(3.236.231.14) 您好!臺灣時間:2021/04/11 23:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林冠宇
研究生(外文):Guan-Yu Lin
論文名稱:不同預處理對球墨鑄鐵軟氮化處理的影響
論文名稱(外文):A study on nitrocarburing of graphite cast iron with different pretreatment
指導教授:吳威德吳威德引用關係
口試委員:林宏茂謝之駿
口試日期:2018-11-28
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:75
中文關鍵詞:球墨鑄鐵氣體軟氮化多孔層珠擊磷酸鹽處理
外文關鍵詞:Graphite cast ironNitrocarburingPorous layerShot peeningPhosphate treatment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:64
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討球墨鑄鐵FCD550進行氮化反應前經過不同的預處理,包含珠擊與磷酸鹽處理,對氮化製程效果的影響。首先選擇適當的氮化溫度,選定後將鑄鐵在氮化前以不同尺寸的鋼珠對表面進行珠擊,再進行氮化製程;磷酸鹽預處理的部分則是以磷酸鋅預處理15分鐘、磷酸錳預處理15分鐘和磷酸錳預處理30分鐘,共3種磷酸鹽處理條件,再進行氮化製程。檢測方法則分別是使用微克氏硬度機(Vickers hardness tester)檢測表面硬度和截面硬度分布曲線、X-ray繞射測量儀(XRD)檢測其結晶相種類、金相顯微鏡(OM)進行微觀組織的分析和孔隙率的探討、表面粗度計(Surfcom)檢測珠擊過後的表面粗糙度、應力量測儀(Stress Mea- surement System)檢測珠擊過後產生的壓應力。
針對球墨鑄鐵FCD550,藉由選用三種不同的溫度參數進行氮化製程測試,結果發現在530℃的氮化條件下,可得到最大表面硬度與最低孔隙率。預處理的部分,發現藉由不同珠擊參數進行表面清潔後,使用530℃進行氮化試樣會因為壓應力不同造成不同程度的面粗度,其中0.8mm的鋼珠進行珠擊後的面粗度能些微提升氮化效益。而使用磷酸鹽預處理後再使用530℃進行氮化試樣,會因為不同種類的磷酸鹽處理,而在氮化製程下,產生不同程度的化學反應,而明顯地提升氮化效益,且多孔層較薄。
The purpose for the study was to assess the effects of different Nitriding Pretreatments on the nodular cast iron FCD550, including use the shot peening treatment or phosphate treatment. First of all, testing personnel choose the suitable nitrocarburing temperatures and using different sizes of the steel ball to shot peening (0.15mm, 0.25mm, and 0.8mm steel balls ) the surface of nodular cast iron FCD550 before the cast iron put into Nitriding Pretreatments. Then separately using zinc phosphate for 15 minutes, manganese phosphate for 15 minutes, manganese phosphate for 30 minutes of nodular cast iron FCD550 before the cast iron put into Nitriding Pretreatments.
