跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/10/01 13:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周傳蓉
研究生(外文):Chuan-Jung Chou
論文名稱:人類粒線體蘋果酸酶之單一核苷酸多型性及單一核苷酸變異的酵素動力學特徵
論文名稱(外文):Kinetic characteristics of single-nucleotide polymorphisms and single-nucleotide variations of mitochondrial NAD(P)+-dependent malic enzyme
指導教授:洪慧芝洪慧芝引用關係
指導教授(外文):Hui-Chih Hung
口試委員:劉光耀邱奕穎
口試委員(外文):Guang-Yaw LiuYi-Ying Chiou
口試日期:2019-07-19
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:89
中文關鍵詞:人類粒線體蘋果酸酶單一核苷酸多形性單一核苷酸變異酵素動力學
外文關鍵詞:mitochondrial NAD(P)+-dependent malic enzyme (ME2)single-nucleotide polymorphisms (SNPs)single-nucleotide variations (SNVs)kinetic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
蘋果酸酶 (malic enzyme, ME)可催化氧化脫羧反應。在催化蘋果酸 (malate) 生成丙酮酸 (pyruvate) 和二氧化碳 (CO2),同時將輔因子NAD(P)+還原成NAD(P)H。蘋果酸酶有三種異構型,分別是細胞質NADP-依賴型蘋果酸酶 (cytosolic NADP-dependent malic enzyme, c-NADP-ME, ME1)、人類粒線體NADP-依賴型蘋果酸酶 (mitochondrial NADP-dependent malic enzyme, m-NADP-ME, ME3)和人類粒線體NAD(P)+-依賴型蘋果酸酶 (mitochondrial NAD(P)+-dependent malic enzyme, m-NAD(P)-ME, ME2),其中m-NAD(P)-ME能運用NAD+或NADP+兩種輔因子,較傾向於使用NAD+。相較於其他異構型,m-NAD(P)-ME在癌細胞中表現量高,能運用範圍較廣,研究價值較高。根據dbSNP和BioMuta資料庫,顯示了m-NAD(P)-ME之單一核苷酸多型性 (single-nucleotide polymorphisms, SNPs) 及癌症單一核苷酸變異 (single-nucleotide variations, SNVs)。我們試著以定點突變方式模擬這些突變型,且藉由酵素動力學試驗及四級結構的解析來分析這些酵素之特徵,包含酵素活性 (enzyme activity)、活化 (activation)、抑制 (inhibition) 及四級結構 (quaternary structure) 的改變,並比較野生型與突變型之間差異來了解這些突變對酵素之影響。藉由對m-NAD(P)-ME SNV/SNP的了解,希望未來m-NAD(P)-ME在預防及治療癌症上能提供多一種選擇。
Malic enzyme (ME) is an enzyme that catalyzes an oxidative decarboxylation reaction, which plays an important role in producing energy to maintain cell survival, and participates the major element production in the tricarboxylic acid cycle (TCA cycle). ME can fast catalyze malate to pyruvate and carbon dioxide (CO2), with conversion of NAD(P)+ to NAD(P)H at the same time. ME has three isoforms, including cytosolic NADP+-dependent malic enzyme (c-NADP-ME, ME1), mitochondrial NAD(P)+-dependent malic enzyme (m-NAD(P)-ME, ME2), and mitochondrial NADP+-dependent malic enzyme (m-NADP-ME, ME3). Therein, m-NAD(P)-ME can use either NAD+ or NADP+ as the cofactor, but prefers NAD+ under physiological conditions. Comparing to other isoforms, the m-NAD(P)-ME over-expressed in the cancer cell has a broader range of application and a higher value in research. The two databases, dbSNP and BioMuta, revealed the m-NAD(P)-ME associated single-nucleotide polymorphisms (SNPs) and the m-NAD(P)-ME associated single-nucleotide variations (SNVs) in various types of cancer. Hence, we try to simulate these SNP/SNV mutations by using site-directed mutagenesis, and analyze their enzyme characteristics by enzyme kinetic analysis, including enzyme activity, ATP inhibition, and fumarate activation. As well as we also analyze the protein quaternary structure of m-NAD(P)-ME by analytical ultracentrifuge (AUC). Furthermore, we can compare the difference between those mutations and wild-type to understand the influence of these SNPs and SNVs. It will be able to provide a way through m-NAD(P)-ME to inhibit or prevent cancer in the future.
