跳到主要內容

臺灣博碩士論文加值系統

(44.211.24.175) 您好!臺灣時間:2024/11/05 18:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉孟杰
研究生(外文):Meng-Chieh Liu
論文名稱:乳化聚合製備PMMA-SiO2混成材及物性分析
論文名稱(外文):Synthesis and physical properties of PMMA-SiO2 hybrids by emulsion polymerization
指導教授:吳震裕
指導教授(外文):Jeng-Yue Wu
口試委員:莊宗原李榮和
口試日期:2019-07-30
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:74
中文關鍵詞:二氧化矽乳化聚合混成材
外文關鍵詞:Silicon dioxideEmulsion polymerizationHybrids
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用改質劑MPS (3-Methacryloxypropyl trimethoxysilane) 來改質SiO2,使SiO2表面具備雙鍵,將性質由親水性質改變為疏水性質,接著加入SDS (Sodium dodecyl sulfate, 十二烷基硫酸鈉) 水溶液、單體MMA (Methyl methacrylate, 甲基丙烯酸甲酯),使溶液中形成單體溶脹微胞 (Monomer swollen micelle),再加入KPS (Potassium persulfate, 過硫酸鉀),開始乳化聚合製備PMMA-SiO2混成材。本實驗探討各階段粒子的狀態以及不同濃度的界面劑對聚合後的PMMA-SiO2混成材結構的影響。
本實驗使用TEOS (Tetraethyl orthosilicate, 四乙氧基矽烷) 做為前驅物來製備二氧化矽,以水解慢、縮合快來製備出28.1~31.7 nm的SiO2,並觀察反應時間對SiO2粒徑大小的影響,由SEM分析可以看到粒子呈現球型,並且分散狀況良好。
MPS的添加量分別為MPS/SiO2 = 0.3、MPS/SiO2 = 0.5,將MPS改質後的SiO2溶液,以FTIR進行分析,確認MPS的C=O拉伸震動翰C=C拉伸震動分別位於1716、1633 cm-1,並且SiO2的特徵峰也都還在,表示MPS有接枝於SiO2表面上。改變MPS的添加量在這一步驟對粒子沒有影響,由SEM分析,兩者粒徑相同並且同樣分散狀況良好。
將以MPS改質的SiO2溶液加入不同倍率的SDS水溶液,來探討粒子於溶液中的狀態,由DLS分析可以得知因MPS具備疏水性質,因此在加入SDS水溶液後,有嚴重的團聚現象發生,當界面劑濃度在3倍C.M.C.以下時,粒子的粒徑會隨著界面劑濃度的增加而變小,當界面劑濃度在3倍以上時,粒子的粒徑會隨著界面劑濃度增加而變大。由SEM分析,發現在MPS/SiO2 = 0.3、界面劑濃度3倍C.M.C.以下時,粒子雖然有團聚的情形,但仍然呈現球型,而當界面劑濃度大於3倍時,粒子均呈現不規則形狀,並且有嚴重的團聚現象。
將乳化聚合製備PMMA-SiO2混成材以TGA進行分析,分析結果顯示,大部分的樣品單體轉化率均達到100%,但當界面劑濃度過高時 (2.6倍C.M.C.),會使單體轉化率降至50%以下,另外因粒子粒徑太小,抽氣過濾後未留下濾餅,因此無法洗掉界面劑,導致5%重量損失溫度 (Td5) 有高有低,沒有一定的規律。另外,由SEM分析得知,PMMA-SiO2聚合液在MPS/SiO2 = 0.3下,界面劑濃度0.2倍、1倍C.M.C.的條件時,分散狀況最好,無團聚現象,粒徑分別為41.2 ~ 45.3 nm、35.5 ~ 38.7 nm,均比聚合前的粒徑還要大。由TEM分析可以得知製備出的混成材形態,MPS/SiO2 = 0.5下,界面劑濃度在2.6倍C.M.C.時,拍出來的PMMA未包覆住SiO2,有許多粒子是直接乳化聚合形成的,並且有嚴重的團聚現象。而在MPS/SiO2 = 0.3下,界面劑濃度0.2倍、1倍C.M.C.的條件時,可以看出有一層PMMA包覆住SiO2,表示PMMA成功接枝於SiO2表面上。
In this study, the coupling agent MPS (3-Methacryloxypropyl trimethoxysilane) was used to modify SiO2 with the surface of SiO2 bearing double bonds, and to change the properties from hydrophilic to hydrophobic. Then, SDS (Sodium dodecyl sulfate) aqueous solution was added, subsequently, monomer MMA (Methyl methacrylate) was added to form monomer swollen micelle in the solution. Then, KPS (Potassium persulfate) was added to initiate emulsion polymerization to prepare PMMA-SiO2 hybrids. This study explored the growth of particles at various stages and the effect of different concentrations of interfacial agents on the hybrid structure of PMMA-SiO2 hybrid after emulsion polymerization.
