跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/16 11:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張雅晴
研究生(外文):Ya-Ching Chang
論文名稱:輔助型矽烷化合物改善自組裝單層分子排列之研究
論文名稱(外文):The study of improved orientability of self-assembling monolayer by assistant silane compound
指導教授:陳志銘陳志銘引用關係
指導教授(外文):Chih-Ming Chen
口試委員:衛子健張健忠
口試委員(外文):Tzu-Chien WeiCheng-Chung Chang
口試日期:2019-06-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:64
中文關鍵詞:矽烷化合物自組裝單層分子界面附著力奈米粒子固定化
外文關鍵詞:SilaneSelf-assembling monolayerInterfacial adhesionImmobilized nanoparticles
相關次數:
  • 被引用被引用:0
  • 點閱點閱:19
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
矽烷化是最常被用來進行表面改質的一項技術,其矽烷化合物末端功能性基團可以將基材表面改質成任何預期的形式。但過去的文獻大多僅推測矽烷化合物可能接枝在基材上的方向,鮮少去調整以及最佳化矽烷化合物在基材上的接枝情形。本研究以間作型農作物為概念,使用兩種不同結構之矽烷化合物進行探討,第一種為具有胺基結構的功能型矽烷化合物,可作為觸媒吸附活性點以利後續應用;第二種為具有苯環結構的輔助型矽烷化合物,其立體障礙結構能有效防止功能型矽烷化合物之間的團聚行為。
本研究利用水滴接觸角、原子力顯微鏡及化學能譜分析儀分析經表面改質後石英玻璃基材的團聚行為與鍵結形式,並以不同濃度輔助型矽烷化的水滴接觸角數值以及角度解析化學能譜分析儀結果找出最佳之矽烷化反應。使用不同比例之矽烷化合物,利用表面電位顯微鏡及紫外光電子能譜儀來調控基材的表面電位與功函數。最後將本研究之單矽烷化與階段性矽烷化之結果,分別用於改善基材與金屬層之間的界面附著力和應用於奈米銀顆粒固定化之研究。
Silanization is one of the most commonly used techniques for surface modification which can modify the substrates by grafting functional silane molecules. The grafting orientation of silane molecules plays a crucial role but is seldom investigated in previous studies. In this study, the mutual intercropping technology for agriculture is adopted to improve the grafting orientability of functional silane molecules by using two different silane compounds. One silane compound with a functional amino group (-NH2) is used as the functional silane, in which the amino group can be used as the active site of catalyst for specific applications. The other silane compound named as assistant silane is with benzene structures, which can spatially prevent self-agglomeration by the steric effect of benzene.
In this study, the effect of silane self-agglomeration and the bonding characteristics were identified by water contact angle, atomic force microscopy (AFM) and X-ray photoelectron spectroscope (XPS). The optimal silanization mechanism is studied by water contact angle values of the assistant silane and angle-resolved X-ray photoelectron spectroscope (ARXPS). The surface of substrate is tailored with different ratios of functional silane and assistant silane to regulate the surface potential and work function by Kelvin probe force microscopy (KPFM) and ultraviolet photoelectron spectroscopy (UPS). The results of the mono-silanization and the staged-silanization are used to improve the interfacial adhesion between the substrate and the metal layer and to study the immobilized silver nanoparticles, respectively.
致謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1前言 1
1-2研究動機與目的 2
第二章 文獻回顧 4
2-1自組裝單層分子(SAMs)簡介 4
2-1-1自組裝單層分子之結構 5
2-1-2矽烷化(Silanization)表面改質機制 6
2-1-3胺基自組裝單層分子 9
2-2以自組裝單層分子(SAMs)調控材料表面電位 14
2-3以自組裝單層分子(SAMs)調控材料功函數 17
2-4最佳化矽烷化合物排列之應用 19
第三章 實驗方法 25
3-1藥品與材料 25
3-2實驗步驟 26
3-2-1玻璃基材前處理 26
3-2-2矽烷化合物表面改質 26
3-2-3奈米鈀觸媒合成 27
3-2-4化學鍍鎳藥水配製 27
3-2-5附著力測試 28
3-3實驗設備與儀器 29
3-4分析儀器原理簡介 30
3-4-1接觸角量測儀(Contact Angle Measurement) 30
3-4-2原子力顯微鏡(Atomic Force Microscopy, AFM) 31
3-4-3化學分析電子能譜儀(X-ray Photoelectron Spectroscope, ESCA) 34
3-4-4紫外光電子能譜儀(Ultraviolet Photoelectron Spectroscopy, UPS) 35
3-4-5掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 36
第四章 結果與討論 37
4-1矽烷化合物表面改質驗證 37
4-1-1水滴接觸角測試 37
4-1-2 原子力顯微鏡(AFM)表面形貌 38
4-1-3化學分析電子能譜儀(XPS)表面分析 39
4-2以最佳化條件進行矽烷化反應 40
4-2-1輔助型矽烷化合物濃度選擇 40
4-2-2階段性矽烷化改質角度解析XPS (ARXPS)分析 43
4-2-3矽烷化合物的厚度量測 47
4-3階段性矽烷化改質對基材表面電位的影響 49
4-4階段性矽烷化改質對材料功函數的影響 51
4-5應用 52
4-5-1矽烷化合物表面改質對界面附著力之探討 52
4-5-2胺基官能基固定奈米銀顆粒抑菌效果 53
第五章 結論 55
參考文獻 56
[1]I. Langmuir, "The constitution and fundamental properties of solids and liquids. II. Liquids," Journal of the American chemical society, 39, pp. 1848-1906 (1917).
[2]W. Bigelow, D. Pickett, and W. Zisman, "Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids," Journal of Colloid Science, 1, pp. 513-538 (1946).
[3]J. Sagiv, "Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces," Journal of the American Chemical Society, 102, pp. 92-98 (1980).
[4]R. G. Nuzzo and D. L. Allara, "Adsorption of bifunctional organic disulfides on gold surfaces," Journal of the American Chemical Society, 105, pp. 4481-4483 (1983).
[5]A. Ulman, "Formation and structure of self-assembled monolayers," Chemical reviews, 96, pp. 1533-1554 (1996).
[6]F. Deflorian, S. Rossi, M. Fedel, and C. Motte, "Electrochemical investigation of high-performance silane sol–gel films containing clay nanoparticles," Progress in Organic Coatings, 69, pp. 158-166 (2010).
[7]B. Ramezanzadeh, E. Raeisi, and M. Mahdavian, "Studying various mixtures of 3-aminopropyltriethoxysilane (APS) and tetraethylorthosilicate (TEOS) silanes on the corrosion resistance of mild steel and adhesion properties of epoxy coating," International Journal of Adhesion and Adhesives, 63, pp. 166-176 (2015).

[8]K.-Y. Wu, S.-Y. Yu, and Y.-T. Tao, "Continuous modulation of electrode work function with mixed self-assembled monolayers and its effect in charge injection," Langmuir, 25, pp. 6232-6238 (2009).
[9]C.-H. Kuo, C.-P. Liu et al., "Effect of surface chemical composition on the work function of silicon substrates modified by binary self-assembled monolayers," Physical Chemistry Chemical Physics, 13, pp. 15122-15126 (2011).
[10]H. J. Lee, A. C. Jamison, and T. R. Lee, "Surface Dipoles: A Growing Body of Evidence Supports Their Impact and Importance," Accounts of chemical research, 48, pp. 3007-3015 (2015).
[11]H. Sugimura, K. Hayashi, N. Saito, N. Nakagiri, and O. Takai, "Surface potential microscopy for organized molecular systems," Applied surface science, 188, pp. 403-410 (2002).
[12]W.-C. Lin, S.-H. Lee et al., "Tuning the surface potential of gold substrates arbitrarily with self-assembled monolayers with mixed functional groups," Physical Chemistry Chemical Physics, 11, pp. 6199-6204 (2009).
[13]Y.-C. Lin, B.-Y. Yu et al., "Tailoring the surface potential of gold nanoparticles with self-assembled monolayers with mixed functional groups," Journal of colloid and interface science, 340, pp. 126-130 (2009).