摘要 i
Abstract ii
縮寫表 iv
表目錄 vi
圖目錄 vii
第一章、 前言 1
一、 蘋果酸酶 1
二、 單一核苷酸多型性和單一核苷酸變異 5
三、 雙羥萘酸 6
四、 研究目的 6
第二章、 實驗方法 8
一、 勝任細胞 (competent cell) 8
二、 定點突變 (site-directed mutagenesis) 8
三、 轉型作用 (transformation) 9
四、 抽取質體DNA (plasmid DNA extraction) 10
五、 誘導蛋白表現 (induction) 10
六、 蛋白質純化 11
七、 蛋白質品質分析 12
八、 酵素動力學分析 (enzyme kinetic assay) 14
九、 蛋白質四級結構分析 (analysis of protein quaternary structure) 18
第三章、 實驗結果 20
第四章、 討論 26
第五章、 結論 31
參考文獻 32
附錄 80
一、 實驗材料 81
二、 實驗器材與儀器 83
三、 藥品配製 85 
1. Ochoa S, Mehler A, Kornberg A. Reversible oxidative decarboxylation of malic acid. J Biol Chem. 1947;167(3):871-872.
2. Butta N, González‐Manchón C, Arias‐Salgado EG, Ayuso MS, Parrilla R. Cloning and functional characterization of the 5′ flanking region of the human mitochondrial malic enzyme gene. Eur J Biochem. 2001;268(10):3017-3027. doi:10.1046/j.1432-1327.2001.02194.x
3. Chang G-G, Tong L. Structure and function of malic enzymes, a new class of oxidative decarboxylases. Biochemistry. 2003;42(44):12721-12733. doi:10.1021/bi035251+
4. Tronconi MA, Andreo CS, Drincovich MF. Chimeric Structure of Plant Malic Enzyme family: Different evolutionary scenarios for NAD- and NADP-dependent isoforms. Front Plant Sci. 2018;9(565). doi:10.3389/fpls.2018.00565
5. Loeber G, Infante AA, Maurer-Fogy I, Krystek E, Dworkin MB. Human NAD(+)-dependent mitochondrial malic enzyme. cDNA cloning, primary structure, and expression in Escherichia coli. J Biol Chem. 1991;266(5):3016-3021.
6. Xu Y, Bhargava G, Wu H, Loeber G, Tong L. Crystal structure of human mitochondrial NAD(P)+-dependent malic enzyme: a new class of oxidative decarboxylases. Structure. 1999;7(8):877-889. doi:10.1016/S0969-2126(99)80115-4
7. Hsieh J-Y, Chiang Y-H, Chang K-Y, Hung H-C. Functional role of fumarate site Glu59 involved in allosteric regulation and subunit–subunit interaction of human mitochondrial NAD(P)+-dependent malic enzyme. FEBS J. 2009;276(4):983-994. doi:10.1111/j.1742-4658.2008.06834.x
8. Hsieh J-Y, Liu G-Y, Hung H-C. Influential factor contributing to the isoform-specific inhibition by ATP of human mitochondrial NAD(P)+-dependent malic enzyme. FEBS J. 2008;275(21):5383-5392. doi:10.1111/j.1742-4658.2008.06668.x
9. Hung H-C, Chien Y-C, Hsieh J-Y, Chang G-G, Liu G-Y. Functional roles of ATP-binding residues in the catalytic site of human mitochondrial NAD(P)+-dependent malic enzyme. Biochemistry. 2005;44(38):12737-12745. doi:10.1021/bi050510b
10. Hsieh J-Y, Hung H-C. Engineering of the cofactor specificities and isoform-specific inhibition of malic enzyme. J Biol Chem. 2009;284(7):4536-4544. doi:10.1074/jbc.M807008200
11. Hsieh J-Y, Chen S-H, Hung H-C. Functional roles of the tetramer organization of malic enzyme. J Biol Chem. 2009;284(27):18096-18105. doi:10.1074/jbc.M109.005082
12. Yang Z, Floyd DL, Loeber G, Tong L. Structure of a closed form of human malic enzyme and implications for catalytic mechanism. Nat Struct Biol. 2000;7(3):251. doi:10.1038/73378
13. Sauer LA. Mitochondrial NAD-dependent malic enzyme: A new regulatory enzyme. FEBS Lett. 1973;33(2):251-255. doi:10.1016/0014-5793(73)80205-4
14. Yang Z, Lanks CW, Tong L. Molecular mechanism for the regulation of human mitochondrial NAD(P)+-dependent malic enzyme by ATP and fumarate. Structure. 2002;10(7):951-960. doi:10.1016/S0969-2126(02)00788-8
15. O Nagel W, Dauchy R, Sauer L. Mitochondrial malic enzymes. An association between NAD(P)+-dependent malic enzyme and cell renewal in Sprague-Dawley rat tissues. J Biol Chem. 1980;255:3849-3854.