At first, TEOS (Tetraethyl orthosilicate) is used as a precursor to prepare SiO2. The SiO2 with diameters 28.1 ~ 31.7 nm is prepared at a slow hydrolysis rate and a fast condensation rate, and the effect of reaction time on the particle size of SiO2 is observed. SEM analysis show that the particles are spherical and the dispersion is good.
The add amount of MPS is MPS/SiO2 = 0.3 and MPS/SiO2 = 0.5 respectively. The SiO2 solution modify with MPS is analyzed by FTIR which is confirmed the C=O、C=C stretching vibration of MPS is at 1716、1633 cm-1 respectively. In addition, the absorption peak of SiO2 is still present, indicating that MPS is grafted onto the surface of SiO2. Changing the amount of MPS added had no variation on the particle size, and SEM analysis showed that most particles has the same particle size and well dispersed.
The MPS-modified SiO2 solution was added to different dosing of SDS aqueous solution to study the variation of the particle size in the solution. It can be seen from DLS analysis that MPS has hydrophobic properties, so there is a serious agglomeration phenomenon after adding SDS aqueous solution. When the concentration of the interfacial agent is below 3 times of C.M.C. (Critical micelle concentration), the particle size of the particles decrease with the increase of the concentration of the interfacial agent. When the C.M.C. of the interfacial agent is more than 3 times, the particle size of the particles would become larger with the increase of the concentration of interfacial agent. According to the SEM analysis, it is found that when the MPS-modified SiO2 is below MPS/SiO2 = 0.3 and 3 times C.M.C., although the particles are agglomerated, they still have spherical shape. Also, when the concentration of the interfacial agent is more than 3 times C.M.C., the particles are all in irregular shapes and have serious agglomeration phenomenon.
The PMMA-SiO2 hybrids are prepared by emulsion polymerization and analyze by TGA. According to the result, most monomer conversion of the samples has reached 100%. When the interfacial agent concentration is too high (2.6 times C.M.C.), the monomer conversion will be reduced to less than 50%. In addition, since the particle size is too small, the filter cake is not left after the suction filtration. This is because the interfacial agent can not be washed away and results in the deviation of temperatures at 5% wight loss (Td5). In addition, it is found by SEM analysis that the PMMA-SiO2 polymerization solution has the best dispersion condition with no agglomeration phenomenon under the condition of 0.2 times and 1 times C.M.C. at MPS/SiO2 = 0.3, and the particle diameters are located between 41.2 ~ 45.3 nm and 35.5 ~ 38.7 nm respectively. Both particle sizes are larger than those before the polymerization. It can be seen from TEM analysis that when the MPS-modified SiO2 is at MPS/SiO2 = 0.5, the interfacial agent concentration is 2.6 times C.M.C., the PMMA is not coat on SiO2, many particles are formed by self-emulsification polymerization, and there are a serious agglomeration phenomenon. Under the condition of MPS/SiO2 = 0.3 and at 0.2 times and 1 times C.M.C., it can be seen that PMMA can be coated on SiO2, which indicate that PMMA is successfully grafted onto the surface of SiO2.
