|
鄭宥慈 (2018) 共同固定奈米金屬及C. pasteurianum之暗醱酵產氫可行性研究. 中興大學. Lin (2017) 綠色能源發展危險排行,專家:水力發電最糟糕. URL https://cdn.technews.tw/2017/10/30/hydropower-ecological-diversity-renewable-energy-solor-win/ 陳家暐 (2008) 探討不同材質(PAA與PVA)固定化菌體降解甲苯與乙酸乙酯反應動力學. 中華大學. 陳怡君 (2010) 海藻酸鈉包覆薰衣草精油微膠囊的製備及其制放性之研究. 嘉南藥理科技大學. 謝秉衡 (2017) 以額外添加不同奈米金屬對厭氧醱酵產氫影響之研究. 中興大學. 鄭景鴻 (2012) 暗醱酵產氫系統指標微生物組成及功能鑑定分析. 中興大學. 謝豪 (2016) 光/暗共培養醱酵產氫研究. 逢甲大學 A. Ciranna, R. Ferrari, V. Santala, and Karp, M. (2014) Inhibitory effects of substrate and soluble end products on biohydrogen production of the alkalithermophile Caloramator celer: kinetic, metabolic and transcription analyses. Int J Hydrog Energy. Akkerman, I., Janssen, M., Rocha, J., and Wijffels, R. H. (2002) Photobiological hydrogen production: photochemical efficiency and bioreactor design. International Journal of Hydrogen Energy 27: 1195-1208. Almoudi, M. M., Hussein, A. S., Abu Hassan, M. I., and Mohamad Zain, N. (2018) A systematic review on antibacterial activity of zinc against Streptococcus mutans. The Saudi Dental Journal 30: 283-291. Aydin, M. (2018) Natural gas consumption and economic growth nexus for top 10 natural Gas–Consuming countries: A granger causality analysis in the frequency domain. Energy 165: 179-186. Boshagh, F., Rostami, K., and Moazami, N. (2018) Biohydrogen production by immobilized Enterobacter aerogenes on functionalized multi-walled carbon nanotube. International Journal of Hydrogen Energy. Braccini, I., and Pérez, S. (2001) Molecular Basis of Ca2+-Induced Gelation in Alginates and Pectins: The Egg-Box Model Revisited. Biomacromolecules 2: 1089-1096. Brentner (2010) .
C.Y. Lin, C.C. Chang, and Hung, C. H. (2008) Fermentative hydrogen production from starch using natural mixed cultures. Int J Hydrog Energy.
Chen, C.-Y., Yeh, K.-L., Lo, Y.-C., Wang, H.-M., and Chang, J.-S. (2010) Engineering strategies for the enhanced photo-H2 production using effluents of dark fermentation processes as substrate. International Journal of Hydrogen Energy 35: 13356-13364.
Daniel-da-Silva, A. L., Pinto, F., Lopes-da-Silva, J. A., Trindade, T., Goodfellow, B. J., and Gil, A. M. (2008) Rheological behavior of thermoreversible κ-carrageenan/nanosilica gels. Journal of Colloid and Interface Science 320: 575-581.
Das, D., and Veziroǧlu, T. N. (2001) Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy 26: 13-28.
DSMZ (2008) PYG MEDIUM. URL http://www.dsmz.de/microorganisms/medium/pdf/DSMZ_Medium1139.pdf
Elbeshbishy, E., Dhar, B. R., Nakhla, G., and Lee, H.-S. (2017) A critical review on inhibition of dark biohydrogen fermentation. Renewable and Sustainable Energy Reviews 79: 656-668.
Elreedy, A., Fujii, M., Koyama, M., Nakasaki, K., and Tawfik, A. (2019) Enhanced fermentative hydrogen production from industrial wastewater using mixed culture bacteria incorporated with iron, nickel, and zinc-based nanoparticles. Water Res 151: 349-361.
F. Kargi, and Pamukoglu, M. Y. (2009) Dark fermentation of ground wheat starch for bio-hydrogen production by fed-batch Int J Hydrog Energy.
Fang, H. H. P., and Liu, H. (2002) Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technology 82: 87-93.
Fonseca, B. C., Guazzaroni, M.-E., and Reginatto, V. (2016) Fermentative production of H2 from different concentrations of galactose by the new isolate Clostridium beijerinckii Br21. International Journal of Hydrogen Energy 41: 21109-21120.
