(3.230.76.48) 您好!臺灣時間:2021/04/12 14:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林宛宜
研究生(外文):Wan-Yi Lin
論文名稱:探討巴豆苷對於樹狀細胞功能之影響及其於治療膠原蛋白誘導關節炎小鼠之應用
論文名稱(外文):Study the Effects of Crotonoside on Dendritic Cells Functions and Its Application in Treating Collagen-Induced Arthritis in Mice
指導教授:林季千
指導教授(外文):Chi-Chien Lin
口試委員:陳與國蔡蕙芸
口試日期:2019-01-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:38
中文關鍵詞:樹突細胞巴豆苷類風濕性關節炎膠原蛋白誘導關節炎小鼠
外文關鍵詞:Dendritic cellsCrotonosideRheumatoid arthritisCollagen-induced arthritis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:51
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
樹突細胞為抗原呈現細胞 (Antigen Presenting Cells, APC) 作為先天免疫及後天免疫之橋梁,因此樹狀細胞被認為是在免疫調控發展過程中的一個主要調控對象。而本計畫主要探討巴豆苷 (crotonoside) 於受脂多醣體 (Lipopolysaccharide, LPS) 活化小鼠骨髓轉化樹狀細胞之作用及其治療於類風溼性關節炎小鼠之功效。而結果發現crotonoside能抑制LPS誘導樹突細胞所分泌的細胞激素,TNF-α、IL-6、IL-12 p40以及一氧化氮釋放和活性氧的表現,同時也降低了表面共刺激分子CD80和CD86。進一步探討其分子機制,研究發現crotonoside能抑制LPS誘導的MAPKs-p38及ERK磷酸化並減少NF-κB入核的情形。而探討crotonoside於第二型膠原蛋白誘導關節炎小鼠治療之功效實驗,結果發現crotonoside可減緩關節炎小鼠關節腫脹的情形,並且減少淋巴結細胞中功效性Th1細胞及增加調節性Treg細胞的比例。總結來說,此次的結果首度發現crotonoside能調節樹突細胞活化並且在關節炎小鼠模式上具有減緩其病症之功效,結果顯示crotonoside具有發展成為治療人類類風濕性關節炎的藥物潛力。
Dendritic cells are antigen-presenting cells (APCs) as a bridge between innate immunity and adaptive immunity, therefore dendritic cells are considered to be a major regulatory target in the development of immunomodulatory. This study is mainly to investigate the effect of crotonoside on the lipopolysaccharide (LPS) induced maturation of murine bone marrow-derived dendritic cells (BMDCs) and treatment collagen induced arthritis mice. This result discovered that crotonoside inhibits LPS-induce cytokines secreted by BMDCs, TNF-α, IL-6, IL-12 p40, and the release of nitric oxide and reactive oxygen species. At the same time, crotonosdie were also reduction the co-stimulatory molecules CD80 and CD86. Further confirming its molecular mechanism, crotonoside can inhibit the activation of MAPKs-p38 and ERK induced by LPS-stimulated BMDCs and inhibit NF-κB pathway into the nucleus. Further investigate its molecular mechanism, crotonoside can inhibit the activation of MAPKs induced by LPS-stimulated BMDCs and inhibit NF-κB pathway into the nucleus. To investigate the effect of crotonoside in the treatment of type 2 collagen-induced arthritis mice, it was found that crotonoside can slow the joint swelling of arthritic mice and reduce the proportion of Th1 cells and increase level of regulatory Treg cells in lymph node cells. In summary, this result was first time found that crotonoside can regulate dendritic cell maturation and has the efficacy in the arthritic mouse model, suggesting that crotonoside has the potential to develop into a drug for the treatment of human rheumatoid arthritis.
