|
1.Fagerberg, L., et al., Prediction of the human membrane proteome. Proteomics, 2010. 10(6): p. 1141-9. 2.Feranchak, A.P., Ion channels in digestive health and disease. Journal of Pediatric Gastroenterology and Nutrition, 2003. 37(3): p. 230-241. 3.Doyle, D.A., et al., The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science, 1998. 280(5360): p. 69-77. 4.Skou, J.C., The identification of the sodium-potassium pump (Nobel lecture). Angewandte Chemie-International Edition, 1998. 37(17): p. 2321-2328. 5.Faham, S., et al., The crystal structure of a sodium galactose transporter reveals mechanistic insights into Na+/sugar symport. Science, 2008. 321(5890): p. 810-4. 6.Adelman, J.L., et al., Structural determinants of water permeation through the sodium-galactose transporter vSGLT. Biophys J, 2014. 106(6): p. 1280-9. 7.Lee, C., et al., Crystal structure of the sodium-proton antiporter NhaA dimer and new mechanistic insights. J Gen Physiol, 2014. 144(6): p. 529-44. 8.Padan, E., et al., NhaA antiporter functions using 10 helices, and an additional 2 contribute to assembly/stability. Proc Natl Acad Sci U S A, 2015. 112(41): p. E5575-82. 9.Jardetzky, O., Simple allosteric model for membrane pumps. Nature, 1966. 211(5052): p. 969-70. 10.Mitchell, P., A general theory of membrane transport from studies of bacteria. Nature, 1957. 180(4577): p. 134-6. 11.Drew, D. and O. Boudker, Shared Molecular Mechanisms of Membrane Transporters. Annual Review of Biochemistry, Vol 85, 2016. 85: p. 543-572. 12.Abramson, J., et al., Structure and mechanism of the lactose permease of Escherichia coli. Science, 2003. 301(5633): p. 610-5. 13.Latorraca, N.R., et al., Mechanism of Substrate Translocation in an Alternating Access Transporter. Cell, 2017. 169(1): p. 96-107 e12. 14.Dang, S., et al., Structure of a fucose transporter in an outward-open conformation. Nature, 2010. 467(7316): p. 734-8. 15.Kazmier, K., D.P. Claxton, and H.S. McHaourab, Alternating access mechanisms of LeuT-fold transporters: trailblazing towards the promised energy landscapes. Curr Opin Struct Biol, 2017. 45: p. 100-108. 16.Shi, L., et al., The mechanism of a neurotransmitter:sodium symporter--inward release of Na+ and substrate is triggered by substrate in a second binding site. Mol Cell, 2008. 30(6): p. 667-77. 17.Forrest, L.R. and G. Rudnick, The rocking bundle: a mechanism for ion-coupled solute flux by symmetrical transporters. Physiology (Bethesda), 2009. 24: p. 377-86. 18.Luo, P., et al., Crystal structure of a phosphorylation-coupled vitamin C transporter. Nat Struct Mol Biol, 2015. 22(3): p. 238-41. 19.Vergara-Jaque, A., et al., Repeat-swap homology modeling of secondary active transporters: updated protocol and prediction of elevator-type mechanisms. Front Pharmacol, 2015. 6: p. 183. 20.Mirza, O., et al., Structural evidence for induced fit and a mechanism for sugar/H+ symport in LacY. EMBO J, 2006. 25(6): p. 1177-83. 21.Serdiuk, T., et al., Substrate-induced changes in the structural properties of LacY. Proc Natl Acad Sci U S A, 2014. 111(16): p. E1571-80. 22.Stelzl, L.S., et al., Flexible gates generate occluded intermediates in the transport cycle of LacY. J Mol Biol, 2014. 426(3): p. 735-51. 23.Krishnamurthy, H. and E. Gouaux, X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature, 2012. 481(7382): p. 469-74. 24.Nyola, A., et al., Substrate and drug binding sites in LeuT. Curr Opin Struct Biol, 2010. 20(4): p. 415-22. 25.Mancusso, R., et al., Structure and mechanism of a bacterial sodium-dependent dicarboxylate transporter. Nature, 2012. 491(7425): p. 622-6. 26.Mulligan, C., et al., The bacterial dicarboxylate transporter VcINDY uses a two-domain elevator-type mechanism. Nat Struct Mol Biol, 2016. 