跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 21:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王予屏
研究生(外文):Yu-Ping Wang
論文名稱:層狀鈦酸鹽及多孔性二氧化鈦奈米管的合成與鑑定
論文名稱(外文):One step synthesis and characteristics of layer titanate and porous titanium dioxide nanotube
指導教授:林寬鋸
口試委員:果尚志黃景帆
口試日期:2019-07-17
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:61
中文關鍵詞:二氧化鈦鈦酸鹽奈米管
外文關鍵詞:titanatetitanium dioxidenanotube
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文以鈦酸四丁酯及醋酸當作前驅物,並以水熱法合成出具層狀結構的二維鈦酸鹽產物,並經由鍛燒不同溫度觀察其形貌及晶型變化。相較於一般使用鹼金屬當作溶劑的水熱法,此方法不需要另外添加二氧化鈦奈米粒子當作起始物,且後續不需經過純化的步驟將產物中的鹼金屬置換出來,合成方式較簡單。本研究著重探討此種合成方式的生成機制,以穿透式電子顯微鏡(TEM)及電子顯微鏡(SEM)觀察鈦酸鹽產物鍛燒不同溫度後的形貌變化,並以X光繞射儀(XRD)、振動光譜儀(FT-IR)、可見光光譜儀(UV/Vis)、拉曼光譜儀(Raman)做晶型及結構鑑定。經由實驗結果得知,藉由鍛燒會使水熱後的層狀鈦酸鹽產物轉變為多孔性一維奈米管結構,在鍛燒400℃後其晶型結構會轉為銳鈦礦。由於其粒子之間仍保留前驅物中的OH官能基團,使鍛燒400℃的產物形成由銳鈦礦奈米粒子緊密相連的特殊一維管狀結構。
In this work, the author synthesized 2D layer titanate via hydrothermal method by using tetrabutyl titanate and acetic acid as precursor. By calcination at different temperature, we observed the transformation of morphology and crystallization. Compared with the hydrothermal method generally using NaOH as solvent, this method does not require the addition of titanium dioxide nanoparticles as a raw material, and the synthesis step is simpler without purification. This research focused on the formation mechanism of this synthesis method. The characterization of the titanate product was observed by SEM, TEM, XRD, FT-IR, UV/Vis, and Raman.

According to the experimental results, the layered titanate product after hydrothermal transformed into a porous one-dimensional nanotube structure by calcination, and its crystal structure is converted to anatase after calcination at 400 °C. Since the OH functional groups in the precursor remain between the particles, the calcined product at 400 ° C forms a special one-dimensional tubular structure in which the anatase nanoparticles are closely attached.
第一章、 緒論 1
1.1前言 1
第二章、 文獻回顧與基礎理論 4
2.1.二氧化鈦及鈦酸鹽簡介 4
2.2.二氧化鈦合成 8
2.2.1零維二氧化鈦奈米粒子的合成 8
2.2.2一維二氧化鈦奈米管的合成 12
2.2.3二維鈦酸鹽及二氧化鈦的合成 16
2.4二氧化鈦及鈦酸鹽材料的應用 18
第三章、 研究動機 23
第四章、 實驗部分 24
4.1儀器及藥品 24
4.1.1儀器 24
4.1.2藥品 27
4.2二氧化鈦製備流程 27
4.3材料特性分析 28
4.3.1熱場發射掃描式電子顯微鏡 28
4.3.2場發射穿透式電子顯微鏡 28
4.3.3三維顯微拉曼光譜影像系統 28
4.3.4高解析X光繞射儀 29
4.3.5高效能氣體吸附比表面積及孔徑分析暨化學吸脫附分析儀 29
4.3.6紫外線近紅外光譜儀 29
4.3.7振動光譜顯影系統 30
4.3.8熱重分析儀 30
第五章、 結果討論 31
5.1鍛燒溫度選擇 31
5.2二氧化鈦形貌及晶型探討 33
5.2.1形貌探討 33
5.2.2晶形探討 37
5.3性質鑑定 41
5.3.1光譜探討 41
5.3.2比表面積及孔洞大小 47
5-4生成機制探討 56
第六章、 結論 58
第七章、未來展望 59
參考文獻 60
1.馬遠榮, 低微奈米材料. 科學發展 2004, 73-75.
2.黃松勳, 二維材料的發展與應用進程. Research Portal 2018.
3.Zhang, Y.; Jiang, Z.; Huang, J.; Lim, L. Y.; Li, W.; Deng, J.; Gong, D.; Tang, Y.; Lai, Y.; Chen, Z., Titanate and titania nanostructured materials for environmental and energy applications: a review. RSC Advances 2015, 5 (97), 79479-79510.