第一章、緒論 1
1. 免疫系統中的樹突細胞 (Dendritic cell in immune system) 1
2. 自體免疫疾病 (Autoimmune disease, AID) 3
3. 類風溼性關節炎 (Rheumatoid arthritis, RA) 4
4. 樹突細胞與類風溼性關節炎之橋樑 4
5. 巴豆植物-天然化合物糖苷類 5
6. 研究動機 (Motivation) 6
7. 實驗架構 6
第二章、材料方法 7
1. 小鼠骨髓分化樹突細胞培養 7
2. 細胞存活率分析 7
3. 細胞激素釋放分析 (Enzyme-linked immunosorbent assay, ELISA) 8
4. 一氧化氮檢測 8
5. 細胞表面抗原之分析 9
6. 活性氧能力分析 9
7. 西方墨點法 10
8. 核質分離及NF-κB p65 活性分析 12
9. 第二型膠原蛋白誘導之關節炎小鼠模式 (Collagen-induced arthritis) 12
10. 血清抗體分析 14
11. 細胞內細胞激素染色分析 14
12. 統計分析 15
第三章、 實驗結果 16
1. 評估天然化合物於受到LPS刺激之小鼠骨髓分化之樹突細胞的免疫調節能力 16
2. 評估天然化合物對於樹突細胞的細胞毒性 17
3. 評估Crotonoside對於樹突細胞的免疫調節可能性 17
4. Crotonoside能抑制LPS誘導樹突細胞活化所表現的共激分子 17
5. Crotonoside能抑制LPS誘導樹突細胞活化所表現活性氧的能力 18
6. Crotonoside能抑制LPS誘導樹突細胞活化所表現MAPK, NF-κB 18
7. Crotonoside能減緩第二型膠原蛋白誘導關節炎的小鼠模式 18
8. Crotonoside不會影響第二型膠原蛋白特異性IgG的表現量 19
9. Crotonoside能增加關節炎小鼠淋巴結內調節性T細胞的數目 (Treg) 並且減少CD4+ T細胞IFN-ϒ之表現 19
第四章、 討論 20
第五章、 參考文獻 23
第六章、圖表 28
圖一、分析天然物在LPS誘導之小鼠骨髓分化樹突細胞的免疫調節能力 28
圖二、Crotonoside於小鼠骨髓分化之樹突細胞的毒性影響 29
圖三、 Crotonoside 抑制LPS刺激小鼠骨髓誘導樹突細胞的免疫調節能力 30
圖四、抑制LPS刺激小鼠骨髓誘導樹突細胞活化所表現之共激分子 31
圖五、Crotonoside能抑制LPS刺激小鼠骨髓誘導樹突細胞活化所表現活性氧的能力 32
圖六、Crotonoside能抑制LPS刺激小鼠骨髓誘導樹突細胞活化時MAPK、p-JNK及NF-κB活化路徑 34
圖七、Crotonoside能減緩第二型膠原蛋白誘導關節炎的小鼠模式 36
圖八、Crotonoside能增加關節炎小鼠淋巴結CD4+T細胞CD25且減少CD4+ T細胞IFN-ϒ之表現 38
1.Selsted, M.E. and A.J. Ouellette, Mammalian defensins in the antimicrobial immune response. Nat Immunol, 2005. 6(6): p. 551-7.
2.Marshall, J.S., et al., An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol, 2018. 14(Suppl 2): p. 49.
3.Toskala, E., Immunology. Int Forum Allergy Rhinol, 2014. 4 Suppl 2: p. S21-7.
4.Vieira, G.F. and J.A. Chies, Immunodominant viral peptides as determinants of cross-reactivity in the immune system--Can we develop wide spectrum viral vaccines? Med Hypotheses, 2005. 65(5): p. 873-9.
5.Ginglen, J.G. and M.Q. Doyle, Immunization, in StatPearls. 2018: Treasure Island (FL).
6.Steinman, R.M., et al., Identification of a novel cell type in peripheral lymphoid organs of mice. V. Purification of spleen dendritic cells, new surface markers, and maintenance in vitro. J Exp Med, 1979. 149(1): p. 1-16.