G. Kumar, P. B., T. Kobayashi, K.Q. Xu, P. Sivagurunathan, S.H. Kim, et al. (2016) Enhancement of biofuel production via microbial augmentation: the case of dark fermentative hydrogen. Renew Sustain Energy.
Gadhe, A., Sonawane, S. S., and Varma, M. N. (2015a) Enhancement effect of hematite and nickel nanoparticles on biohydrogen production from dairy wastewater. International Journal of Hydrogen Energy 40: 4502-4511.
Gadhe, A., Sonawane, S. S., and Varma, M. N. (2015b) Influence of nickel and hematite nanoparticle powder on the production of biohydrogen from complex distillery wastewater in batch fermentation. International Journal of Hydrogen Energy 40: 10734-10743.
Gopalakrishnan, B., Khanna, N., and Das, D. (2019) Dark-Fermentative Biohydrogen Production. 79-122.
Gryta, M. (2002) The assessment of microorganism growth in the membrane distillation system. Desalination.
H Tanaka, S Irie, and Ochi, H. (1989) A novel immobilization method for prevention of cell leakage from the gel matrix. J. Ferment. Bioengineering.
H.Q. Yu, Z.H. Zhu, W.R. Hu, and Zhang, H. S. (2002) Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int J Hydrog Energy.
H.S. Lee, R. Krajmalinik-Brown, H. Zhang, and Rittmann, B. E. (2009) An electron-flow model can predict complex redox reactions in mixed-culture fermentative BioH2: microbial ecology evidence. Biotechnol Bioengineering.
Han, H., Cui, M., Wei, L., Yang, H., and Shen, J. (2011) Enhancement effect of hematite nanoparticles on fermentative hydrogen production. Bioresour Technol 102: 7903-7909.
Holladay, J. D., Hu, J., King, D. L., and Wang, Y. (2009) An overview of hydrogen production technologies. Catalysis Today 139: 244-260.
Hsieh, P.-H., Lai, Y.-C., Chen, K.-Y., and Hung, C.-H. (2016) Explore the possible effect of TiO2 and magnetic hematite nanoparticle addition on biohydrogen production by Clostridium pasteurianum based on gene expression measurements. International Journal of Hydrogen Energy 41: 21685-21691.
Hwang, M. H., Jang, N. J., Hyun, S. H., and Kim, I. S. (2004) Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH. J Biotechnol 111: 297-309.
I.M. Yermak, and Khotimchenko, Y. S. (2003) Chemical properties, biological activities and applications of carrageenans from red algae. Recent Advances in Marine Technology.
International energy agency (2014) How solar energy could be the largest source of electricity by mid-century. URL https://www.iea.org/newsroom/news/2014/september/how-solar-energy-could-be-the-largest-source-of-electricity-by-mid-century.html
International energy agency (2017a) Electricity Information 2017. URL https://www.iea.org/newsroom/energysnapshots/oecd-electricity-production-by-source-1974-2016.html
International energy agency (2017b) IEA (2017) Technology Roadmap: Delivering Sustainable Bioenergy. URL https://www.iea.org/topics/renewables/bioenergy/
International energy agency (2018a) Hydrogen’s potential role in the energy system. URL https://www.iea.org/tcep/energyintegration/hydrogen/
International energy agency (2018b) Renewable energy consumption by technology, 2017-23. URL https://www.iea.org/renewables2018/
International energy agency (2018c) Wind energy. URL https://www.iea.org/topics/renewables/wind/
J. Saxena, and Tanner, R. S. (2011) Effect of trace metals on ethanol production from synthesis gas by the ethanologenic acetogen, Clostridium ragsdalei. J. Ind. Microbiol. Biotechnology.
J.H. Reith, R. H. W., H. Barten (2003) Bio-methane and bio-hydrogen: status and perspectives of biological methane and hydrogen production. Dutch Biological Hydrogen Foundation - NOVEM.
Jang, Y. S., Malaviya, A., Cho, C., Lee, J., and Lee, S. Y. (2012) Butanol production from renewable biomass by clostridia. Bioresour Technol 123: 653-663.
K. Trchounian, R. G. S., A. Trchounian (2017) Improving biohydrogen productivity by microbial dark- and photo-fermentations: novel data and future approaches. Renew Sustain Energy.