For shot peening to create six different surface pretreatment conditions, and choose the 530℃ nitrocarburing. Then Vickers Type Tester, X-ray diffraction measuring instrument (XRD), Microscope, surface roughness, shape measuring instrument (Surfcom) and the Stress Measurement System were used for characterization to help figure out the mechanisms
For the graphite cast iron (FCD550), the nitriding process was tested by selecting three different temperature parameters. It was found that the maximum surface hardness and the lowest porosity were obtained under nitriding temperature of 530 °C. In the pretreatment, it was found that sample has different effects on the porous layer after shot peening, and the 0.8 mm steel ball can slightly improve the nitriding efficiency. And in it was found that different phosphate treatment before nitriding have different resulted. The results showed that the phosphate treated sample improves nitriding efficiency and makes the porous layer thinner
總目錄
摘要 i
Abstract ii
總目錄 iii
圖目錄 vi
表目錄 ix
第一章 前言 1
1-1前言 1
1-2實驗動機 2
第二章 文獻回顧 3
2-1氮化熱處理之介紹與種類彙整 3
2-1-1 氣體氮化 5
2-1-2 氣體軟氮化 5
2-1-3 液體軟氮化 8
2-1-4 離子氮化 8
2-1-5 低壓氮化 9
2-1-6 氮化與軟氮化熱處理之原理差異 9
2-1-7 軟氮化之金相組織 15
2-2球墨鑄鐵簡介 18
2-2-1球墨鑄鐵之性質 18
2-2-2球墨鑄鐵之用途 19
2-3氮化前的加工與預處理介紹 19
2-3-1氮化前的工序 19
2-3-2可能產生的汙染 20
2-3-3常用之預處理探討 22
2-3-4珠擊處理 23
2-3-5磷酸鹽處理 24
2-4 應力檢測原理簡介 25
第三章 實驗步驟與方法 26
3-1實驗架構與流程 26
3-2樣品製備 27
3-3軟氮化設備與溫度變數試樣 27
3-4珠擊變數施作與氮化試樣 29
3-5磷酸鹽處理變數施作與氮化試樣 30
3-6分析方法 30
3-6-1鋼和鐵氮化深度量測方法介紹 30
3-6-2顯微硬度量測 31
3-6-3光學顯微鏡觀察 32
3-6-4 XRD量測 32
3-6-5珠擊前後殘留應力量測 33
3-6-6珠擊前後表面粗糙度量測 33
第四章 結果與結論 34
4-1溫度變數之影響分析 34
4-1-1表面硬度量測分析 34
4-1-2硬化深度量測與討論 36
4-1-3金相觀察與討論 40
4-1-4 XRD量測分析 45
4-2珠擊變數之影響分析 46
4-2-1氮化前殘留應力分析與面粗度檢測 46
4-2-2表面硬度量測分析 47
4-2-3硬化深度量測與討論 48
4-2-4金相觀察與討論 52
4-3磷酸鹽處理變數之影響分析 56
4-3-1表面硬度量測分析 56
4-3-2硬化深度量測與討論 58
4-3-3金相觀察與討論 62
4-3-4 XRD量測與討論 66
第五章. 結論 69
參考文獻 70
參考文獻
[1]W. L. Chen, C. L. Wu, Z. R. Liu, S. Ni, Y. Hong, Y. Zhang, and J. H. Chen, "Phase transformations in the nitrocarburizing surface of carbon steels revisited by microstructure and property characterizations", ScienceDirect, Vol. 61, pp. 3963-3972, 2013.
[2]黃振賢,金屬熱處理,新文京開發出版有限公司,第158-159頁,2002年。
[3]T. B. Massalski(Editor-in-Chief), Binary alloy phase diagrams, 2nd edition, Vol. 1, 1990.
[4]H. A. Wriedt, N. A. Gokcen, and R. H. Nafziger, “The Fe–N (iron–nitrogen) system,” bull alloy phase diagrams, Vol. 8, pp. 355–377, 1987.
[5]T. Bell, H. W. Bergmann, J. Lanagan, P. H. Morton, “A. M. surface engineering of titanium with nitrogen,” Surface engineering, Vol. 2, pp. 133-143, 1986.
[6]C. H. Knerr, T. C. Rose, Filkowski, Gas nitriding in ASM handbook : heat treating, Vol. 4, ASM International, USA, pp. 387-409, 1991.
[7]E. J. Mittemeijer, Fundamentals of nitriding and nitrocarburizing, Vol. 4A, ASM International, USA, pp. 619-646, 2013.
[8]H. J. Grabke, “Adsorption, segregation and reactions of non-metal atoms on iron surface,” Materials science engineering, Vol. 42, pp. 91-99, 1980.
[9]S. S. Hosmani, R. E. Schacherl, E. J. Mittemeijer, Phase composition and pore formation, 3th ED., HTM Journal of heat treatment and materials, German, pp. 139-146, 2008.
[10]P. B. Friehing and M. A. J. Somers, “On the effect of pre-oxidation on the nitriding kinetics,” Scrience engineering, Vol. 16, pp. 103-106, 2000.
[11]L. Ge, N. Tian, Z. Lu, C. You, “Influence of the surface nanocrystallization on the gas nitriding of Ti-6Al-4V alloy,” Applied surface science, Vol. 286, pp. 412-416, 2013.
