|
1. Ochoa S, Mehler A, Kornberg A. Reversible oxidative decarboxylation of malic acid. J Biol Chem. 1947;167(3):871-872. 2. Butta N, González‐Manchón C, Arias‐Salgado EG, Ayuso MS, Parrilla R. Cloning and functional characterization of the 5′ flanking region of the human mitochondrial malic enzyme gene. Eur J Biochem. 2001;268(10):3017-3027. doi:10.1046/j.1432-1327.2001.02194.x 3. Chang G-G, Tong L. Structure and function of malic enzymes, a new class of oxidative decarboxylases. Biochemistry. 2003;42(44):12721-12733. doi:10.1021/bi035251+ 4. Tronconi MA, Andreo CS, Drincovich MF. Chimeric Structure of Plant Malic Enzyme family: Different evolutionary scenarios for NAD- and NADP-dependent isoforms. Front Plant Sci. 2018;9(565). doi:10.3389/fpls.2018.00565 5. Loeber G, Infante AA, Maurer-Fogy I, Krystek E, Dworkin MB. Human NAD(+)-dependent mitochondrial malic enzyme. cDNA cloning, primary structure, and expression in Escherichia coli. J Biol Chem. 1991;266(5):3016-3021. 6. Xu Y, Bhargava G, Wu H, Loeber G, Tong L. Crystal structure of human mitochondrial NAD(P)+-dependent malic enzyme: a new class of oxidative decarboxylases. Structure. 1999;7(8):877-889. doi:10.1016/S0969-2126(99)80115-4 7. Hsieh J-Y, Chiang Y-H, Chang K-Y, Hung H-C. Functional role of fumarate site Glu59 involved in allosteric regulation and subunit–subunit interaction of human mitochondrial NAD(P)+-dependent malic enzyme. FEBS J. 2009;276(4):983-994. doi:10.1111/j.1742-4658.2008.06834.x 8. Hsieh J-Y, Liu G-Y, Hung H-C. Influential factor contributing to the isoform-specific inhibition by ATP of human mitochondrial NAD(P)+-dependent malic enzyme. FEBS J. 2008;275(21):5383-5392. doi:10.1111/j.1742-4658.2008.06668.x 9. Hung H-C, Chien Y-C, Hsieh J-Y, Chang G-G, Liu G-Y. Functional roles of ATP-binding residues in the catalytic site of human mitochondrial NAD(P)+-dependent malic enzyme. Biochemistry. 2005;44(38):12737-12745. doi:10.1021/bi050510b 10. Hsieh J-Y, Hung H-C. Engineering of the cofactor specificities and isoform-specific inhibition of malic enzyme. J Biol Chem. 2009;284(7):4536-4544. doi:10.1074/jbc.M807008200 11. Hsieh J-Y, Chen S-H, Hung H-C. Functional roles of the tetramer organization of malic enzyme. J Biol Chem. 2009;284(27):18096-18105. doi:10.1074/jbc.M109.005082 12. Yang Z, Floyd DL, Loeber G, Tong L. Structure of a closed form of human malic enzyme and implications for catalytic mechanism. Nat Struct Biol. 2000;7(3):251. doi:10.1038/73378 13. Sauer LA. Mitochondrial NAD-dependent malic enzyme: A new regulatory enzyme. FEBS Lett. 1973;33(2):251-255. doi:10.1016/0014-5793(73)80205-4 14. Yang Z, Lanks CW, Tong L. Molecular mechanism for the regulation of human mitochondrial NAD(P)+-dependent malic enzyme by ATP and fumarate. Structure. 2002;10(7):951-960. doi:10.1016/S0969-2126(02)00788-8 15. O Nagel W, Dauchy R, Sauer L. Mitochondrial malic enzymes. An association between NAD(P)+-dependent malic enzyme and cell renewal in Sprague-Dawley rat tissues. J Biol Chem. 1980;255:3849-3854. 16. Sauer LA. An NAD- and NADP-dependent malic enzyme with regulatory properties in rat liver and adrenal cortex mitochondrial fractions. Biochem Biophys Res Commun. 1973;50(2):524-531. doi:10.1016/0006-291X(73)90871-1 17. Yanaihara N, Kohno T, Takakura S, et al. Physical and transcriptional map of a 311-kb segment of chromosome 18q21, a candidate lung tumor suppressor locus. Genomics. 2001;72(2):169-179. doi:10.1006/geno.2000.6454 18. Cheng C-P, Huang L-C, Chang Y-L, Hsieh C-H, Huang S-M, Hueng D-Y. The mechanisms of malic enzyme 2 in the tumorigenesis of human gliomas. Oncotarget. 