K. Yan, Y. L., Y. Lu, J. Chai, L. Sun (2017) Catalytic application of layered double hydroxide-derived catalysts for the conversion of biomass-derived molecules. Catal Sci Technol.
KEMA (2010) . URL http://www.gerg.eu/public/uploads/files/publications/academic_network/2010/1b_Florisson.pdf
Khanal, S. (2003) Biological hydrogen production: effects of pH and intermediate products. International Journal of Hydrogen Energy.
Kim, D. H., and Kim, M. S. (2011) Hydrogenases for biological hydrogen production. Bioresour Technol 102: 8423-8431.
Klasen, H. J. (2000) Historical review of the use of silver in the treatment of burns. I. Early uses. Burns 26: 117-130.
Koku, H., Eroğlu, İ., Gündüz, U., Yücel, M., and Türker, L. (2002) Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides. International Journal of Hydrogen Energy 27: 1315-1329.
Kourkoutas, Y., Bekatorou, A., Banat, I. M., Marchant, R., and Koutinas, A. A. (2004) Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiology 21: 377-397.
Laurinavichene, T., and Tsygankov, A. (2016) Different types of H2 photoproduction by starch-utilizing co-cultures of Clostridium butyricum and Rhodobacter sphaeroides. International Journal of Hydrogen Energy 41: 13419-13425.
Lee, D. J., Show, K. Y., and Su, A. (2011) Dark fermentation on biohydrogen production: Pure culture. Bioresour Technol 102: 8393-8402.
Lin (2017) 綠色能源發展危險排行,專家:水力發電最糟糕. URL https://cdn.technews.tw/2017/10/30/hydropower-ecological-diversity-renewable-energy-solor-win/
Liu, G.-X., Wu, M., Jia, F.-R., Yue, Q., and Wang, H.-M. (2019) Material flow analysis and spatial pattern analysis of petroleum products consumption and petroleum-related CO2 emissions in China during 1995–2017. Journal of Cleaner Production 209: 40-52.
Liu, Z., Lv, F., Zheng, H., Zhang, C., Wei, F., and Xing, X.-H. (2012) Enhanced hydrogen production in a UASB reactor by retaining microbial consortium onto carbon nanotubes (CNTs). International Journal of Hydrogen Energy 37: 10619-10626.
Łukajtis, R., Hołowacz, I., Kucharska, K., Glinka, M., Rybarczyk, P., Przyjazny, A., and Kamiński, M. (2018) Hydrogen production from biomass using dark fermentation. Renewable and Sustainable Energy Reviews 91: 665-694.
Manish, S., and Banerjee, R. (2008) Comparison of biohydrogen production processes. International Journal of Hydrogen Energy 33: 279-286.
Mansilla, C., Bourasseau, C., Cany, C., Guinot, B., Le Duigou, A., and Lucchese, P. (2018) Hydrogen Applications: Overview of the Key Economic Issues and Perspectives. 271-292.
Midilli, A., and Dincer, I. (2008) Hydrogen as a renewable and sustainable solution in reducing global fossil fuel consumption. International Journal of Hydrogen Energy 33: 4209-4222.
Mohanraj, S., Anbalagan, K., Rajaguru, P., and Pugalenthi, V. (2016) Effects of phytogenic copper nanoparticles on fermentative hydrogen production by Enterobacter cloacae and Clostridium acetobutylicum. International Journal of Hydrogen Energy 41: 10639-10645.
Mosey, F. E. (1983) Mathematical Modelling of the Anaerobic Digestion Process: Regulatory Mechanisms for the Formation of Short-Chain Volatile Acids from Glucose.
Mullai, P., Yogeswari, M. K., and Sridevi, K. (2013) Optimisation and enhancement of biohydrogen production using nickel nanoparticles - a novel approach. Bioresour Technol 141: 212-219.
Nagarajan, D., Lee, D.-J., Kondo, A., and Chang, J.-S. (2017) Recent insights into biohydrogen production by microalgae – From biophotolysis to dark fermentation. Bioresource Technology 227: 373-387.
Nandi, R., and Sengupta, S. (1998) Microbial Production of Hydrogen: An Overview. Critical Reviews in Microbiology.
Neal, A. L. (2008) What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles? Ecotoxicology 17: 362-371.