誌謝 i
摘要 ii
Abstract iv
目錄 vi
表目錄 viii
Scheme目錄 ix
圖目錄 x
一、 緒論 1
1.1 奈米混成材 1
1.2 溶膠-凝膠法 (Sol-Gel) 2
1.3 界面活性劑 4
1.4 聚甲基丙烯酸甲酯 5
1.5 研究目的與方向 6
1.6 研究架構與流程 6
二、 文獻回顧 11
2.1 溶膠凝膠法 (Sol-Gel) 製備二氧化矽 11
2.2 二氧化矽表面改質 16
2.3 乳化聚合反應 20
三、 實驗 26
3.1 實驗儀器 26
3.2 實驗藥品 27
3.3 實驗步驟 29
四、 結果與討論 31
4.1 TEOS製備二氧化矽 31
4.1.1 場發射掃描式電子顯微鏡 (FESEM) 分析 31
4.1.2 動態光散色儀 (DLS) 分析 33
4.1.3 傅立葉轉換紅外線光譜儀 (FTIR) 分析 34
4.2 TEOS製備SiO2-反應時間對粒徑的影響 35
4.2.1 動態光散色儀 (DLS) 分析 35
4.2.2 場發射掃描式電子顯微鏡 (FESEM) 分析 37
4.3 MPS改質SiO2 40
4.3.1 傅立葉轉換紅外線光譜儀 (FTIR) 分析 40
4.3.2 動態光散色儀 (DLS) 分析 41
4.3.3 場發射掃描式電子顯微鏡 (FESEM) 分析 43
4.4 MPS改質SiO2 後加入界面劑 45
4.4.1 動態光散色儀 (DLS) 分析 46
4.4.2 場發射掃描式電子顯微鏡 (FESEM) 分析 49
4.5 乳化聚合製備PMMA-SiO2 54
4.5.1 熱重分析儀 (TGA) 分析 56
4.5.2 動態光散色儀(DLS)分析 59
4.5.3 場發射掃描式電子顯微鏡 (FESEM) 分析 61
4.5.4 穿透式電子顯微鏡 (TEM) 分析 65
五、 結論 68
六、 參考文獻 70
附錄一、樣品代號說明 73
附錄二、單體轉化率計算 74
[1]徐國財, "奈米複合材料", 五南圖書出版股份有限公司, 台北, 5-9, (2004)
[2]J. Ma, M. Lu, C. Cao, and H. Zhang, Polymer Composites, 34, 626-633 (2013)
[3]A. Sargsyan, A. Tonoyan, S. Davtyan, and C. Schick, European Polymer Journal, 43, 3113-3127 (2007)
[4]周森, "複合材料: 奈米. 生物科技", 全威圖書, 台北, 2-12, (2009)
[5]Y. Geng, 11-19 (2013)
[6]H. Schmidt, H. Scholze, and A. Kaiser, Journal of Non-Crystalline Solids, 63, 1-11 (1984)
[7]L. L. Hench and J. K. West, Chemical reviews, 90, 33-72 (1990)
[8]C. J. Brinker, Journal of Non-Crystalline Solids, 100, 31-50 (1988)
[9]顾宇辉, 无机化学学报, 19, (2003)
[10]趙承琛, 界面科學基礎, 復文書局, 台南, 74-108 (1985)
[11]徐武軍, "高分子材料導論", 五南圖書出版股份有限公司, 台北, 53-60, (2012)
[12]欧玉春, 高分子学报, 2, 199-205 (1997)
[13]W. Stöber, A. Fink, and E. Bohn, Journal of colloid and interface science, 26, 62-69 (1968)
[14]A. Van Helden, J. Jansen, and A. Vrij, Journal of Colloid and Interface Science, 81, 354-368 (1981)
[15]A. Duran, C. Serna, V. Fornes, and J. F. Navarro, Journal of Non-Crystalline Solids, 82, 69-77 (1986)
[16]N. Nishiyama, K. Horie, and T. Asakura, Journal of Applied Polymer Science, 34, 1619-1630 (1987)
[17]N. Nishiyama, T. Asakura, and K. Horie, Journal of colloid and interface science, 124, 14-21 (1988)
[18]G. Bogush, M. Tracy, and C. Zukoski Iv, Journal of non-crystalline solids, 104, 95-106 (1988)
[19]T. Bernards, M. Van Bommel, and A. Boonstra, Journal of non-crystalline solids, 134, 1-13 (1991)
[20]C. Wang, Y. Zhang, L. Dong, L. Fu, Y. Bai, T. Li, J. Xu, and Y. Wei, Chemistry of materials, 12, 3662-3666 (2000)
[21]D. C. Vasconcelos, W. R. Campos, V. Vasconcelos, and W. L. Vasconcelos, Materials Science and Engineering: A, 334, 53-58 (2002)