[14]D. J. Ellison, B. Lee, V. Podzorov, and C. D. Frisbie, "Surface potential mapping of SAM‐functionalized organic semiconductors by Kelvin probe force microscopy," Advanced Materials, 23, pp. 502-507 (2011).
[15]P. Pallavicini, A. Taglietti et al., "Self-assembled monolayers of silver nanoparticles firmly grafted on glass surfaces: low Ag+ release for an efficient antibacterial activity," Journal of Colloid and Interface Science, 350, pp. 110-116 (2010).
[16]K. Wu, Y. Chang, W. Tsai, M. Huang, and C. Yang, "Effect of amine groups on the synthesis and antibacterial performance of Ag nanoparticles dispersed in aminosilanes-modified silicate," Polymer Degradation and Stability, 95, pp. 2328-2333 (2010).
[17]S. Agnihotri, S. Mukherji, and S. Mukherji, "Immobilized silver nanoparticles enhance contact killing and show highest efficacy: elucidation of the mechanism of bactericidal action of silver," Nanoscale, 5, pp. 7328-7340 (2013).
[18]A. Duhin, Y. Sverdlov, I. Torchinsky, Y. Feldman, and Y. Shacham-Diamand, "NiSi contact metallization using electroless Ni deposition on Pd-activated self-assembled monolayer (SAM) on p-type Si (1 0 0)," Microelectronic Engineering, 84, pp. 2506-2510 (2007).
[19]W. Sun, G. Chen, and L. Zheng, "Electroless deposition of silver particles on graphite nanosheets," Scripta Materialia, 59, pp. 1031-1034 (2008).
[20]A. Möbius, D. Elbick et al., "Plasma-printing and galvanic metallization hand in hand—A new technology for the cost-efficient manufacture of flexible printed circuits," Electrochimica Acta, 54, pp. 2473-2477 (2009).
[21]N. Kulyk, S. Cherevko, and C.-H. Chung, "Copper electroless plating in weakly alkaline electrolytes using DMAB as a reducing agent for metallization on polymer films," Electrochimica Acta, 59, pp. 179-185 (2012).
[22]A. Miller, L. Yu, J. Blickensderfer, and R. Akolkar, "Electrochemical copper metallization of glass substrates mediated by solution-phase deposition of adhesion-promoting layers," Journal of The Electrochemical Society, 162, pp. D630-D634 (2015).
[23]T.-Y. Kim, B.-W. Ahn, Y.-S. Kim, J.-H. Ahn, and S.-J. Suh, "All-Wet Metallization of Chemically Modified Polydimethylsiloxane with Self-Assembled Monolayers," Journal of Nanoscience and Nanotechnology, 16, pp. 11256-11261 (2016).
[24]S.-T. Chen, Y.-S. Cheng et al., "Activation of amino-based monolayers for electroless metallization of high-aspect-ratio through-silicon vias by using a simple ultrasonic-assisted plating solution," Applied Surface Science, 440, pp. 209-216 (2018).
[25]W. Li, Y. Chen et al., "Preparing high-adhesion silver coating on APTMS modified polyethylene with excellent anti-bacterial performance," Applied Surface Science, 436, pp. 117-124 (2018).
[26]W.-Y. Wang, K. Kala, and T.-C. Wei, "Solvent-Dependent Adhesion Strength of Electroless Deposited Ni–P Layer on an Amino-Terminated Silane Compound-Modified Si Wafer," Langmuir, 34, pp. 13597-13602 (2018).
[27]Z. Xu, Q. Liu, and J. Finch, "Silanation and stability of 3-aminopropyl triethoxy silane on nanosized superparamagnetic particles: I. Direct silanation," Applied Surface Science, 120, pp. 269-278 (1997).
[28]A. Mikić, B. Ćupina et al., "Forage legume intercropping in temperate regions: models and ideotypes," in Sustainable agriculture reviews: Springer, 2012, pp. 161-182.
[29]G. Duc, H. Agrama et al., "Breeding annual grain legumes for sustainable agriculture: new methods to approach complex traits and target new cultivar ideotypes," Critical Reviews in Plant Sciences, 34, pp. 381-411 (2015).