Nicoletti, G., Arcuri, N., Nicoletti, G., and Bruno, R. (2015) A technical and environmental comparison between hydrogen and some fossil fuels. Energy Conversion and Management 89: 205-213.
Nielsen, A. T., Liu, W. T., Filipe, C., Grady, L., Jr., Molin, S., and Stahl, D. A. (1999) Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Appl Environ Microbiol 65: 1251-1258.
Oh, Y. K., Raj, S. M., Jung, G. Y., and Park, S. (2011) Current status of the metabolic engineering of microorganisms for biohydrogen production. Bioresour Technol 102: 8357-8367.
Oriňáková, R., and Oriňák, A. (2011) Recent applications of carbon nanotubes in hydrogen production and storage. Fuel 90: 3123-3140.
P Taillandier, M.L Cazottes, and Strehaiano, P. (1994) Deacidification of grape musts by Schizosaccharomyces entrapped in alginate beads: a continuous-fluidised-bed process. Chem. Eng. J. Bioch. Eng.
P. Sivagurunathan, G. K., A. Mudhoo, E.R. Rene, G.D. Saratale, T. Kobayashi, et al. (2017) Fermentative hydrogen production using lignocellulose biomass: an overview of pre-treatment methods, inhibitor effects and detoxification experiences. Renew Sustain Energy.
P.H Pilkington, A Margaritis, N.A Mensour, and Russell, I. (1998) Fundamentals of immobilized yeast cells for continuous beer fermentation: a review. J. Inst. Brew.
Pal, S., Tak, Y. K., and Song, J. M. (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73: 1712-1720.
Patel, S. K. S., Lee, J. K., and Kalia, V. C. (2018) Nanoparticles in Biological Hydrogen Production: An Overview. Indian J Microbiol 58: 8-18.
Phan T-N, B. T., Sheng J, Baldeck JD, and RE., M. (2004) . Oral Microbiol Immunol.
Pugazhendhi, A., Shobana, S., Nguyen, D. D., Banu, J. R., Sivagurunathan, P., Chang, S. W., Ponnusamy, V. K., and Kumar, G. (2019) Application of nanotechnology (nanoparticles) in dark fermentative hydrogen production. International Journal of Hydrogen Energy 44: 1431-1440.
Rai, M., Yadav, A., and Gade, A. (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27: 76-83.
Rai, P. K., and Singh, S. P. (2016) Integrated dark- and photo-fermentation: Recent advances and provisions for improvement. International Journal of Hydrogen Energy 41: 19957-19971.
Ramon-Portugal, F., S., S., T., and P., S. (2003) Immobilized yeasts: actual oenologic utilizations. Wine Internet Technical Journal.
S.H. Kim, S.K. Han, and Shin, H. S. (2006) Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter. Process Biochemistry.
Sagir, E., Yucel, M., and Hallenbeck, P. C. (2018) Demonstration and optimization of sequential microaerobic dark- and photo-fermentation biohydrogen production by immobilized Rhodobacter capsulatus JP91. Bioresour Technol 250: 43-52.
Sang, Y., Karayaka, H. B., Yan, Y., Yilmaz, N., and Souders, D. (2018) 1.18 Ocean (Marine) Energy. In Comprehensive Energy Systems. Dincer, I. (ed). Oxford: Elsevier, pp. 733-769.
Saqib, A. A. N., and Whitney, P. J. (2011) Differential behaviour of the dinitrosalicylic acid (DNS) reagent towards mono- and di-saccharide sugars. Biomass and Bioenergy 35: 4748-4750.
Seelert, T., Ghosh, D., and Yargeau, V. (2015) Improving biohydrogen production using Clostridium beijerinckii immobilized with magnetite nanoparticles. Appl Microbiol Biotechnol 99: 4107-4116.
Sekoai, P. T., Awosusi, A. A., Yoro, K. O., Singo, M., Oloye, O., Ayeni, A. O., Bodunrin, M., and Daramola, M. O. (2018) Microbial cell immobilization in biohydrogen production: a short overview. Crit Rev Biotechnol 38: 157-171.
Sivagurunathan, P., Pugazhendhi, A., Kumar, G., Park, J. H., and Kim, S. H. (2018) Biohydrogen fermentation of galactose at various substrate concentrations in an immobilized system and its microbial correspondence. J Biosci Bioeng 125: 559-564.