2016;7(27):41460-41472. doi:10.18632/oncotarget.9190 19. Csanadi A, Kayser C, Donauer M, et al. Prognostic value of malic enzyme and ATP-citrate lyase in non-small cell lung cancer of the young and the elderly. PLoS ONE. 2015;10(5). doi:10.1371/journal.pone.0126357 20. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg Effect: The metabolic requirements of cell proliferation. Science. 2009;324(5930):1029-1033. doi:10.1126/science.1160809 21. Ward PS, Thompson CB. Metabolic Reprogramming: A cancer hallmark even Warburg did not anticipate. Cancer Cell. 2012;21(3):297-308. doi:10.1016/j.ccr.2012.02.014 22. Reitzer LJ, Wice BM, Kennell D. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J Biol Chem. 1979;254(8):2669-2676. 23. Jin L, Alesi GN, Kang S. Glutaminolysis as a target for cancer therapy. Oncogene. 2016;35(28):3619-3625. doi:10.1038/onc.2015.447 24. Moreadith RW, Lehninger AL. The pathways of glutamate and glutamine oxidation by tumor cell mitochondria. Role of mitochondrial NAD(P)+-dependent malic enzyme. J Biol Chem. 1984;259(10):6215-6221. 25. Jiang P, Du W, Mancuso A, Wellen KE, Yang X. Reciprocal regulation of p53 and malic enzymes modulates metabolism and senescence. Nature. 2013;493(7434):689-693. doi:10.1038/nature11776 26. Chakravarti A. . . .to a future of genetic medicine. Nature. 2001;409(6822):822. doi:10.1038/35057281 27. He Q, He Q, Liu X, et al. Genome-wide prediction of cancer driver genes based on SNP and cancer SNV data. Am J Cancer Res. 2014;4(4):394-410. 28. Neubig RR. Mind your salts: When the inactive constituent isn’t. Mol Pharmacol. 2010;78(4):558-559. doi:10.1124/mol.110.067645 29. Jørgensen M. Quantitative determination of pamoic acid in dog and rat serum by automated ion-pair solid-phase extraction and reversed-phase high-performance liquid chromatography. J Chromatogr B Biomed Sci App. 1998;716(1):315-323. doi:10.1016/S0378-4347(98)00273-4 30. Hsieh J-Y, Li S-Y, Tsai W-C, et al. A small-molecule inhibitor suppresses the tumor-associated mitochondrial NAD(P)+-dependent malic enzyme (ME2) and induces cellular senescence. Oncotarget. 2015;6(24):20084-20098. 31. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1):248-254. doi:10.1016/0003-2697(76)90527-3 32. Kuo C-W, Hung H-C, Tong L, Chang G-G. Metal-Induced reversible structural interconversion of human mitochondrial NAD(P)+-Dependent malic enzyme. Proteins Struct Funct Bioinforma. 2004;54(3):404-411. doi:10.1002/prot.10635 33. Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J. 2000;78(3):1606-1619. 34. Schuck P, Perugini MA, Gonzales NR, Howlett GJ, Schubert D. Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems. Biophys J. 2002;82(2):1096-1111. doi:10.1016/S0006-3495(02)75469-6 35. Hsieh J-Y, Shih W-T, Kuo Y-H, Liu G-Y, Hung H-C. Functional roles of metabolic intermediates in regulating the human mitochondrial NAD(P) + -dependent malic enzyme. Sci Rep. 2019;9(1):9081. doi:10.1038/s41598-019-45282-0 36. Hung H-C, Kuo M-W, Chang G-G, Liu G-Y. Characterization of the functional role of allosteric site residue Asp102 in the regulatory mechanism of human mitochondrial NAD(P)+-dependent malate dehydrogenase (malic enzyme). Biochem J. 2005;392(1):39-45. doi:10.1042/BJ20050641 37. Hsieh J-Y, Su K-L, Ho P-T, Hung H-C. Long-range interaction between the enzyme active site and a distant allosteric site in the human mitochondrial NAD(P)+-dependent malic enzyme. Arch Biochem Biophys. 2009;487(1):19-27. doi:10.1016/j.abb.2009.05.007
|