跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/10/03 09:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林昱宏
研究生(外文):Yu-Hung Lin
論文名稱:利用凝膠內螢光檢測定點烷基化(SDAF)來決定膜蛋白的拓撲圖及探測其溶劑可接觸性
論文名稱(外文):Site-Directed Alkylation Detected by In-gel Fluorescence (SDAF) to Determine the Topology Map and Probe the Solvent Accessibility of Membrane Proteins
指導教授:胡念仁
指導教授(外文):Nien-Jen Hu
口試委員:周三和江昀緯
口試委員(外文):Shan-Ho ChouYun-Wei Chiang
口試日期:2019-07-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:58
中文關鍵詞:拓撲膜蛋白半胱氨酸
外文關鍵詞:topologymPEG-MAL-5Kcysteine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:79
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
膜蛋白的拓撲結構提供了多肽鏈如何跨越細胞膜的二維信息,例如跨膜區段的數量和長度以及相對於膜的方向。過去科學家利用電腦預測和許多實驗方法來研究結構未知膜蛋白的拓撲圖,但是這些實驗的方法操作起來耗時耗力,並且難以進行定量分析。在本研究中我們設計了一種新的實驗方法,通過凝膠螢光檢測的定點烷基化Site-directed alkylation monitored by in-gel fluorescence (SDAF),將膜蛋白的C末端融合EGFP,使融合EGFP的膜蛋白能夠在SDS-PAGE凝膠上產生螢光蛋白條帶。我們使用了巰基高分子聚合物反應試劑mPEG-MAL-5K和暴露在細胞表面的目標蛋白之半胱氨酸共價結合,導致在凝膠上產生5kDa螢光條帶移位。位在細胞質側的半胱氨酸則無法結合,故不會有螢光蛋白條帶的移位。我們使用晶體結構已經確定的膽汁酸轉運蛋白ASBT<sub>NM</sub>作為模型,證明SDAF可以產生與晶體結構一致的拓撲圖。此外由於SDAF可以簡單的控制mPEG-MAL-5K與蛋白質的莫耳數比,因此可以用來進行不同位點的半胱氨酸PEGylation程度之定量分析。利用量化分析的結果,我們可以知道不同半胱氨酸的溶劑可及性,並利用SDAF測定每個半胱氨酸被PEGylation程度,進一步用於了解天然細胞膜環境中目標膜蛋白的動態信息,以研究膜蛋白在不同buffer環境下之構型偏好性。
The topology of helix-bundle membrane proteins provides the two-dimensional information of how the polypeptide chain spans the cell membrane: the number and length of transmembrane segments, and the orientation in relative to the membrane. In the past, in silico topology prediction and many experimental methods have been developed to determine the topology of structurally-unknown membrane proteins, but these methods are either time consuming or labor intensive, and difficult to perform quantitative analysis. In this study, we designed a new experimental method, the site-directed alkylation detected by in gel fluorescence (SDAF), using GFP fused to the C-terminus of target membrane proteins to facilitate the imaging of the fluorescent target proteins on SDS-PAGE gels. The thiol-reactive polymer mPEG-MAL-5K can be covalently conjugated to the cysteine residues introduced on the extracellular loops of the target protein by site-directed mutagenesis, resulting in a 5 kDa band shift on the gel. On the contrary, the cysteines introduced on the intracellular loops cannot be PEGylated, and thus resulted in no band shift. We used the structurally determined bile acid transporter ASBTNM as a model, and demonstrated that SDAF can produce a topology map consistent with the crystal structure. Moreover, as the mPEG-MAL-5K to protein molar ratio can be constantly maintained, one can perform a quantitative analysis of the PEGylation level, which reflects the solvent accessibility of a given cysteine residue. A systematic SDAF assay of cysteine replacements generates a PEGylation profile which can be further employed to provide dynamic information of membrane proteins in native cell membrane environments, by which the conformation preference of the membrane proteins in different buffer conditions can be probed.