[30]D. L. Allara and R. G. Nuzzo, "Spontaneously organized molecular assemblies. 2. Quantitative infrared spectroscopic determination of equilibrium structures of solution-adsorbed n-alkanoic acids on an oxidized aluminum surface," Langmuir, 1, pp. 52-66 (1985).
[31]P. Fenter, P. Eisenberger et al., "Structure of octadecyl thiol self-assembled on the silver (111) surface: an incommensurate monolayer," Langmuir, 7, pp. 2013-2016 (1991).
[32]E. a. a. Delamarche, B. Michel, H. Kang, and C. Gerber, "Thermal stability of self-assembled monolayers," Langmuir, 10, pp. 4103-4108 (1994).
[33]P. Fenter, A. Eberhardt, and P. Eisenberger, "Self-assembly of n-alkyl thiols as disulfides on Au (111)," Science, 266, pp. 1216-1218 (1994).
[34]H. Keller, P. Simak, W. Schrepp, and J. Dembowski, "Surface chemistry of thiols on copper: an efficient way of producing multilayers," Thin Solid Films, 244, pp. 799-805 (1994).
[35]J.-J. Shyue, M. R. De Guire et al., "Acid− base properties and zeta potentials of self-assembled monolayers obtained via in situ transformations," Langmuir, 20, pp. 8693-8698 (2004).
[36]A. M. Caro, G. Maes, G. Borghs, and C. Whelan, "Screening self-assembled monolayers as Cu diffusion barriers," Microelectronic Engineering, 85, pp. 2047-2050 (2008).
[37]"https://en.wikipedia.org/wiki/Self-assembled_monolayer".
[38]K. Bierbaum, M. Kinzler et al., "A near edge X-ray absorption fine structure spectroscopy and X-ray photoelectron spectroscopy study of the film properties of self-assembled monolayers of organosilanes on oxidized Si (100)," Langmuir, 11, pp. 512-518 (1995).
[39]Y. Gao and K. Koumoto, "Bioinspired ceramic thin film processing: present status and future perspectives," Crystal Growth & Design, 5, pp. 1983-2017 (2005).
[40]W.-T. Xu, Z.-P. Zhao, M. Liu, and K.-C. Chen, "Morphological and hydrophobic modifications of PVDF flat membrane with silane coupling agent grafting via plasma flow for VMD of ethanol–water mixture," Journal of membrane science, 491, pp. 110-120 (2015).
[41]J. Brzoska, I. B. Azouz, and F. Rondelez, "Silanization of solid substrates: a step toward reproducibility," Langmuir, 10, pp. 4367-4373 (1994).
[42]B. D. Ratner and A. S. Hoffman, "CHAPTER I. 2.12 PHYSICOCHEMICAL SURFACE MODIFICATION OF MATERIALS USED IN MEDICINE," Biomaterials science: An introduction to materials in medicine, pp. 259 (2012).
[43]L. A. Chrisey, G. U. Lee, and C. E. O'Ferrall, "Covalent attachment of synthetic DNA to self-assembled monolayer films," Nucleic acids research, 24, pp. 3031-3039 (1996).
[44]S. L. Walker, S. Bhattacharjee, E. M. Hoek, and M. Elimelech, "A novel asymmetric clamping cell for measuring streaming potential of flat surfaces," Langmuir, 18, pp. 2193-2198 (2002).
[45]G. Jakša, B. Štefane, and J. Kovač, "XPS and AFM characterization of aminosilanes with different numbers of bonding sites on a silicon wafer," Surface and Interface Analysis, 45, pp. 1709-1713 (2013).
[46]G. Jakša, B. Štefane, and J. Kovač, "Influence of different solvents on the morphology of APTMS-modified silicon surfaces," Applied Surface Science, 315, pp. 516-522 (2014).
[47]J. Bogan, A. Brady-Boyd et al., "Nucleation and adhesion of ultra-thin copper films on amino-terminated self-assembled monolayers," Applied Surface Science, 462, pp. 38-47 (2018).
[48]S. Wang, Q. Liu et al., "Advances in Understanding Materials for Rechargeable Lithium Batteries by Atomic Force Microscopy," Energy & Environmental Materials, 1, pp. 28-40 (2018).
[49]F. Zhang and M. Srinivasan, "Self-assembled molecular films of aminosilanes and their immobilization capacities," Langmuir, 20, pp. 2309-2314 (2004).