Srivastava, N., Srivastava, M., Kushwaha, D., Gupta, V. K., Manikanta, A., Ramteke, P. W., and Mishra, P. K. (2017) Efficient dark fermentative hydrogen production from enzyme hydrolyzed rice straw by Clostridium pasteurianum (MTCC116). Bioresource Technology 238: 552-558.
Sutardi, T., Paul, M. C., and Karimi, N. (2019) Investigation of coal particle gasification processes with application leading to underground coal gasification. Fuel 237: 1186-1202.
T Lebeau, T Jouenne, and Junter, G. A. (1998) Diffusion of sugars and alcohols through composite membrane structures immobilising viable yeast cells. Enzyme Microb. Technol.
T. Wang, D. Zhang, L., Dai, Y. C., and Dai, X. (2016) Effects of Metal Nanoparticles on Methane Production from Waste-Activated Sludge and Microorganism Community Shift in Anaerobic Granular Sludge. Nat. Publ. Gr.
Taherdanak, M., Zilouei, H., and Karimi, K. (2016) The effects of Fe 0 and Ni 0 nanoparticles versus Fe 2+ and Ni 2+ ions on dark hydrogen fermentation. International Journal of Hydrogen Energy 41: 167-173.
Tavassoli Hojati, S., Alaghemand, H., Hamze, F., Ahmadian Babaki, F., Rajab-Nia, R., Rezvani, M. B., Kaviani, M., and Atai, M. (2013) Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dent Mater 29: 495-505.
Thekkae Padil, V. V., and Cernik, M. (2013) Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int J Nanomedicine 8: 889-898.
Tsagarakis, K. P. (2019) Shallow geothermal energy under the microscope: Social, economic, and institutional aspects. Renewable Energy.
Usov, A. I. (2011) Chapter 4 - Polysaccharides of the red algae. In Advances in Carbohydrate Chemistry and Biochemistry. Horton, D. (ed): Academic Press, pp. 115-217.
Utgikar, V. P., Vijaykumar, J., and Thyagarajan, K. (2011) Refinement of motivity factor in comparison of transportation fuels. International Journal of Hydrogen Energy 36: 3302-3304.
Veziroğlu, T. N., and Şahi˙n, S. (2008) 21st Century’s energy: Hydrogen energy system. Energy Conversion and Management 49: 1820-1831.
Wang, J., and Wan, W. (2008) Effect of temperature on fermentative hydrogen production by mixed cultures. International Journal of Hydrogen Energy 33: 5392-5397.
Wang, Y. Z., Liao, Q., Zhu, X., Tian, X., and Zhang, C. (2010) Characteristics of hydrogen production and substrate consumption of Rhodopseudomonas palustris CQK 01 in an immobilized-cell photobioreactor. Bioresour Technol 101: 4034-4041.
Wong, Y. M., Wu, T. Y., and Juan, J. C. (2014) A review of sustainable hydrogen production using seed sludge via dark fermentation. Renewable and Sustainable Energy Reviews 34: 471-482.
Xue, C., and Cheng, C. (2019) Butanol production by Clostridium. In Advances in Bioenergy: Elsevier.
Y.C. Lo, W.M. Chen, C.H. Hung, S.D. Chen, and Chang, J. S. (2008) Dark H2 fermentation from sucrose and xylose using H2-producing indigenous bacteria: feasibility and kinetic studies. Water Resarch.
Zagrodnik, R., and Laniecki, M. (2016) An unexpected negative influence of light intensity on hydrogen production by dark fermentative bacteria Clostridium beijerinckii. Bioresour Technol 200: 1039-1043.
Zain, N., Suardi Suhaimi, M., and Idris, A. (2014) . International Journal of Science and Engineering.
Zhang, X., Lin, X., He, Y., Chen, Y., Luo, X., and Shang, R. (2019) Study on adsorption of tetracycline by Cu-immobilized alginate adsorbent from water environment. International Journal of Biological Macromolecules 124: 418-428.
Zhang, Y., and Shen, J. (2007) Enhancement effect of gold nanoparticles on biohydrogen production from artificial wastewater. International Journal of Hydrogen Energy 32: 17-23.
Zhao, W., Zhang, Y., Du, B., Wei, D., Wei, Q., and Zhao, Y. (2013) Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria. Bioresour Technol 142: 240-245.
|
| |