4.Shirpour, M.; Cabana, J.; Doeff, M., Lepidocrocite-type Layered Titanate Structures: New Lithium and Sodium Ion Intercalation Anode Materials. Chemistry of Materials 2014, 26 (8), 2502-2512.
5.Dambournet, D.; Belharouak, I.; Amine, K., Tailored Preparation Methods of TiO2Anatase, Rutile, Brookite: Mechanism of Formation and Electrochemical Properties†. Chemistry of Materials 2010, 22 (3), 1173-1179.
6.Tao Gao, H. F., and Poul Norby, Crystal Structures of Titanate Nanotubes: A Raman Scattering Study. Inorg Chem 2009, (48), 1423-1432.
7.陳慧英、黃定加、朱秦億, 溶膠凝膠法在薄膜製備上之應用. 化工技術 1999, 152-166.
8.Niu, B.; Wang, X.; Wu, K.; He, X.; Zhang, R., Mesoporous Titanium Dioxide: Synthesis and Applications in Photocatalysis, Energy and Biology. Materials (Basel) 2018, 11 (10).
9.Lee, K.; Mazare, A.; Schmuki, P., One-dimensional titanium dioxide nanomaterials: nanotubes. Chem Rev 2014, 114 (19), 9385-454.
10.Zhou, W.; Liu, H.; Boughton, R. I.; Du, G.; Lin, J.; Wang, J.; Liu, D., One-dimensional single-crystalline Ti–O based nanostructures: properties, synthesis, modifications and applications. Journal of Materials Chemistry 2010, 20 (29).
11.Tsai, C.-C.; Teng, H., Regulation of the Physical Characteristics of Titania Nanotube Aggregates Synthesized from Hydrothermal Treatment. Chemistry of Materials 2004, 16 (22), 4352-4358.
12.Riss, A.; Elser, M. J.; Bernardi, J.; Diwald, O., Stability and photoelectronic properties of layered titanate nanostructures. J Am Chem Soc 2009, 131 (17), 6198-206.
13.Wang, D.; Zhou, F.; Wang, C.; Liu, W., Synthesis and characterization of silver nanoparticle loaded mesoporous TiO2 nanobelts. Microporous and Mesoporous Materials 2008, 116 (1-3), 658-664.
14.Yu, Y.; Xu, D., Single-crystalline TiO2 nanorods: Highly active and easily recycled photocatalysts. Applied Catalysis B: Environmental 2007, 73 (1-2), 166-171.
15.Yu, H.; Yu, J.; Cheng, B.; Zhou, M., Effects of hydrothermal post-treatment on microstructures and morphology of titanate nanoribbons. Journal of Solid State Chemistry 2006, 179 (2), 349-354.
16.Chien-Cheng Tsai, H. T., Structural Features of Nanotubes Synthesized from NaOH. Chem. Mater. 2006, 367-373.
17.Zhang, Q.; Sun, C.; Zhao, Y.; Zhou, S.; Hu, X.; Chen, P. J. E. s.; technology, Low Ag-doped titanium dioxide nanosheet films with outstanding antimicrobial property. 2010, 44 (21), 8270-8275.
18.PMI Titanium Dioxide (TiO2) Photocatalyst.
19.S. DOEUFF, M. H., C. SANCHEZ and J. LIVAGE Hydrolysis of Titanium Alkoxides: Modification of the Molecular Percursor by Acetic Acid. Journal ol Non-Crystalline Solids 1987, (89), 206-216.
20.Vargas, M. A.; Rodríguez-Páez, J. E., Amorphous TiO2 nanoparticles: Synthesis and antibacterial capacity. Journal of Non-Crystalline Solids 2017, 459, 192-205.
21.Coville, X.-Y. L. a. N. J., A Raman Study of Titanate Nanotubes. S. Afr. J. Chem. 2005, (58), 110–115.
22.Wang, L.; Sasaki, T., Titanium oxide nanosheets: graphene analogues with versatile functionalities. Chem Rev 2014, 114 (19), 9455-86.
23.T., K. S. W. S. D. H. E. R. A. W. H. L. M. R. A. P. J. R., Reporting Physisorption Data for Gas/Solid Syatems with Special Reference to the Determination of Surface Area and Porosity. Pure & App!. Chem. 1985, Vol. 57, 603—619.
24.ROUQUEROL., J., RECOMMENDATIONS FOR THE CHARACTERIZATION OF POROUS SOLIDS. Pure & Appl. Chem 1994.
25.Wang, G.; Xu, L.; Zhang, J.; Yin, T.; Han, D., Enhanced Photocatalytic Activity of Powders (P25) via Calcination Treatment. International Journal of Photoenergy 2012, 2012, 1-9.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