[50]J. A. Howarter and J. P. Youngblood, "Optimization of silica silanization by 3-aminopropyltriethoxysilane," Langmuir, 22, pp. 11142-11147 (2006).
[51]R. M. Pasternack, S. Rivillon Amy, and Y. J. Chabal, "Attachment of 3-(aminopropyl) triethoxysilane on silicon oxide surfaces: dependence on solution temperature," Langmuir, 24, pp. 12963-12971 (2008).
[52]E. Metwalli, D. Haines, O. Becker, S. Conzone, and C. Pantano, "Surface characterizations of mono-, di-, and tri-aminosilane treated glass substrates," Journal of colloid and interface science, 298, pp. 825-831 (2006).
[53]J. Kim, G. J. Holinga, and G. A. Somorjai, "Curing induced structural reorganization and enhanced reactivity of amino-terminated organic thin films on solid substrates: observations of two types of chemically and structurally unique amino groups on the surface," Langmuir, 27, pp. 5171-5175 (2011).
[54]D. Kowalczyk, S. Slomkowski, M. M. Chehimi, and M. Delamar, "Adsorption of aminopropyltriethoxy silane on quartz: an XPS and contact angle measurements study," International journal of adhesion and adhesives, 16, pp. 227-232 (1996).
[55]Z.-H. Wang and G. Jin, "Silicon surface modification with a mixed silanes layer to immobilize proteins for biosensor with imaging ellipsometry," Colloids and Surfaces B: Biointerfaces, 34, pp. 173-177 (2004).
[56]Y. Wang, Y. Wang et al., "A facile process combined with inkjet printing, surface modification and electroless deposition to fabricate adhesion-enhanced copper patterns on flexible polymer substrates for functional flexible electronics," Electrochimica Acta, 218, pp. 24-31 (2016).

[57]Y. Cai, J. Li, L. Yi, X. Yan, and J. Li, "Fabricating superhydrophobic and oleophobic surface with silica nanoparticles modified by silanes and environment-friendly fluorinated chemicals," Applied Surface Science, 450, pp. 102-111 (2018).
[58]T.-C. Wei, T.-C. Pan, C.-M. Chen, K.-C. Lai, and C.-H. Wu, "Annealing-free adhesive electroless deposition of a nickel/phosphorous layer on a silane-compound-modified Si wafer," Electrochemistry Communications, 54, pp. 6-9 (2015).
[59]K.-C. Lai, P.-Y. Wu et al., "Interfacial characterizations of a nickel-phosphorus layer electrolessly deposited on a silane compound-modified silicon wafer under thermal annealing," Journal of Electronic Materials, 45, pp. 4813-4822 (2016).
[60]"https://www.worldoftest.com/pull-adhesion-tester,".
[61]T. Huhtamäki, X. Tian, J. T. Korhonen, and R. H. Ras, "Surface-wetting characterization using contact-angle measurements," Nature protocols, 13, pp. 1521 (2018).
[62]W. Melitz, J. Shen, A. C. Kummel, and S. Lee, "Kelvin probe force microscopy and its application," Surface science reports, 66, pp. 1-27 (2011).
[63]J. Zhu, K. Zeng, and L. Lu, "In-situ nanoscale mapping of surface potential in all-solid-state thin film Li-ion battery using Kelvin probe force microscopy," Journal of Applied Physics, 111, pp. 063723 (2012).
[64]H. B. Michaelson, "The work function of the elements and its periodicity," Journal of applied physics, 48, pp. 4729-4733 (1977).
[65]K. Y. Lee, S. I. Kim, J. Y. Kim, K. E. Kwon, and C. W. Lee, "Nanoscale Mapping of Ag Anode Surface Potential for High-Performance T-Organic Light-Emitting Diode Using Kelvin Probe Force Microscopy," Journal of nanoscience and nanotechnology, 13, pp. 6349-6352 (2013).
[66]A. Menawat, H. Joseph Jr, and R. Siriwardane, "Control of surface energy of glass by surface reactions: Contact angle and stability," Journal of colloid and interface science, 101, pp. 110-119 (1984).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top