[12]J. R. Davis, Surface harding of steels, 1st ED., ASM International, USA, pp. 141-187, 2002.
[13]S. Mridha and D. H. Jack, “Characterization of nitrided 3% chromium steel,” Metropolitan science, Vol. 16, pp. 398-404, 1982.
[14]S. Mridha and D. H. Jack, “Etching techniques for nitrided irons and steels,” Metallography, Vol. 15, pp. 163-175, 1982.
[15]T. Staines, “Low temperature thermochemical treatments,” Surface engineering, Vol. 26, pp. 97-102, 2010.
[16]M. Yang and R. Sisson, “Alloy effect on the gas nitriding process,” Journal of materials engineering and performance, Vol. 23, pp. 4181-4186, 2014.
[17]P. Kochmanski and J. Nowacki, “Influence of initial heat treatment of 17-4 PH stainless steel on gas nitriding kinetics,” Surface and coatings technology, Vol. 19, pp. 4834-4838, 2008.
[18]S. Mridha and A. Khan, “ The effect of process variables on the hardness of nitrided 3% chromium steel,” Journal of materials processing technology, Vol. 201, pp. 325-330, 2008.
[19]C. Zheng, Y. Liu, H. Wang, H. Zhu, R. Ji, Z. Liu, Y. Shen, “Research on the effect of gas nitriding treatment on the wear resistance of ball seat used in multistage fracturing,” Materials and design, Vol. 70, pp. 45-52, 2015.
[20]M. A. J. Somers, Development of compound layer and diffusion zone during nitriding and nitrocarburizing of iron and steels, technical university of denmark, kgs. lyngby, denmark, pp. 413-437, 2014.
[21]M. A. J. Somers, “Heat Treatment,” Metron, Vol. 27, pp. 92-102, 2000.
[22]S. Hashmi, Comprehensive materials finishing, 2nd Ed., Elsevier science ltd., Canada, pp. 111, 2016.
[23]M. A. J. Somers and E. J. Mittemeijer, “Harterei-Tech,” MITT, Vol. 47, pp. 5-13, 1992.
[24]由辰、華大森、王志奇、陳民芳,“幾種鋼軟氮化層組織及性能研究”,天津冶金,第四期,2000年。
[25]H. Gohring, A. Leineweber, and E. J. Mittemeijer, “The α+ε two-phase equilibrium in the Fe-N-C system : experimental investigations and thermodynamic calculations,” Metallurgical and materials transactions A, Vol. 47A, pp. 4411-4424, 2016.
[26]A. P. D. A. Manfridini, G. C. D. D. Godoy, and L. D. A. Santos , “Structural characterization of plasma nitrided interstitial-free steel at different temperatures by SEM, XRD and rietveld method,” Journal of materials research and technology, Vol. 6, pp. 65-70, 2017.
[27]M. Division, “Some observations on the production of low porosity ε phase iron carbonitride surface layers on ferrous materials, ” Thin solid films, Vol. 128, pp. L33-L66, 1985.
[28]X. C. Xiong, A. Redjaïmia, and M. Gouné, “Transmission electron microscopy investigation of acicular ferrite precipitation in γ′-Fe4N nitride,” Materialscha racterization, Vol. 61, pp. 1245–1251, 2010.
[29]A. Celik, S. Karadeniz, “Investigation of compound layer formed during ion nitriding of AISI 4140 steel, ” Surface and coatings technology, Vol. 80, pp. 283-286, 1996.
[30]左時燕、周偉、況勛、楊凌平 ”模具氮化及軟氮化白亮層的控制”,模具製造,1期,第76~80頁,2015年。
[31]S. Karaoglu, “Structural characterization and wear behavior of plasma-nitrided AISI 5140 low-alloy steel,” Materials characterization, Vol. 49, pp. 349-357, 2003.
[32]K. Mukherjee, S. Fæster, N. Hansen, A. B. Dahl, G. Gundlach, J. O. Frandsen, and A. Sturlason, “Graphite nodules in fatigue-tested cast iron characterized in 2D and 3D,” Materials characterization, Vol. 129, pp. 169-178, 2017.
