|
Reference 1.Hartwell, L.H., et al., From molecular to modular cell biology. Nature, 1999. 402(6761 Suppl): p. C47-52. 2.Barabasi, A.L. and Z.N. Oltvai, Network biology: understanding the cell''s functional organization. Nat Rev Genet, 2004. 5(2): p. 101-13. 3.Eisenberg, D., et al., Protein function in the post-genomic era. Nature, 2000. 405(6788): p. 823-6. 4.Proulx, S.R., D.E. Promislow, and P.C. Phillips, Network thinking in ecology and evolution. Trends Ecol Evol, 2005. 20(6): p. 345-53. 5.Jeong, H., et al., Lethality and centrality in protein networks. Nature, 2001. 411(6833): p. 41-2. 6.Batada, N.N., L.D. Hurst, and M. Tyers, Evolutionary and physiological importance of hub proteins. PLoS Comput Biol, 2006. 2(7): p. e88. 7.Levy, S.F. and M.L. Siegal, Network hubs buffer environmental variation in Saccharomyces cerevisiae. PLoS Biol, 2008. 6(11): p. e264. 8.Powers, E.T. and W.E. Balch, Diversity in the origins of proteostasis networks--a driver for protein function in evolution. Nat Rev Mol Cell Biol, 2013. 14(4): p. 237-48. 9.Borkovich, K.A., et al., hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. Mol Cell Biol, 1989. 9(9): p. 3919-30. 10.Aligue, R., H. Akhavan-Niak, and P. Russell, A role for Hsp90 in cell cycle control: Wee1 tyrosine kinase activity requires interaction with Hsp90. EMBO J, 1994. 13(24): p. 6099-106. 11.Cutforth, T. and G.M. Rubin, Mutations in Hsp83 and Cdc37 Impair Signaling by the Sevenless Receptor Tyrosine Kinase in Drosophila. Cell, 1994. 77(7): p. 1027-1036. 12.Birnby, D.A., et al., A transmembrane guanylyl cyclase (DAF-11) and Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in Caenorhabditis elegans. Genetics, 2000. 155(1): p. 85-104. 13.Devaney, E., et al., Hsp90 is essential in the filarial nematode Brugia pahangi. International Journal for Parasitology, 2005. 35(6): p. 627-636. 14.McClellan, A.J., et al., Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell, 2007. 131(1): p. 121-35. 15.Zhao, R., et al., Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the hsp90 chaperone. Cell, 2005. 120(5): p. 715-27. 16.Taipale, M., D.F. Jarosz, and S. Lindquist, HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol, 2010. 11(7): p. 515-28. 17.Gopinath, R.K., et al., The Hsp90-dependent proteome is conserved and enriched for hub proteins with high levels of protein-protein connectivity. Genome Biol Evol, 2014. 6(10): p. 2851-65. 18.Makhnevych, T. and W.A. Houry, The role of Hsp90 in protein complex assembly. Biochim Biophys Acta, 2012. 1823(3): p. 674-82. 19.Chiosis, G., C.A. Dickey, and J.L. Johnson, A global view of Hsp90 functions. Nat Struct Mol Biol, 2013. 20(1): p. 1-4. 20.Kim, T.S., et al., Interaction of Hsp90 with ribosomal proteins protects from ubiquitination and proteasome-dependent degradation. Mol Biol Cell, 2006. 17(2): p. 824-33. 21.Pearl, L.H. and C. Prodromou, Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem, 2006. 75: p. 271-94. 22.Rohl, A., J. Rohrberg, and J. Buchner, The chaperone Hsp90: changing partners for demanding clients. Trends Biochem Sci, 2013. 38(5): p. 253-62. 23.Citri, A., et al., Hsp90 recognizes a common surface on client kinases. J Biol Chem, 2006. 281(20): p. 14361-9. 24.Xu, W., et al., Surface charge and hydrophobicity determine ErbB2 binding to the Hsp90 chaperone complex. Nat Struct Mol Biol, 2005. 