16. Sauer LA. An NAD- and NADP-dependent malic enzyme with regulatory properties in rat liver and adrenal cortex mitochondrial fractions. Biochem Biophys Res Commun. 1973;50(2):524-531. doi:10.1016/0006-291X(73)90871-1
17. Yanaihara N, Kohno T, Takakura S, et al. Physical and transcriptional map of a 311-kb segment of chromosome 18q21, a candidate lung tumor suppressor locus. Genomics. 2001;72(2):169-179. doi:10.1006/geno.2000.6454
18. Cheng C-P, Huang L-C, Chang Y-L, Hsieh C-H, Huang S-M, Hueng D-Y. The mechanisms of malic enzyme 2 in the tumorigenesis of human gliomas. Oncotarget. 2016;7(27):41460-41472. doi:10.18632/oncotarget.9190
19. Csanadi A, Kayser C, Donauer M, et al. Prognostic value of malic enzyme and ATP-citrate lyase in non-small cell lung cancer of the young and the elderly. PLoS ONE. 2015;10(5). doi:10.1371/journal.pone.0126357
20. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg Effect: The metabolic requirements of cell proliferation. Science. 2009;324(5930):1029-1033. doi:10.1126/science.1160809
21. Ward PS, Thompson CB. Metabolic Reprogramming: A cancer hallmark even Warburg did not anticipate. Cancer Cell. 2012;21(3):297-308. doi:10.1016/j.ccr.2012.02.014
22. Reitzer LJ, Wice BM, Kennell D. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem. 1979;254(8):2669-2676.
23. Jin L, Alesi GN, Kang S. Glutaminolysis as a target for cancer therapy. Oncogene. 2016;35(28):3619-3625. doi:10.1038/onc.2015.447
24. Moreadith RW, Lehninger AL. The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)+-dependent malic enzyme. J Biol Chem. 1984;259(10):6215-6221.
25. Jiang P, Du W, Mancuso A, Wellen KE, Yang X. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature. 2013;493(7434):689-693. doi:10.1038/nature11776
26. Chakravarti A. . . .to a future of genetic medicine. Nature. 2001;409(6822):822. doi:10.1038/35057281
27. He Q, He Q, Liu X, et al. Genome-wide prediction of cancer driver genes based on SNP and cancer SNV data. Am J Cancer Res. 2014;4(4):394-410.
28. Neubig RR. Mind your salts: When the inactive constituent isn’t. Mol Pharmacol. 2010;78(4):558-559. doi:10.1124/mol.110.067645
29. Jørgensen M. Quantitative determination of pamoic acid in dog and rat serum by automated ion-pair solid-phase extraction and reversed-phase high-performance liquid chromatography. J Chromatogr B Biomed Sci App. 1998;716(1):315-323. doi:10.1016/S0378-4347(98)00273-4
30. Hsieh J-Y, Li S-Y, Tsai W-C, et al. A small-molecule inhibitor suppresses the tumor-associated mitochondrial NAD(P)+-dependent malic enzyme (ME2) and induces cellular senescence. Oncotarget. 2015;6(24):20084-20098.
31. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1):248-254. doi:10.1016/0003-2697(76)90527-3
32. Kuo C-W, Hung H-C, Tong L, Chang G-G. Metal-Induced reversible structural interconversion of human mitochondrial NAD(P)+-Dependent malic enzyme. Proteins Struct Funct Bioinforma. 2004;54(3):404-411. doi:10.1002/prot.10635
33. Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J. 2000;78(3):1606-1619.
34. Schuck P, Perugini MA, Gonzales NR, Howlett GJ, Schubert D. Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems. Biophys J. 2002;82(2):1096-1111. doi:10.1016/S0006-3495(02)75469-6
35. Hsieh J-Y, Shih W-T, Kuo Y-H, Liu G-Y, Hung H-C. Functional roles of metabolic intermediates in regulating the human mitochondrial NAD(P) + -dependent malic enzyme. Sci Rep. 2019;9(1):9081. doi:10.1038/s41598-019-45282-0
36. Hung H-C, Kuo M-W, Chang G-G, Liu G-Y. Characterization of the functional role of allosteric site residue Asp102 in the regulatory mechanism of human mitochondrial NAD(P)+-dependent malate dehydrogenase (malic enzyme). Biochem J. 2005;392(1):39-45. doi:10.1042/BJ20050641
37. Hsieh J-Y, Su K-L, Ho P-T, Hung H-C. Long-range interaction between the enzyme active site and a distant allosteric site in the human mitochondrial NAD(P)+-dependent malic enzyme. Arch Biochem Biophys. 2009;487(1):19-27. doi:10.1016/j.abb.2009.05.007
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top