[33]B. Guillot, S. Jégou, and L. Barrallier, Influence of strain hardening on gaseous nitriding of steels conference proceedings of the 23rd International federation of heat treatments and surface engineering congress, Savannah, United States, pp. 629–635, 2016.
[34]C. H. Bartholomew, “Mechanisms of catalyst deactivation,” Applied catalysis A: General, Vol. 212, pp. 17–60, 2001.
[35]B. Guillot, S. Jégou, and L. Barrallier, “Degradtion of gaseous nitriding of steel by lubricant contamination - Effect of in-situ pre-treatments,” Surface & coatings technology, Vol. 316, pp. 59-70, 2017.
[36]H. J. Grabke, “Kinetics of gas-solid interactions,” Materials science forum, Vol. 154, pp. 69–86, 1994.
[37]W. Arabczyk, D. Moszynski, U. Narkiewicz, Rafal Pelka, and M. Podsiadly, “Poisoning of iron catalyst by sulfur,” ScienceDirect, Vol. 124, pp. 43-48, 2007.
[38]Z. S. Birky, Optimizing surface activation for repeatable compound layer growth proceedings of the 28th ASM heat treating society conference, Detroit, United States, pp. 588–593, 2015.
[39]P. B. Friehling and M. A. J. Somers, “On the effect of preoxidation on nitriding kinetics,” Surface engineering, Vol. 16, No. 2, pp. 103-106, 2000.
[40]O. Irretier, C. Naber, J. Dong, H. Klümper-Westkamp, B. Haase, and K. Bauckhage, “Influence of contaminants on gas nitriding,” Surface engineering, Vol. 12, pp. 331–334, 1996.
[41]機械工程手冊和電機工程手冊編輯委員會,機械工程手冊8-熱處理與表面處理-精密製造,五南圖書出版公司,第8-14頁,2005年。
[42]S. M. H. Gangaraj, A. Moridi, M. Guagliano, A. Ghidini, and M. Boniardi, “The effect of nitriding, severe shot peening and their combination on the fatigue behavior and micro-structure of a low-alloy steel,” International journal of fatigue, Vol. 62, pp. 67-76, 2014.
[43]柯賢文,表面與薄膜處理技術(第三版),全華圖書股份有限公司,第7-20頁,2012年。
[44]機械工程手冊和電機工程手冊編輯委員會,機械工程手冊8-熱處理與表面處理-精密製造,五南圖書出版公司,第8-56頁,2005年。
[45]李承育、蘇聖皓、錢賢峻、林啓明、吳威德, “不同熱處理條件對AISI304不鏽鋼銲道殘留應力鬆弛影響之研究”,金屬熱處理,136期,第47~54頁,2018。
[46]野末秀和, “2次元検出器を利用したX線回折による残留応力測定手法”, 平成26年度 第二回合SGST定期研究會,名駅サテライト,日本,8月,2014年。
[47]JIS原案作成委員會, “JIS G 0562 鋼和鐵氮化深度量測方法”,日本工業規格,1993年。
[48]JIS原案作成委員會, “Method of Vickers hardness test”,日本工業規格,1992年。
[49]ISO, ”Metallic materials — Vickers hardness test —Part 1:Test method, ”1997.
[50]中國國家標準化管理委員會, “GBT-11354 鋼鐵零件 滲氮層深度測定和金相組織檢驗”,中華人民共和國國家標準,1993年。
[51]山中久彥,窒化法,日刊工業新聞社,第7頁,1976年。
[52]M. Ebrahimi, M. H. Sohi, A. H. Raouf, and F. Mahboubi, “Effect of plasma nitriding temperature on the corrosion behavior of AISI 4140 steel before and after oxidation, ” Surface & coatings technology, Vol. 205, pp. S261-S266, 2010.
[53]王鳳平、譚旭翔,“常溫磷化工藝的熱力學分析”,遼寧師範大學學報 ,第30卷,第1期,2007年。
[54]邵大偉、賀志榮、 張永宏、 何應, “熱浸鍍鋅技術的研究發展”, Material & Heat Treatment,第41卷,第6期,2012年。
[55]M. A. Benvenuto, Metals and alloys, 1stEd., Walter de gruyter gmbH & Co KG, France, pp. 19-88, 2016.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