12(2): p. 120-6. 25.Rutherford, S.L. and S. Lindquist, Hsp90 as a capacitor for morphological evolution. Nature, 1998. 396(6709): p. 336-342. 26.Queitsch, C., T.A. Sangster, and S. Lindquist, Hsp90 as a capacitor of phenotypic variation. Nature, 2002. 417(6889): p. 618-24. 27.Rohner, N., et al., Cryptic variation in morphological evolution: HSP90 as a capacitor for loss of eyes in cavefish. Science, 2013. 342(6164): p. 1372-5. 28.Hsieh, Y.Y., P.H. Hung, and J.Y. Leu, Hsp90 regulates nongenetic variation in response to environmental stress. Mol Cell, 2013. 50(1): p. 82-92. 29.Jarosz, D.F., M. Taipale, and S. Lindquist, Protein homeostasis and the phenotypic manifestation of genetic diversity: principles and mechanisms. Annu Rev Genet, 2010. 44: p. 189-216. 30.Breitkreutz, A., et al., A global protein kinase and phosphatase interaction network in yeast. Science, 2010. 328(5981): p. 1043-6. 31.Hughes, T.R., et al., Functional discovery via a compendium of expression profiles. Cell, 2000. 102(1): p. 109-26. 32.Mnaimneh, S., et al., Exploration of essential gene functions via titratable promoter alleles. Cell, 2004. 118(1): p. 31-44. 33.Kushnirov, V.V., Rapid and reliable protein extraction from yeast. Yeast, 2000. 16(9): p. 857-60. 34.Wayne, N. and D.N. Bolon, Dimerization of Hsp90 is required for in vivo function: Design and analysis of monomers and dimers. Journal of Biological Chemistry, 2007. 282(48): p. 35386-35395. 35.Galagan, J.E., et al., Genomics of the fungal kingdom: insights into eukaryotic biology. Genome Res, 2005. 15(12): p. 1620-31. 36.Taylor, J.W. and M.L. Berbee, Dating divergences in the Fungal Tree of Life: review and new analyses. Mycologia, 2006. 98(6): p. 838-49. 37.Xu, Y. and S. Lindquist, Heat-shock protein hsp90 governs the activity of pp60v-src kinase. Proc Natl Acad Sci U S A, 1993. 90(15): p. 7074-8. 38.Praphailong, W. and G.H. Fleet, The effect of pH, sodium chloride, sucrose, sorbate and benzoate on the growth of food spoilage yeasts. Food Microbiology, 1997. 14(5): p. 459-468. 39.Duquesne, S., et al., The yeast Yarrowia lipolytica as a generic tool for molecular evolution of enzymes. Methods Mol Biol, 2012. 861: p. 301-12. 40.Imai, J. and I. Yahara, Role of HSP90 in salt stress tolerance via stabilization and regulation of calcineurin. Mol Cell Biol, 2000. 20(24): p. 9262-70. 41.Kao, K.C. and G. Sherlock, Molecular characterization of clonal interference during adaptive evolution in asexual populations of Saccharomyces cerevisiae. Nat Genet, 2008. 40(12): p. 1499-504. 42.Lenski, R.E., et al., Long-Term Experimental Evolution in Escherichia-Coli .1. Adaptation and Divergence during 2,000 Generations. American Naturalist, 1991. 138(6): p. 1315-1341. 43.Lee, S., W.A. Lim, and K.S. Thorn, Improved blue, green, and red fluorescent protein tagging vectors for S. cerevisiae. PLoS One, 2013. 8(7): p. e67902. 44.Ohya, Y., et al., High-dimensional and large-scale phenotyping of yeast mutants. Proc Natl Acad Sci U S A, 2005. 102(52): p. 19015-20. 45.Gerstein, A.C., et al., Genomic convergence toward diploidy in Saccharomyces cerevisiae. PLoS Genet, 2006. 2(9): p. e145. 46.Oromendia, A.B., S.E. Dodgson, and A. Amon, Aneuploidy causes proteotoxic stress in yeast. Genes Dev, 2012. 26(24): p. 2696-708. 