|
1.Breaker, R.R., Riboswitches and Translation Control. Cold Spring Harb Perspect Biol, 2018. 2.Breaker, R.R., Prospects for riboswitch discovery and analysis. Mol Cell, 2011. 43(6): p. 867-79. 3.Serganov, A. and E. Nudler, A decade of riboswitches. Cell, 2013. 152(1-2): p. 17-24. 4.Abduljalil, J.M., Bacterial riboswitches and RNA thermometers: Nature and contributions to pathogenesis. Non-coding RNA Research, 2018. 3(2): p. 54-63. 5.Garst, A.D., A.L. Edwards, and R.T. Batey, Riboswitches: structures and mechanisms. Cold Spring Harb Perspect Biol, 2011. 3(6). 6.Nudler, E. and A.S. Mironov, The riboswitch control of bacterial metabolism. Trends Biochem Sci, 2004. 29(1): p. 11-7. 7.Choi, J., et al., N(6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nat Struct Mol Biol, 2016. 23(2): p. 110-5. 8.Grewal, S.I. and J.C. Rice, Regulation of heterochromatin by histone methylation and small RNAs. Curr Opin Cell Biol, 2004. 16(3): p. 230-8. 9.Kumar, A., et al., Converging evidence of mitochondrial dysfunction in a yeast model of homocysteine metabolism imbalance. J Biol Chem, 2011. 286(24): p. 21779-95. 10.Tehlivets, O., et al., S-adenosyl-L-homocysteine hydrolase and methylation disorders: yeast as a model system. Biochim Biophys Acta, 2013. 1832(1): p. 204-15. 11.Fontana, L., L. Partridge, and V.D. Longo, Extending healthy life span—from yeast to humans. science, 2010. 328(5976): p. 321-326. 12.Ruckenstuhl, C., et al., Lifespan extension by methionine restriction requires autophagy-dependent vacuolar acidification. PLoS genetics, 2014. 10(5): p. e1004347. 13.Obata, F. and M. Miura, Enhancing S-adenosyl-methionine catabolism extends Drosophila lifespan. Nat Commun, 2015. 6: p. 8332. 14.Ogawa, T., et al., Stimulating S-adenosyl-l-methionine synthesis extends lifespan via activation of AMPK. Proc Natl Acad Sci U S A, 2016. 113(42): p. 11913-11918. 15.Ye, C., et al., A Metabolic Function for Phospholipid and Histone Methylation. Mol Cell, 2017. 66(2): p. 180-193 e8. 16.Dinman, J.D., Mechanisms and implications of programmed translational frameshifting. Wiley Interdiscip Rev RNA, 2012. 3(5): p. 661-73. 17.Maynard, N.D., et al., Competing pathways control host resistance to virus via tRNA modification and programmed ribosomal frameshifting. Mol Syst Biol, 2012. 8: p. 567. 18.Kontos, H., S. Napthine, and I. Brierley, Ribosomal pausing at a frameshifter RNA pseudoknot is sensitive to reading phase but shows little correlation with frameshift efficiency. Mol Cell Biol, 2001. 21(24): p. 8657-70. 19.Chou, M.Y., S.C. Lin, and K.Y. Chang, Stimulation of -1 programmed ribosomal frameshifting by a metabolite-responsive RNA pseudoknot. RNA, 2010. 16(6): p. 1236-44. 20.Puah, R.Y., et al., Selective Binding to mRNA Duplex Regions by Chemically Modified Peptide Nucleic Acids Stimulates Ribosomal Frameshifting. Biochemistry, 2018. 57(1): p. 149-159. 21.Wang, J.X., et al., Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. Mol Cell, 2008. 29(6): p. 691-702. 22.Hsu, H.T., Y.H. Lin, and K.Y. Chang, Synergetic regulation of translational reading-frame switch by ligand-responsive RNAs in mammalian cells. Nucleic Acids Res, 2014. 42(22): p. 14070-82. 23.Gietz, D., et al., Improved method for high efficiency transformation of intact yeast cells. Nucleic acids research, 1992. 20(6): p. 1425. 24.Lin, Z., R.J. Gilbert, and I. Brierley, Spacer-length dependence of programmed -1 or -2 ribosomal frameshifting on a U6A heptamer supports a role for messenger RNA (mRNA) tension in frameshifting. Nucleic Acids Res, 2012. 40(17): p. 8674-89.
|