目錄
中文摘要 i
Abstract ii
目錄 iii
圖表目錄 vi
1. 前言 1
1.1. 二級主動轉運蛋白 1
1.1.1. 細胞膜上的蛋白 1
1.1.2. 二級主動轉運蛋白的機制 1
1.2. 交替通透機制(Alternating Access Mechanism) 2
1.2.1. 跨膜蛋白轉運受質時的機制 2
1.2.2. 生化實驗與蛋白質晶體學發現不同交替通透機制模型 2
1.3. 鈉離子依賴性膽酸轉運蛋白ASBT 3
1.3.1. Solute carrier superfamily (SLC family) 3
1.3.2. 膽酸循環與ASBT的重要性 3
1.4. ASBT的蛋白晶體構型 4
1.4.1 ASBT<sub>NM</sub> 晶體結構 4
1.4.2. ASBT<sub>YF</sub> 晶體結構 4
1.4.3. ASBT轉運受質時產生的elevator-like movement 5
1.5. 研究拓撲來得到膜蛋白的資訊 5
1.5.1. 膜蛋白結晶的困難 5
1.5.2. 電腦拓撲預測 5
1.5.3. 實驗方法 6
1.6. 本論文研究目的 6
2. 實驗與方法 7
2.1. ASBT<sub>NM</sub>突變株 7
2.1.1. 決定拓撲的ASBT<sub>NM</sub>單點突變 7
2.1.2. 位點導向基因突變(Site-Directed Mutagenesis) 8
2.1.3. DNA膠體電泳 9
2.1.4. Competent cell製備 9
2.1.5. 轉型作用(transformation) 10
2.1.6. 抽質體DNA 10
2.2. Site-Directed Alkylation Detected by In-Gel Fluorescence (SDAF) 11
2.2.1. cfASBT<sub>NM</sub>-EGFP 和突變株的表達 11
2.2.2. 使用mPEG-MAL-5K標記E. coli whole cells 11
2.2.3. 使用mPEG-MAL-5K標記E. coli之破菌後細胞膜 12
2.2.4. N-Ethylmaleimide (NEM) blocking 13
2.2.5. 使用凝膠內螢光成像(Imaging using in-gel fluorescence) 13
2.2.6. 量化PEGylation的程度 14
2.3. WT及突變株ASBT<sub>NM</sub>蛋白的膽酸運輸功能性測試 14
2.3.1. WT及突變株ASBT<sub>NM</sub>-EGFP 的蛋白表達 14
2.3.2. 標準化細胞量 14
2.3.3. 運輸功能性測試 15
3. 結果 17
3.1. SDAF應用於膜蛋白拓撲學 17
3.1.1. mPEG-MAL-5K可標記ASBT<sub>NM</sub>在E. coli內膜外側loop上之半胱氨酸 17
3.1.2. E. coli破菌後細胞膜可利用mPEG-MAL-5K標記細胞內側的半胱氨酸 17
3.1.3. 檢查EGFP中兩個內源性半胱氨酸的mPEG-MAL-5K溶劑可及性 17
3.1.4. 用已知結構ASBT<sub>NM</sub>驗證SDAF決定膜蛋白拓撲的可行性 18
3.1.5. ASBT<sub>NM</sub> 半胱氨酸被PEGylation的程度反映該位點的溶劑可及性 19
3.2. WT及突變株ASBT<sub>NM</sub>蛋白的膽酸運輸功能性測試(uptake assay) 19
3.2.1. 標準化[<sup>3</sup>H]-taurocholate運輸功能 19
3.2.2. 決定topology的ASBT<sub>NM</sub>單點突變株功能性測試 20
3.2.3. 受質運輸途徑的ASBT<sub>NM</sub>單點突變株功能性測試 20
4. 討論 21
4.1. 膜蛋白拓撲學結構的測定技術 21
4.1.1. 利用C端酵素融合決定膜蛋白拓撲結構 21
4.1.2. Substituted cysteine accessibility method (SCAM™) 21
4.1.3. SDAF應用於決定膜蛋白拓撲結構 22
4.2. SDAF應用於膜蛋白拓撲學的研究之考量與限制 22
4.2.1. EGFP的突變株並不會影響蛋白折疊 22
4.2.2. 細胞內PEGylation程度較低 23
4.2.3. 在破菌條件中沒有free GFP的訊號 23
4.2.4. EGFP中兩個內源性半胱氨酸對SDAF的影響 24
4.3. 用SDAF定量分析的優勢 24
4.3.1. SDAF可以進行定量分析 24
4.3.2. 使用Western blot進行定量分析之難處 24
4.3.3. SDAF可以看膜蛋白動力學變化 25
4.3.4. 目前已知研究膜蛋白動力學變化之方法 25
4.4. 結論 25
5. 圖表 26
6. 參考文獻 54
1.Fagerberg, L., et al., Prediction of the human membrane proteome. Proteomics, 2010. 10(6): p. 1141-9.