[22]K.-S. Kim, J.-K. Kim, and W.-S. Kim, Ceramics international, 28, 187-194 (2002)
[23]S. K. Park, K. Do Kim, and H. T. Kim, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 197, 7-17 (2002)
[24]W. Wang, B. Gu, L. Liang, and W. Hamilton, The Journal of Physical Chemistry B, 107, 3400-3404 (2003)
[25]K. S. Rao, K. El-Hami, T. Kodaki, K. Matsushige, and K. Makino, Journal of colloid and interface science, 289, 125-131 (2005)
[26]A. B. Corradi, F. Bondioli, A. M. Ferrari, B. Focher, and C. Leonelli, Powder technology, 167, 45-48 (2006)
[27]M. Kuniyoshi, M. Takahashi, Y. Tokuda, and T. Yoko, Journal of sol-gel science and technology, 39, 175-183 (2006)
[28]N. Plumeré, A. Ruff, B. Speiser, V. Feldmann, and H. A. Mayer, Journal of colloid and interface science, 368, 208-219 (2012)
[29]B. Gao, Y. Chen, and Z. Zhang, Applied Surface Science, 257, 254-260 (2010)
[30]W. J. Tseng and S.-F. Guo, Journal of nanoscience and nanotechnology, 12, 7909-7914 (2012)
[31]F. Zhao, X. Zeng, H. Li, and J. Zhang, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 396, 328-335 (2012)
[32]Y. Luo, C. Feng, Q. Wang, Z. Yi, Q. Qiu, K. Lx, and Z. Peng, Journal of Wuhan University of Technology-Mater. Sci. Ed., 28, 997-1002 (2013)
[33]R. Hashemi-Nasab and S. Mirabedini, Progress in Organic Coatings, 76, 1016-1023 (2013)
[34]D. Qi, C. Liu, Z. Chen, G. Dong, and Z. Cao, Colloid and Polymer Science, 293, 463-471 (2015)
[35]R. Pelton and P. Chibante, Colloids and Surfaces, 20, 247-256 (1986)
[36]G. He, Q. Pan, and G. L. Rempel, Macromolecular rapid communications, 24, 585-588 (2003)
[37]A. Zhu, Z. Shi, A. Cai, F. Zhao, and T. Liao, Polymer testing, 27, 540-547 (2008)
[38]C.-L. Yu, J.-S. Kang, and F.-A. Zhang, Journal of Macromolecular Science®, Part A: Pure and Applied Chemistry, 46, 870-875 (2009)
[39]A. Kongsinlark, G. L. Rempel, and P. Prasassarakich, Chemical engineering journal, 193, 215-226 (2012)
[40]M. Yazdimamaghani, T. Pourvala, E. Motamedi, B. Fathi, D. Vashaee, and L. Tayebi, Materials, 6, 3727-3741 (2013)
[41]H. Li, J. Yuan, H. Qian, and L. Wu, Progress in Organic Coatings, 97, 65-73 (2016)
[42]D. Tumnantong, G. L. Rempel, and P. Prasassarakich, Polymer Engineering & Science, 58, 759-766 (2018)
[43]C. Hübner, C. Fettkenhauer, K. Voges, and D. C. Lupascu, Langmuir, 34, 376-383 (2018)
[44]T. Jesionowski and A. Krysztafkiewicz, Applied Surface Science, 172, 18-32 (2001)
[45]H. Xia, C. Zhang, and Q. Wang, Journal of applied polymer science, 80, 1130-1139 (2001)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