., G. Billon, L. Lesven, D. Dumoulin, B. Made, and C. Noiriel. 2015. Arsenic behavior in river sediments under redox gradient: A review. Sci. Total Environ. 505:423-434.
Grafe, M., M. J. Eick, and P. R. Grossl. 2001. Adsorption of arsenate (V) and arsenite (III) on goethite in the presence and absence of dissolved organic carbon. Soil Sci. Soc. Am. J. 65:1680-1687.
Hao, T.-w., P.-y. Xiang, H. R. Mackey, K. Chi, H. Lu, H.-k. Chui, M. C. van Loosdrecht, and G.-H. J. W. r. Chen. 2014. A review of biological sulfate conversions in wastewater treatment. Water Res. 65:1-21.
Han, Y.-S., H. Y. Jeong, A. H. Demond, and K. F. Hayes. 2011. X-ray absorption and photoelectron spectroscopic study of the association of As(III) with nanoparticulate FeS and FeS-coated sand. Water Res. 45:5727-5735.
Herbel, M., and S. Fendorf. 2005. Transformation and transport of arsenic within ferric hydroxide coated sands upon dissimilatory reducing bacterial activity, in: P. A. Oday, D. Vlassopoulos, Z. Meng and L. G. Benning (Eds.), Advances in Arsenic Research: Integration of Experimental and Observational Studies and Implications for Mitigation. pp. 77-90.
Hesterberg, D. 2010. Macroscale chemical properties and X-ray absorption spectroscopy of soil phosphorus, Developments in soil science, Elsevier. pp. 313-356.
Hitchcock, D. R. 1975. Atmospheric sulfur contributions from shallow coastal sediments. Transactions-American Geophysical Union 56:85-85.
Holmer, M., and P. J. F. B. Storkholm. 2001. Sulphate reduction and sulphur cycling in lake sediments: a review. Freshw. Biol. 46:431-451.
Holmes, D. E., K. T. Finneran, R. A. O'neil, D. R. J. A. Lovley, and E. Microbiology. 2002. Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments. Appl. Environ. Microbiol. 68:2300-2306.
Huang, J.-H., and R. J. A. c. Kretzschmar. 2010. Sequential extraction method for speciation of arsenate and arsenite in mineral soils. Anal. Chem. 82:5534-5540.
Huerta-Diaz, M. A., and J. W. J. G. e. C. A. Morse. 1992. Pyritization of trace metals in anoxic marine sediments. Geochim. Cosmochim. Acta 56:2681-2702.
Johnston, S. G., A. F. Keene, E. D. Burton, R. T. Bush, L. A. Sullivan, A. E. McElnea, C. R. Ahern, C. D. Smith, B. Powell, and R. K. Hocking. 2010. Arsenic Mobilization in a Seawater Inundated Acid Sulfate Soil. Environ. Sci. Technol. 44:1968-1973.
Küsel, K., T. Dorsch, G. Acker, E. J. A. Stackebrandt, and E. Microbiology. 1999. Microbial reduction of Fe (III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe (III) to the oxidation of glucose. Appl. Environ. Microbiol. 65:3633-3640.
Kashefi, K., D. E. Holmes, J. A. Baross, D. R. J. A. Lovley, and e. microbiology. 2003. Thermophily in the Geobacteraceae: Geothermobacter ehrlichii gen. nov., sp. nov., a novel thermophilic member of the Geobacteraceae from the “Bag City” hydrothermal vent. Appl. Environ. Microbiol. 69:2985-2993.
Kashefi, K., J. M. Tor, K. P. Nevin, D. R. J. A. Lovley, and e. microbiology. 2001. Reductive precipitation of gold by dissimilatory Fe (III)-reducing bacteria andarchaea. Appl. Environ. Microbiol. 67:3275-3279.
Keimowitz, A. R., B. J. Mailloux, P. Cole, M. Stute, H. J. Simpson, and S. N. Chillrud. 2007. Laboratory investigations of enhanced sulfate reduction as a ground water arsenic remediation strategy. Environ. Sci. Technol. 41:6718-6724.
Kieft, T., J. Fredrickson, T. Onstott, Y. Gorby, H. Kostandarithes, T. Bailey, D. Kennedy, S. Li, A. Plymale, C. J. A. Spadoni, and E. Microbiology. 1999. Dissimilatory reduction of Fe (III) and other electron acceptors by a Thermus isolate. Appl. Environ. Microbiol. 65:1214-1221.