2.Feranchak, A.P., Ion channels in digestive health and disease. Journal of Pediatric Gastroenterology and Nutrition, 2003. 37(3): p. 230-241.
3.Doyle, D.A., et al., The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science, 1998. 280(5360): p. 69-77.
4.Skou, J.C., The identification of the sodium-potassium pump (Nobel lecture). Angewandte Chemie-International Edition, 1998. 37(17): p. 2321-2328.
5.Faham, S., et al., The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science, 2008. 321(5890): p. 810-4.
6.Adelman, J.L., et al., Structural determinants of water permeation through the sodium-galactose transporter vSGLT. Biophys J, 2014. 106(6): p. 1280-9.
7.Lee, C., et al., Crystal structure of the sodium-proton antiporter NhaA dimer and new mechanistic insights. J Gen Physiol, 2014. 144(6): p. 529-44.
8.Padan, E., et al., NhaA antiporter functions using 10 helices, and an additional 2 contribute to assembly/stability. Proc Natl Acad Sci U S A, 2015. 112(41): p. E5575-82.
9.Jardetzky, O., Simple allosteric model for membrane pumps. Nature, 1966. 211(5052): p. 969-70.
10.Mitchell, P., A general theory of membrane transport from studies of bacteria. Nature, 1957. 180(4577): p. 134-6.
11.Drew, D. and O. Boudker, Shared Molecular Mechanisms of Membrane Transporters. Annual Review of Biochemistry, Vol 85, 2016. 85: p. 543-572.
12.Abramson, J., et al., Structure and mechanism of the lactose permease of Escherichia coli. Science, 2003. 301(5633): p. 610-5.
13.Latorraca, N.R., et al., Mechanism of Substrate Translocation in an Alternating Access Transporter. Cell, 2017. 169(1): p. 96-107 e12.
14.Dang, S., et al., Structure of a fucose transporter in an outward-open conformation. Nature, 2010. 467(7316): p. 734-8.
15.Kazmier, K., D.P. Claxton, and H.S. McHaourab, Alternating access mechanisms of LeuT-fold transporters: trailblazing towards the promised energy landscapes. Curr Opin Struct Biol, 2017. 45: p. 100-108.
16.Shi, L., et al., The mechanism of a neurotransmitter:sodium symporter--inward release of Na+ and substrate is triggered by substrate in a second binding site. Mol Cell, 2008. 30(6): p. 667-77.
17.Forrest, L.R. and G. Rudnick, The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters. Physiology (Bethesda), 2009. 24: p. 377-86.
18.Luo, P., et al., Crystal structure of a phosphorylation-coupled vitamin C transporter. Nat Struct Mol Biol, 2015. 22(3): p. 238-41.
19.Vergara-Jaque, A., et al., Repeat-swap homology modeling of secondary active transporters: updated protocol and prediction of elevator-type mechanisms. Front Pharmacol, 2015. 6: p. 183.
20.Mirza, O., et al., Structural evidence for induced fit and a mechanism for sugar/H+ symport in LacY. EMBO J, 2006. 25(6): p. 1177-83.
21.Serdiuk, T., et al., Substrate-induced changes in the structural properties of LacY. Proc Natl Acad Sci U S A, 2014. 111(16): p. E1571-80.
22.Stelzl, L.S., et al., Flexible gates generate occluded intermediates in the transport cycle of LacY. J Mol Biol, 2014. 426(3): p. 735-51.
23.Krishnamurthy, H. and E. Gouaux, X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature, 2012. 481(7382): p. 469-74.
24.Nyola, A., et al., Substrate and drug binding sites in LeuT. Curr Opin Struct Biol, 2010. 20(4): p. 415-22.
25.Mancusso, R., et al., Structure and mechanism of a bacterial sodium-dependent dicarboxylate transporter. Nature, 2012. 491(7425): p. 622-6.