7.Inaba, K. and R.M. Steinman, Protein-specific helper T-lymphocyte formation initiated by dendritic cells. Science, 1985. 229(4712): p. 475-9.
8.Auray, G., et al., Involvement of intestinal epithelial cells in dendritic cell recruitment during C. parvum infection. Microbes Infect, 2007. 9(5): p. 574-82.
9.Collin, M., N. McGovern, and M. Haniffa, Human dendritic cell subsets. Immunology, 2013. 140(1): p. 22-30.
10.Boes, M., et al., T cells induce extended class II MHC compartments in dendritic cells in a Toll-like receptor-dependent manner. J Immunol, 2003. 171(8): p. 4081-8.
11.Schmalstieg, F.C., Jr. and A.S. Goldman, Ilya Ilich Metchnikoff (1845-1915) and Paul Ehrlich (1854-1915): the centennial of the 1908 Nobel Prize in Physiology or Medicine. J Med Biogr, 2008. 16(2): p. 96-103.
12.Daniel, C., et al., Immune modulatory treatment of trinitrobenzene sulfonic acid colitis with calcitriol is associated with a change of a T helper (Th) 1/Th17 to a Th2 and regulatory T cell profile. J Pharmacol Exp Ther, 2008. 324(1): p. 23-33.
13.Ezepchuk, Y.V. and D.V. Kolybo, Nobel laureate Ilya I. Metchnikoff (1845-1916). Life story and scientific heritage. Ukr Biochem J, 2016. 88(6): p. 98-109.
14.Hall, C.L., et al., Passive transfer of autoimmune disease with isologous IgG1 and IgG2 antibodies to the tubular basement membrane in strain XIII guinea pigs: loss of self-tolerance induced by autoantibodies. J Exp Med, 1977. 146(5): p. 1246-60.
15.Parks, C.G., et al., Expert panel workshop consensus statement on the role of the environment in the development of autoimmune disease. Int J Mol Sci, 2014. 15(8): p. 14269-97.
16.Annunziato, F., C. Romagnani, and S. Romagnani, The 3 major types of innate and adaptive cell-mediated effector immunity. J Allergy Clin Immunol, 2015. 135(3): p. 626-35.
17.Cordova, E., D. Cecchini, and C. Rodriguez, Potential drug-drug interactions in HIV-perinatally infected adolescents on antiretroviral therapy in Buenos Aires, Argentina. J Int AIDS Soc, 2014. 17(4 Suppl 3): p. 19764.
18.Lim, C.H., et al., One-Year Tuberculosis Risk in Rheumatoid Arthritis Patients Starting Their First Tumor Necrosis Factor Inhibitor Therapy from 2008 to 2012 in Taiwan: A Nationwide Population-Based Cohort Study. PLoS One, 2016. 11(11): p. e0166339.
19.Maes, H.H., J.E. Causse, and R.F. Maes, Tuberculosis I: a conceptual frame for the immunopathology of the disease. Med Hypotheses, 1999. 52(6): p. 583-93.
20.Gebauer, E. and G. Vijatov, [Idiopathic thrombocytopenic purpura in children]. Med Pregl, 1998. 51(3-4): p. 127-34.
21.McInnes, I.B. and G. Schett, The pathogenesis of rheumatoid arthritis. N Engl J Med, 2011. 365(23): p. 2205-19.
22.Shi, Q., et al., Estimating the response and economic burden of rheumatoid arthritis patients treated with biologic disease-modifying antirheumatic drugs in Taiwan using the National Health Insurance Research Database (NHIRD). PLoS One, 2018. 13(4): p. e0193489.
23.Manganelli, P. and W. Troise Rioda, [Weekly low-dose methotrexate in rheumatoid arthritis. Review of the literature]. Minerva Med, 1993. 84(10): p. 541-52.
24.Jiang, L., N. Zhao, and L. Ni, [Retrospective study of adverse events in patients with rheumatoid arthritis treated with second-line drugs]. Zhonghua Liu Xing Bing Xue Za Zhi, 2002. 23(3): p. 213-7.