Kirk, M. F. 2010. Experimental analysis of arsenic precipitation during microbial sulfate and iron reduction in model aquifer sediment reactors (vol 74, pg 2538, 2010). Geochim. Cosmochim. Acta 74:4603-4603.
Ko, I., J. Y. Kim, and K. W. Kim. 2004. Arsenic speciation and sorption kinetics in the As-hematite-humic acid system. Colloids Surf. A Physicochem. Eng. Asp. 234:43-50.
Kocar, B. D., T. Borch, and S. Fendorf. 2010. Arsenic repartitioning during biogenic sulfidization and transformation of ferrihydrite. Geochim. Cosmochim. Acta 74:980-994.
Kumarathilaka, P., S. Seneweera, A. Meharg, and J. Bundschuh. 2018. Arsenic speciation dynamics in paddy rice soil-water environment: sources, physico-chemical, and biological factors - A review. Water Res. 140:403-414.
Lin, H. T., M. C. Wang, and G. C. Li. 2004. Complexation of arsenate with humic substance in water extract of compost. Chemosphere 56:1105-1112.
Liu, C. C., J. P. Maity, J. S. Jean, O. Sracek, S. Kar, Z. H. Li, J. Bundschuh, C. Y. Chen, and H. Y. Lu. 2011. Biogeochemical interactions among the arsenic, iron, humic substances, and microbes in mud volcanoes in southern Taiwan. J. Environ. Sci. Heal. A. 46:1218-1230.
Lloyd, J. R., V. Sole, C. Van Praagh, D. J. A. Lovley, and e. microbiology. 2000. Direct and Fe (II)-mediated reduction of technetium by Fe (III)-reducing bacteria. Appl. Environ. Microbiol. 66:3743-3749.
Lovley, D. R. J. M. r. 1991. Dissimilatory Fe (III) and Mn (IV) reduction. Microbiol. Mol. Biol. Rev. 55:259-287.
Mandal, B. K., and K. T. Suzuki. 2002. Arsenic round the world: a review. Talanta 58:201-235.
Masscheleyn, P. H., R. D. Delaune, and W. H. Patrick. 1991. Effect of redox potential and ph on arsenic speciation and solubility in a contaminated soil. Environ. Sci. Technol. 25:1414-1419.
McKeague, J. A., and D. H. Day. 1966. Dithionite- and oxalate-extractable fe and al as aids in differentiating various classes of soils. Can. J. Soil Sci. 46:13-&.
Nath, B., S. Chakraborty, A. Burnol, D. Stuben, D. Chatterjee, and L. Charlet. 2009. Mobility of arsenic in the sub-surface environment: An integrated hydrogeochemical study and sorption model of the sandy aquifer materials. J. Contam. Hydrol. 364:236-248.
O'Day, P. A., D. Vlassopoulos, R. Root, and N. Rivera. 2004. The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proc. Natl. Acad. Sci. U. S. A. 101:13703-13708.
Ona-Nguema, G., G. Morin, F. Juillot, G. Calas, and G. E. Brown. 2005. EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite. Environ. Sci. Technol. 39:9147-9155.
Pierce, M. L., and C. B. Moore. 1982. Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res. 16:1247-1253.
Pontius, F. W., K. G. Brown, and C. J. Chen. 1994. Health implications of arsenic in drinking-water. J. Am. Water Works Ass. 86:52-63.
Poulton, S. W., M. D. Krom, and R. Raiswell. 2004. A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide. Geochim. Cosmochim. Acta 68:3703-3715.
Raven, K. P., A. Jain, and R. H. Loeppert. 1998. Arsenite and arsenate adsorption on ferrihydrite: Kinetics, equilibrium, and adsorption envelopes. Environ. Sci. Technol. 32:344-349.
Redman, A. D., D. L. Macalady, and D. Ahmann. 2002. Natural organic matter affects arsenic speciation and sorption onto hematite. Environ. Sci. Technol. 36:2889-2896.
Reguera, G., K. D. McCarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen, and D. R. J. N. Lovley. 2005. Extracellular electron transfer via microbial nanowires. Nature 435:1098.
Ritter, K., G. R. Aiken, J. F. Ranville, M. Bauer, and D. L. Macalady. 2006. Evidence for the aquatic binding of arsenate by natural organic matter-suspended Fe(III). Environ. Sci. Technol. 40:5380-5387.