23(3): p. 256-63. 27.Nie, R., et al., Structure and function of the divalent anion/Na(+) symporter from Vibrio cholerae and a humanized variant. Nat Commun, 2017. 8: p. 15009. 28.Lee, C., et al., A two-domain elevator mechanism for sodium/proton antiport. Nature, 2013. 501(7468): p. 573-7. 29.Ficici, E., et al., Asymmetry of inverted-topology repeats in the AE1 anion exchanger suggests an elevator-like mechanism. J Gen Physiol, 2017. 149(12): p. 1149-1164. 30.Akyuz, N., et al., Transport dynamics in a glutamate transporter homologue. Nature, 2013. 502(7469): p. 114-8. 31.Kim, J.W., et al., Structural insights into the elevator-like mechanism of the sodium/citrate symporter CitS. Scientific Reports, 2017. 7. 32.Hagenbuch, B. and P. Dawson, The sodium bile salt cotransport family SLC10. Pflugers Arch, 2004. 447(5): p. 566-70. 33.Claro da Silva, T., J.E. Polli, and P.W. Swaan, The solute carrier family 10 (SLC10): beyond bile acid transport. Mol Aspects Med, 2013. 34(2-3): p. 252-69. 34.West, K.L., et al., 1-[4-[4[(4R,5R)-3,3-Dibutyl-7-(dimethylamino)-2,3,4,5-tetrahydro-4-hydroxy-1,1-di oxido-1-benzothiepin-5-yl]phenoxy]butyl]-4-aza-1-azoniabicyclo[2.2.2]octane methanesulfonate (SC-435), an ileal apical sodium-codependent bile acid transporter inhibitor alters hepatic cholesterol metabolism and lowers plasma low-density lipoprotein-cholesterol concentrations in guinea pigs. J Pharmacol Exp Ther, 2002. 303(1): p. 293-9. 35.Braun, A., et al., Inhibition of intestinal absorption of cholesterol by ezetimibe or bile acids by SC-435 alters lipoprotein metabolism and extends the lifespan of SR-BI/apoE double knockout mice. Atherosclerosis, 2008. 198(1): p. 77-84. 36.Hu, N.J., et al., Crystal structure of a bacterial homologue of the bile acid sodium symporter ASBT. Nature, 2011. 478(7369): p. 408-11. 37.Bhat, B.G., et al., Inhibition of ileal bile acid transport and reduced atherosclerosis in apoE-/- mice by SC-435. J Lipid Res, 2003. 44(9): p. 1614-21. 38.Zhou, X., et al., Structural basis of the alternating-access mechanism in a bile acid transporter. Nature, 2014. 505(7484): p. 569-73. 39.Martens, C., et al., Lipids modulate the conformational dynamics of a secondary multidrug transporter. Nat Struct Mol Biol, 2016. 23(8): p. 744-51. 40.Dawaliby, R., et al., Allosteric regulation of G protein-coupled receptor activity by phospholipids. Nat Chem Biol, 2016. 12(1): p. 35-9. 41.Nilsson, J., B. Persson, and G. von Heijne, Consensus predictions of membrane protein topology. FEBS Lett, 2000. 486(3): p. 267-9. 42.van Klompenburg, W., et al., Anionic phospholipids are determinants of membrane protein topology. EMBO J, 1997. 16(14): p. 4261-6. 43.Bogdanov, M., et al., Transmembrane protein topology mapping by the substituted cysteine accessibility method (SCAM(TM)): application to lipid-specific membrane protein topogenesis. Methods, 2005. 36(2): p. 148-71. 44.van Geest, M. and J.S. Lolkema, Membrane topology and insertion of membrane proteins: search for topogenic signals. Microbiol Mol Biol Rev, 2000. 64(1): p. 13-33. 45.Manoil, C. and J. Beckwith, A genetic approach to analyzing membrane protein topology. Science, 1986. 233(4771): p. 1403-8. 46.Silhavy, T.J., et al., Use of Gene Fusions to Study Outer Membrane-Protein Localization in Escherichia-Coli. Proceedings of the National Academy of Sciences of the United States of America, 1977. 74(12): p. 5411-5415. 47.Broomesmith, J.K., M. Tadayyon, and Y. Zhang, Beta-Lactamase as a Probe of Membrane-Protein Assembly and Protein Export. Molecular Microbiology, 1990. 4(10): p. 1637-1644. 48.Chang, X.B., et al., Mapping of cystic fibrosis transmembrane conductance regulator membrane topology by glycosylation site insertion. J Biol Chem, 1994. 