47.Trotter, E.W., et al., Protein misfolding and temperature up-shift cause G1 arrest via a common mechanism dependent on heat shock factor in Saccharomycescerevisiae. Proc Natl Acad Sci U S A, 2001. 98(13): p. 7313-8. 48.Trotter, E.W., et al., Misfolded proteins are competent to mediate a subset of the responses to heat shock in Saccharomyces cerevisiae. J Biol Chem, 2002. 277(47): p. 44817-25. 49.Obrig, T.G., et al., Mechanism by Which Cycloheximide and Related Glutarimide Antibiotics Inhibit Peptide Synthesis on Reticulocyte Ribosomes. Journal of Biological Chemistry, 1971. 246(1): p. 174-&. 50.Lippincott-Schwartz, J., et al., Brefeldin A''s effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic. Cell, 1991. 67(3): p. 601-16. 51.Samali, A., et al., Methods for monitoring endoplasmic reticulum stress and the unfolded protein response. Int J Cell Biol, 2010. 2010: p. 830307. 52.Piper, P.W., The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol Lett, 1995. 134(2-3): p. 121-7. 53.Grimminger, V., et al., The prion curing agent guanidinium chloride specifically inhibits ATP hydrolysis by Hsp104. J Biol Chem, 2004. 279(9): p. 7378-83. 54.Gaczynska, M. and P.A. Osmulski, Small-molecule inhibitors of proteasome activity. Methods Mol Biol, 2005. 301: p. 3-22. 55.Liu, C., et al., Proteasome inhibition in wild-type yeast Saccharomyces cerevisiae cells. Biotechniques, 2007. 42(2): p. 158, 160, 162. 56.Team, R.C., R: A language and environment for statistical computing. . 2017, R Foundation for Statistical Computing: Vienna, Austria. 57.Warnes, G.R., et al., gplots: Various R Programming Tools for Plotting Data. 2016. 58.Kassambara, A. and F. Mundt, factoextra: Extract and Visualize the Results of Multivariate Data Analyses. . 2017. 59.Hsu, P.C., C.Y. Yang, and C.Y. Lan, Candida albicans Hap43 Is a Repressor Induced under Low-Iron Conditions and Is Essential for Iron-Responsive Transcriptional Regulation and Virulence. Eukaryotic Cell, 2011. 10(2): p. 207-225. 60.Thorvaldsdottir, H., J.T. Robinson, and J.P. Mesirov, Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Briefings in Bioinformatics, 2013. 14(2): p. 178-192. 61.Li, H., et al., The Sequence Alignment/Map format and SAMtools. Bioinformatics, 2009. 25(16): p. 2078-9. 62.Takagi, H., et al., QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations. Plant J, 2013. 74(1): p. 174-83. 63.Benjamini, Y. and Y. Hochberg, Controlling the False Discovery Rate - a Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society Series B-Methodological, 1995. 57(1): p. 289-300. 64.Su, G., et al., Biological network exploration with Cytoscape 3. Curr Protoc Bioinformatics, 2014. 47: p. 8 13 1-24. 65.DiCarlo, J.E., et al., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research, 2013. 41(7): p. 4336-4343. 66.Horwitz, A.A., et al., Efficient Multiplexed Integration of Synergistic Alleles and Metabolic Pathways in Yeasts via CRISPR-Cas. Cell Syst, 2015. 1(1): p. 88-96. 67.Slaymaker, I.M., et al., Rationally engineered Cas9 nucleases with improved specificity. Science, 2016. 351(6268): p. 84-8. 68.Hirotsu, N., et al., Protocol: a simple gel-free method for SNP genotyping using allele-specific primers in rice and other plant species. Plant Methods, 2010. 6. 69.Lang, G.I. and A.W. Murray, Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae. Genetics, 2008. 178(1): p. 67-82. 