Rochette, E. A., B. C. Bostick, G. C. Li, and S. Fendorf. 2000. Kinetics of arsenate reduction by dissolved sulfide. Environ. Sci. Technol. 34:4714-4720.
Saalfield, S. L., and B. C. Bostick. 2009. Changes in Iron, Sulfur, and Arsenic Speciation Associated with Bacterial Sulfate Reduction in Ferrihydrite-Rich Systems. Environ. Sci. Technol. 43:8787-8793.
Sadiq, M. 1997. Arsenic chemistry in soils: An overview of thermodynamic predictions and field observations. Water Air Soil Pollut. 93:117-136.
Singh, R., S. Singh, P. Parihar, V. P. Singh, and S. M. Prasad. 2015. Arsenic contamination, consequences and remediation techniques: A review. Ecotoxicol. Environ. Saf. 112:247-270.
Slobodkin, A., A.-L. Reysenbach, N. Strutz, M. Dreier, J. J. I. J. o. S. Wiegel, and E. Microbiology. 1997. Thermoterrabacterium ferrireducens gen. nov., sp. nov., a thermophilic anaerobic dissimilatory Fe (III)-reducing bacterium from a continental hot spring. Int. J. Syst. Evol. Microbiol. 47:541-547.
Sreekrishnan, T. R., R. D. Tyagi, J. F. Blais, and P. G. C. Campbell. 1993. Kinetics of heavy-metal bioleaching from sewage-sludge .1. effects of process parameters. Water Res. 27:1641-1651.
Sullivan, K., and R. J. G. e. C. A. Aller. 1996. Diagenetic cycling of arsenic in Amazon shelf sediments. Geochim. Cosmochim. Acta 60:1465-1477.
Sun, J., A. N. Quicksall, S. N. Chillrud, B. J. Mailloux, and B. C. J. C. Bostick. 2016. Arsenic mobilization from sediments in microcosms under sulfate reduction. Chemosphere 153:254-261.
Voegelin, A., F. A. Weber, and R. Kretzschmar. 2007. Distribution and speciation of arsenic around roots in a contaminated riparian floodplain soil: Micro-XRF element mapping and EXAFS spectroscopy. Geochim. Cosmochim. Acta 71:5804-5820.
Wang, J., X.-C. Zeng, X. Zhu, X. Chen, X. Zeng, Y. Mu, Y. Yang, and Y. J. J. o. h. m. Wang. 2017. Sulfate enhances the dissimilatory arsenate-respiring prokaryotes-mediated mobilization, reduction and release of insoluble arsenic and iron from the arsenic-rich sediments into groundwater. J. Hazard. Mater. 339:409-417.
Wasserman, G. A., X. H. Liu, F. Parvez, H. Ahsan, P. Factor-Litvak, A. van Geen, V. Slavkovich, N. J. Lolacono, Z. Q. Cheng, L. Hussain, H. Momotaj, and J. H. Graziano. 2004. Water arsenic exposure and children's intellectual function in Araihazar, Bangladesh. Environ. Health Perspect. 112:1329-1333.
Wedepohl, K. H. 1995. The composition of the continental-crust. Geochim. Cosmochim. Acta 59:1217-1232.
Wilkin, R. T., and R. G. Ford. 2002. Use of hydrochloric acid for determining solid-phase arsenic partitioning in sulfidic sediments. Environ. Sci. Technol. 36:4921-4927.
Wilkin, R. T., and R. G. Ford. 2006. Arsenic solid-phase partitioning in reducing sediments of a contaminated wetland. Chem. Geol. 228:156-174.
Wolthers, M., I. Butler, D. Rickard, and P. Mason. 2005. Arsenic incorporation into pyrite at ambient environmental conditions: a continuous-flow experiment, Am. Chem. Soc. Symp. Ser. pp. 60-76.
Wolthers, M., L. Charlet, C. H. van Der Weijden, P. R. van Der Linde, and D. Rickard. 2005. Arsenic mobility in the ambient sulfidic environment: Sorption of arsenic(V) and arsenic(III) onto disordered mackinawite. Geochim. Cosmochim. Acta 69:3483-3492.
Zobrist, J., P. R. Dowdle, J. A. Davis, and R. S. Oremland. 2000. Mobilization of arsenite by dissimilatory reduction of adsorbed arsenate. Environ. Sci. Technol. 34:4747-4753.
|