26.Mulligan, C., et al., The bacterial dicarboxylate transporter VcINDY uses a two-domain elevator-type mechanism. Nat Struct Mol Biol, 2016. 23(3): p. 256-63.
27.Nie, R., et al., Structure and function of the divalent anion/Na(+) symporter from Vibrio cholerae and a humanized variant. Nat Commun, 2017. 8: p. 15009.
28.Lee, C., et al., A two-domain elevator mechanism for sodium/proton antiport. Nature, 2013. 501(7468): p. 573-7.
29.Ficici, E., et al., Asymmetry of inverted-topology repeats in the AE1 anion exchanger suggests an elevator-like mechanism. J Gen Physiol, 2017. 149(12): p. 1149-1164.
30.Akyuz, N., et al., Transport dynamics in a glutamate transporter homologue. Nature, 2013. 502(7469): p. 114-8.
31.Kim, J.W., et al., Structural insights into the elevator-like mechanism of the sodium/citrate symporter CitS. Scientific Reports, 2017. 7.
32.Hagenbuch, B. and P. Dawson, The sodium bile salt cotransport family SLC10. Pflugers Arch, 2004. 447(5): p. 566-70.
33.Claro da Silva, T., J.E. Polli, and P.W. Swaan, The solute carrier family 10 (SLC10): beyond bile acid transport. Mol Aspects Med, 2013. 34(2-3): p. 252-69.
34.West, K.L., et al., 1-[4-[4[(4R,5R)-3,3-Dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-1,1-di oxido-1-benzothiepin-5-yl]phenoxy]butyl]-4-aza-1-azoniabicyclo[2.2.2]octane methanesulfonate (SC-435), an ileal apical sodium-codependent bile acid transporter inhibitor alters hepatic cholesterol metabolism and lowers plasma low-density lipoprotein-cholesterol concentrations in guinea pigs. J Pharmacol Exp Ther, 2002. 303(1): p. 293-9.
35.Braun, A., et al., Inhibition of intestinal absorption of cholesterol by ezetimibe or bile acids by SC-435 alters lipoprotein metabolism and extends the lifespan of SR-BI/apoE double knockout mice. Atherosclerosis, 2008. 198(1): p. 77-84.
36.Hu, N.J., et al., Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT. Nature, 2011. 478(7369): p. 408-11.
37.Bhat, B.G., et al., Inhibition of ileal bile acid transport and reduced atherosclerosis in apoE-/- mice by SC-435. J Lipid Res, 2003. 44(9): p. 1614-21.
38.Zhou, X., et al., Structural basis of the alternating-access mechanism in a bile acid transporter. Nature, 2014. 505(7484): p. 569-73.
39.Martens, C., et al., Lipids modulate the conformational dynamics of a secondary multidrug transporter. Nat Struct Mol Biol, 2016. 23(8): p. 744-51.
40.Dawaliby, R., et al., Allosteric regulation of G protein-coupled receptor activity by phospholipids. Nat Chem Biol, 2016. 12(1): p. 35-9.
41.Nilsson, J., B. Persson, and G. von Heijne, Consensus predictions of membrane protein topology. FEBS Lett, 2000. 486(3): p. 267-9.
42.van Klompenburg, W., et al., Anionic phospholipids are determinants of membrane protein topology. EMBO J, 1997. 16(14): p. 4261-6.
43.Bogdanov, M., et al., Transmembrane protein topology mapping by the substituted cysteine accessibility method (SCAM(TM)): application to lipid-specific membrane protein topogenesis. Methods, 2005. 36(2): p. 148-71.
44.van Geest, M. and J.S. Lolkema, Membrane topology and insertion of membrane proteins: search for topogenic signals. Microbiol Mol Biol Rev, 2000. 64(1): p. 13-33.
45.Manoil, C. and J. Beckwith, A genetic approach to analyzing membrane protein topology. Science, 1986. 233(4771): p. 1403-8.
46.Silhavy, T.J., et al., Use of Gene Fusions to Study Outer Membrane-Protein Localization in Escherichia-Coli. Proceedings of the National Academy of Sciences of the United States of America, 1977. 74(12): p. 5411-5415.
47.Broomesmith, J.K., M. Tadayyon, and Y. Zhang, Beta-Lactamase as a Probe of Membrane-Protein Assembly and Protein Export. Molecular Microbiology, 1990. 4(10): p. 1637-1644.