70.Kvitek, D.J. and G. Sherlock, Reciprocal sign epistasis between frequently experimentally evolved adaptive mutations causes a rugged fitness landscape. PLoS Genet, 2011. 7(4): p. e1002056. 71.Leach, M.D., et al., Fungal Hsp90: a biological transistor that tunes cellular outputs to thermal inputs. Nature Reviews Microbiology, 2012. 10(10): p. 693-704. 72.Stark, C., et al., BioGRID: a general repository for interaction datasets. Nucleic Acids Res, 2006. 34(Database issue): p. D535-9. 73.Raman, K. and A. Wagner, Evolvability and robustness in a complex signalling circuit. Mol Biosyst, 2011. 7(4): p. 1081-92. 74.Kirschner, M. and J. Gerhart, Evolvability. Proc Natl Acad Sci U S A, 1998. 95(15): p. 8420-7. 75.Ronshaugen, M., N. McGinnis, and W. McGinnis, Hox protein mutation and macroevolution of the insect body plan. Nature, 2002. 415(6874): p. 914-7. 76.Rebeiz, M., N.H. Patel, and V.F. Hinman, Unraveling the Tangled Skein: The Evolution of Transcriptional Regulatory Networks in Development. Annu Rev Genomics Hum Genet, 2015. 16: p. 103-31. 77.Lynch, V.J. and G.P. Wagner, Resurrecting the role of transcription factor change in developmental evolution. Evolution, 2008. 62(9): p. 2131-54. 78.Maheshwari, S. and D.A. Barbash, The genetics of hybrid incompatibilities. Annu Rev Genet, 2011. 45: p. 331-55. 79.Genest, O., et al., Uncovering a Region of Heat Shock Protein 90 Important for Client Binding in E. coli and Chaperone Function in Yeast. Molecular Cell, 2013. 49(3): p. 464-473. 80.Rajon, E. and J. Masel, Compensatory evolution and the origins of innovations. Genetics, 2013. 193(4): p. 1209-20. 81.Huang, J.L., Horizontal gene transfer in eukaryotes: The weak-link model. Bioessays, 2013. 35(10): p. 868-875. 82.Husnik, F. and J.P. McCutcheon, Functional horizontal gene transfer from bacteria to eukaryotes. Nature Reviews Microbiology, 2018. 16(2): p. 67-79. 83.Bergman, A. and M.L. Siegal, Evolutionary capacitance as a general feature of complex gene networks. Nature, 2003. 424(6948): p. 549-552. 84.Ferrer, M., et al., Chaperonins govern growth of Escherichia coli at low temperatures. Nature Biotechnology, 2003. 21(11): p. 1266-1267. 85.Lind, P.A., et al., Compensatory gene amplification restores fitness after inter-species gene replacements. Mol Microbiol, 2010. 75(5): p. 1078-89. 86.Kacar, B., et al., Functional Constraints on Replacing an Essential Gene with Its Ancient and Modern Homologs. MBio, 2017. 8(4). 87.Kacar, B., et al., Experimental Evolution of Escherichia coli Harboring an Ancient Translation Protein. J Mol Evol, 2017. 84(2-3): p. 69-84. 88.Pavlicev, M. and G.P. Wagner, A model of developmental evolution: selection, pleiotropy and compensation. Trends Ecol Evol, 2012. 27(6): p. 316-22. 89.Dalal, C.K. and A.D. Johnson, How transcription circuits explore alternative architectures while maintaining overall circuit output. Genes & Development, 2017. 31(14): p. 1397-1405. 90.Wagner, G.P. and V.J. Lynch, The gene regulatory logic of transcription factor evolution. Trends Ecol Evol, 2008. 23(7): p. 377-85. 91.Lenski, R.E., et al., The evolutionary origin of complex features. Nature, 2003. 423(6936): p. 139-44. 92.Covert, A.W., 3rd, et al., Experiments on the role of deleterious mutations as stepping stones in adaptive evolution. Proc Natl Acad Sci U S A, 2013. 110(34): p. E3171-8.
|