269(28): p. 18572-5. 49.Hresko, R.C., et al., Topology of the Glut 1 glucose transporter deduced from glycosylation scanning mutagenesis. J Biol Chem, 1994. 269(32): p. 20482-8. 50.Toyoda, T., et al., Antibody-scanning and epitope-tagging methods; molecular mapping of proteins using antibodies. Curr Protein Pept Sci, 2000. 1(3): p. 303-8. 51.Akabas, M.H., et al., Acetylcholine receptor channel structure probed in cysteine-substitution mutants. Science, 1992. 258(5080): p. 307-10. 52.Karlin, A. and M.H. Akabas, Substituted-cysteine accessibility method. Methods Enzymol, 1998. 293: p. 123-45. 53.Kaback, H.R., et al., Site-directed alkylation and the alternating access model for LacY. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(2): p. 491-494. 54.Jiang, X.X., Y.L. Nie, and H.R. Kaback, Site-Directed Alkylation Studies with LacY Provide Evidence for the Alternating Access Model of Transport. Biochemistry, 2011. 50(10): p. 1634-1640. 55.Yang, N.J. and M.J. Hinner, Getting across the cell membrane: an overview for small molecules, peptides, and proteins. Methods Mol Biol, 2015. 1266: p. 29-53. 56.Reid, B.G. and G.C. Flynn, Chromophore formation in green fluorescent protein. Biochemistry, 1997. 36(22): p. 6786-91. 57.Drew, D.E., et al., Green fluorescent protein as an indicator to monitor membrane protein overexpression in Escherichia coli. Febs Letters, 2001. 507(2): p. 220-224. 58.Waldo, G.S., et al., Rapid protein-folding assay using green fluorescent protein. Nature Biotechnology, 1999. 17(7): p. 691-695. 59.Pourcher, T., et al., Membrane topology of the melibiose permease of Escherichia coli studied by melB-phoA fusion analysis. Biochemistry, 1996. 35(13): p. 4161-8. 60.Schulein, R., C. Rutz, and W. Rosenthal, Topology of eukaryotic multispanning transmembrane proteins: use of LacZ fusions for the localization of cytoplasmic domains in COS.M6 cells. Protein Eng, 1997. 10(6): p. 707-13. 61.Haardt, M. and E. Bremer, Use of phoA and lacZ fusions to study the membrane topology of ProW, a component of the osmoregulated ProU transport system of Escherichia coli. J Bacteriol, 1996. 178(18): p. 5370-81. 62.Bogdanov, M., Mapping of Membrane Protein Topology by Substituted Cysteine Accessibility Method (SCAM). Methods Mol Biol, 2017. 1615: p. 105-128. 63.Drew, D., et al., Optimization of membrane protein overexpression and purification using GFP fusions. Nature Methods, 2006. 3(4): p. 303-313. 64.Newstead, S., et al., High-throughput fluorescent-based optimization of eukaryotic membrane protein overexpression and purification in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(35): p. 13936-13941. 65.Newstead, S., et al., Crystal structure of a prokaryotic homologue of the mammalian oligopeptide-proton symporters, PepT1 and PepT2. EMBO J, 2011. 30(2): p. 417-26. 66.Parker, J.L. and S. Newstead, Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1. Nature, 2014. 507(7490): p. 68-72. 67.Geertsma, E.R., et al., Quality control of overexpressed membrane proteins. Proc Natl Acad Sci U S A, 2008. 105(15): p. 5722-7. 68.Bordignon, E., Site-directed spin labeling of membrane proteins. Top Curr Chem, 2012. 321: p. 121-57. 69.Sahu, I.D., et al., DEER EPR measurements for membrane protein structures via bifunctional spin labels and lipodisq nanoparticles. Biochemistry, 2013. 52(38): p. 6627-32. 70.Joseph, B., A. Sikora, and D.S. Cafiso, Ligand Induced Conformational Changes of a Membrane Transporter in E. coli Cells Observed with DEER/PELDOR. J Am Chem Soc, 2016. 138(6): p. 1844-7. 71.Fernandez, A.B., et al., Establishing a molecular mechanism for the Beckmann rearrangement of oximes over microporous molecular sieves. Angew Chem Int Ed Engl, 2005. 44(16): p. 2370-3.
|