25.Ho, L.J. and J.H. Lai, Chinese herbs as immunomodulators and potential disease-modifying antirheumatic drugs in autoimmune disorders. Curr Drug Metab, 2004. 5(2): p. 181-92.
26.Lebre, M.C. and P.P. Tak, Dendritic cell subsets: their roles in rheumatoid arthritis. Acta Reumatol Port, 2008. 33(1): p. 35-45.
27.Yu, M.B. and W.H.R. Langridge, The function of myeloid dendritic cells in rheumatoid arthritis. Rheumatol Int, 2017. 37(7): p. 1043-1051.
28.Santiago-Schwarz, F., et al., Dendritic cells (DCs) in rheumatoid arthritis (RA): progenitor cells and soluble factors contained in RA synovial fluid yield a subset of myeloid DCs that preferentially activate Th1 inflammatory-type responses. J Immunol, 2001. 167(3): p. 1758-68.
29.All natural. Nat Chem Biol, 2007. 3(7): p. 351.
30.Beutler, J.A., Natural Products as a Foundation for Drug Discovery. Curr Protoc Pharmacol, 2009. 46: p. 9 11 1-9 11 21.
31.Bernardini, S., et al., Natural products for human health: an historical overview of the drug discovery approaches. Nat Prod Res, 2018. 32(16): p. 1926-1950.
32.Dias, D.A., S. Urban, and U. Roessner, A historical overview of natural products in drug discovery. Metabolites, 2012. 2(2): p. 303-36.
33.Chabert, P., B. Attioua, and R. Brouillard, Croton lobatus, an African medicinal plant: spectroscopic and chemical elucidation of its many constituents. Biofactors, 2006. 27(1-4): p. 69-78.
34.Xu, W.H., W.Y. Liu, and Q. Liang, Chemical Constituents from Croton Species and Their Biological Activities. Molecules, 2018. 23(9).
35.Haynes, L.J. and F.H. Newth, The glycosyl halides and their derivatives. Adv Carbohydr Chem, 1955. 10: p. 207-56.
36.Stimac, A. and J. Kobe, Stereoselective synthesis of 1,2-cis- and 2-deoxyglycofuranosyl azides from glycosyl halides. Carbohydr Res, 2000. 329(2): p. 317-24.
37.John Davoll., A Synthesis of Crotonoside. J. Am. Chem. Soc., 1951, 73 (7), p. 3174–3176
38.Yan, P., et al., Pharmacokinetics and tissue distribution of crotonoside. Xenobiotica, 2018. 48(1): p. 28-36.
39.Lin, H.C., et al., Antidermatophytic Activity of Ethanolic Extract from Croton tiglium. Biomed Res Int, 2016. 2016: p. 3237586.
40.Li, Y.Z., et al., Crotonoside exhibits selective post-inhibition effect in AML cells via inhibition of FLT3 and HDAC3/6. Oncotarget, 2017. 8(61): p. 103087-103099.
41.Lee, W.J., et al., The establishment of a porcine rheumatoid arthritis model: Collagen induced arthritis minipig model. J Pharmacol Sci, 2016. 132(1): p. 41-47.
42.Swardfager, W., et al., A meta-analysis of cytokines in Alzheimer''s disease. Biol Psychiatry, 2010. 68(10): p. 930-41.
43.van der Merwe, P.A., et al., CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. J Exp Med, 1997. 185(3): p. 393-403.
44.Nengwen, K., A. Su, and L. Youping, Expression of CD80 on cultured neonatal mice cardiomyocytes and attenuation of cytotoxic T lymphocyte-mediated lysis. Transplant Proc, 2014. 46(1): p. 266-70.
45.Pentcheva-Hoang, T., et al., B7-1 and B7-2 selectively recruit CTLA-4 and CD28 to the immunological synapse. Immunity, 2004. 21(3): p. 401-13.