48.Chang, X.B., et al., Mapping of cystic fibrosis transmembrane conductance regulator membrane topology by glycosylation site insertion. J Biol Chem, 1994. 269(28): p. 18572-5.
49.Hresko, R.C., et al., Topology of the Glut 1 glucose transporter deduced from glycosylation scanning mutagenesis. J Biol Chem, 1994. 269(32): p. 20482-8.
50.Toyoda, T., et al., Antibody-scanning and epitope-tagging methods; molecular mapping of proteins using antibodies. Curr Protein Pept Sci, 2000. 1(3): p. 303-8.
51.Akabas, M.H., et al., Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science, 1992. 258(5080): p. 307-10.
52.Karlin, A. and M.H. Akabas, Substituted-cysteine accessibility method. Methods Enzymol, 1998. 293: p. 123-45.
53.Kaback, H.R., et al., Site-directed alkylation and the alternating access model for LacY. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(2): p. 491-494.
54.Jiang, X.X., Y.L. Nie, and H.R. Kaback, Site-Directed Alkylation Studies with LacY Provide Evidence for the Alternating Access Model of Transport. Biochemistry, 2011. 50(10): p. 1634-1640.
55.Yang, N.J. and M.J. Hinner, Getting across the cell membrane: an overview for small molecules, peptides, and proteins. Methods Mol Biol, 2015. 1266: p. 29-53.
56.Reid, B.G. and G.C. Flynn, Chromophore formation in green fluorescent protein. Biochemistry, 1997. 36(22): p. 6786-91.
57.Drew, D.E., et al., Green fluorescent protein as an indicator to monitor membrane protein overexpression in Escherichia coli. Febs Letters, 2001. 507(2): p. 220-224.
58.Waldo, G.S., et al., Rapid protein-folding assay using green fluorescent protein. Nature Biotechnology, 1999. 17(7): p. 691-695.
59.Pourcher, T., et al., Membrane topology of the melibiose permease of Escherichia coli studied by melB-phoA fusion analysis. Biochemistry, 1996. 35(13): p. 4161-8.
60.Schulein, R., C. Rutz, and W. Rosenthal, Topology of eukaryotic multispanning transmembrane proteins: use of LacZ fusions for the localization of cytoplasmic domains in COS.M6 cells. Protein Eng, 1997. 10(6): p. 707-13.
61.Haardt, M. and E. Bremer, Use of phoA and lacZ fusions to study the membrane topology of ProW, a component of the osmoregulated ProU transport system of Escherichia coli. J Bacteriol, 1996. 178(18): p. 5370-81.
62.Bogdanov, M., Mapping of Membrane Protein Topology by Substituted Cysteine Accessibility Method (SCAM). Methods Mol Biol, 2017. 1615: p. 105-128.
63.Drew, D., et al., Optimization of membrane protein overexpression and purification using GFP fusions. Nature Methods, 2006. 3(4): p. 303-313.
64.Newstead, S., et al., High-throughput fluorescent-based optimization of eukaryotic membrane protein overexpression and purification in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(35): p. 13936-13941.
65.Newstead, S., et al., Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2. EMBO J, 2011. 30(2): p. 417-26.
66.Parker, J.L. and S. Newstead, Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1. Nature, 2014. 507(7490): p. 68-72.
67.Geertsma, E.R., et al., Quality control of overexpressed membrane proteins. Proc Natl Acad Sci U S A, 2008. 105(15): p. 5722-7.
68.Bordignon, E., Site-directed spin labeling of membrane proteins. Top Curr Chem, 2012. 321: p. 121-57.
69.Sahu, I.D., et al., DEER EPR measurements for membrane protein structures via bifunctional spin labels and lipodisq nanoparticles. Biochemistry, 2013. 52(38): p. 6627-32.
70.Joseph, B., A. Sikora, and D.S. Cafiso, Ligand Induced Conformational Changes of a Membrane Transporter in E. coli Cells Observed with DEER/PELDOR. J Am Chem Soc, 2016. 138(6): p. 1844-7.
71.Fernandez, A.B., et al., Establishing a molecular mechanism for the Beckmann rearrangement of oximes over microporous molecular sieves. Angew Chem Int Ed Engl, 2005. 44(16): p. 2370-3.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top