46.Agadjanyan, M.G., et al., CD86 (B7-2) can function to drive MHC-restricted antigen-specific CTL responses in vivo. J Immunol, 1999. 162(6): p. 3417-27.
47.Rotte, A., et al., Effect of bacterial lipopolysaccharide on Na(+)/H(+) exchanger activity in dendritic cells. Cell Physiol Biochem, 2010. 26(4-5): p. 553-62.
48.Matsue, H., et al., Generation and function of reactive oxygen species in dendritic cells during antigen presentation. J Immunol, 2003. 171(6): p. 3010-8.
49.George-Chandy, A., et al., Th17 development and autoimmune arthritis in the absence of reactive oxygen species. Eur J Immunol, 2008. 38(4): p. 1118-26.
50.Park, K.H., et al., Treatment of Collagen-Induced Arthritis Using Immune Modulatory Properties of Human Mesenchymal Stem Cells. Cell Transplant, 2016. 25(6): p. 1057-72.
51.Bevaart, L., M.J. Vervoordeldonk, and P.P. Tak, Evaluation of therapeutic targets in animal models of arthritis: how does it relate to rheumatoid arthritis? Arthritis Rheum, 2010. 62(8): p. 2192-205.
52.Cooles, F.A., J.D. Isaacs, and A.E. Anderson, Treg cells in rheumatoid arthritis: an update. Curr Rheumatol Rep, 2013. 15(9): p. 352.
53.Chen, W., et al., Apremilast Ameliorates Experimental Arthritis via Suppression of Th1 and Th17 Cells and Enhancement of CD4(+)Foxp3(+) Regulatory T Cells Differentiation. Front Immunol, 2018. 9: p. 1662.
54.Bonham, C.A., et al., Generation of nitric oxide by mouse dendritic cells and its implications for immune response regulation. Adv Exp Med Biol, 1997. 417: p. 283-90.
55.Lu, L., et al., Induction of nitric oxide synthase in mouse dendritic cells by IFN-gamma, endotoxin, and interaction with allogeneic T cells: nitric oxide production is associated with dendritic cell apoptosis. J Immunol, 1996. 157(8): p. 3577-86.
56.Si, C., et al., Dendritic cell-derived nitric oxide inhibits the differentiation of effector dendritic cells. Oncotarget, 2016. 7(46): p. 74834-74845.
57.Bogdan, C., Nitric oxide and the immune response. Nat Immunol, 2001. 2(10): p. 907-16.
58.Robays, L.J., et al., Between a cough and a wheeze: dendritic cells at the nexus of tobacco smoke-induced allergic airway sensitization. Mucosal Immunol, 2009. 2(3): p. 206-19.
59.Branger, J., et al., Anti-inflammatory effects of a p38 mitogen-activated protein kinase inhibitor during human endotoxemia. J Immunol, 2002. 168(8): p. 4070-7.
60.Chen, J., et al., Dopamine promotes striatal neuronal apoptotic death via ERK signaling cascades. Eur J Neurosci, 2009. 29(2): p. 287-306.
61.Thiel, M.J., et al., Central role of the MEK/ERK MAP kinase pathway in a mouse model of rheumatoid arthritis: potential proinflammatory mechanisms. Arthritis Rheum, 2007. 56(10): p. 3347-57.
62.Mellado, M., et al., T Cell Migration in Rheumatoid Arthritis. Front Immunol, 2015. 6: p. 384.
63.van Hamburg, J.P. and S.W. Tas, Molecular mechanisms underpinning T helper 17 cell heterogeneity and functions in rheumatoid arthritis. J Autoimmun, 2018. 87: p. 69-81.
64.Kugyelka, R., et al., Enigma of IL-17 and Th17 Cells in Rheumatoid Arthritis and in Autoimmune Animal Models of Arthritis. Mediators Inflamm, 2016. 2016: p. 6145810.
65.Gol-Ara, M., et al., The role of different subsets of regulatory T cells in immunopathogenesis of rheumatoid arthritis. Arthritis, 2012. 2012: p. 805875.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