跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/10/05 06:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾定瑋
研究生(外文):Ting-Wei Chung
論文名稱:具多孔隙氮化鎵結構綠光發光二極體之光學特性分析
論文名稱(外文):Optical properties of the Green light emitting diodes with porous GaN layer
指導教授:林佳鋒林佳鋒引用關係
指導教授(外文):Chia-Feng Lin
口試委員:薛顯宗賴俊峰
口試委員(外文):Sham-Tsong ShiueChun-Feng Lai
口試日期:2019-07-05
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:36
中文關鍵詞:氮化銦鎵氮化鎵多孔隙
外文關鍵詞:InGaNGaNporous
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用MOCVD磊晶以及選擇性摻雜之技術成長高濃度摻雜矽之氮化鎵於發光二極體結構下方,結構依序為P-GaN、多重量子井、N-GaN、N-GaN:Si(多孔隙氮化鎵層),利用高能量355 nm雷射製作蝕刻走道,定義完成後使用選擇性濕式電化學蝕刻外加適當偏壓形成多孔隙氮化鎵結構,完成後續ITO、金屬電極製程,稱為EC-LED,未經過電化學濕式蝕刻稱為ST-LED。使用FE-SEM以橫截面方向觀察完整磊晶結構,LED結構共有2.17 um, N-GaN之多孔隙平均厚度為2.9 um,孔隙率25%。
電流注入1~40 mA中的光譜中,EC-LED的波長明顯較ST-LED紅移,推斷EC-LED之量子井結構應力增加,在半高寬的表現上,隨著電流的增加,由於熱效應的緣故,ST-LED半高寬均隨著電流變大,EC-LED之熱效應較高電流才出現,EC-LED的半高寬始終小於ST-LED。由拉曼光譜圖中說明多孔隙結構對於氮化鎵層應力釋放是有效果的。藉由低溫電激發光和光激發光螢光光譜中可計算出對於量子井能帶傾斜趨勢,EC-LED之多重量子井結構能帶變小,表示多孔隙結構對於多重量子井之應力是增加的。
第1章、 序論 1
1-1 照明技術發展歷史 2
1-2 發光二極體之發光原理 3
1-3 壓電場(Piezoelectric field) 5
1-4 研究動機 6
第2章、 文獻回顧 7
2-1 電化學濕式蝕刻回顧 7
2-2 奈米多孔隙回顧 9
第3章、 實驗步驟與方法 12
3-1 實驗設計與流程 12
3-2 樣品製備儀器 13
3-2-1 雷射切割系統 (Laser Scribing System) 13
3-2-2 電化學濕式蝕刻系統(Electrochemical Wet Etching System) 14
3-2-3 樣品製備流程 15
3-3 分析儀器與方法 16
3-3-1 光學顯微鏡 16
3-3-2 多功能聚焦離子束系統(Focus Ion Beam , FIB) 17
3-3-3 雷射光激發螢光光譜(Photoluminescence, PL) 18
3-3-4 電激發螢光光譜(Electroluminescence, EL) 19
3-3-5 角度解析光系統 20
3-3-6 低溫探針系統 21
第4章、 實驗結果與討論 22
4-1 光學顯微鏡(OM)觀察電化學蝕刻之表面 22
4-2 多孔隙氮化鎵之綠光發光二極體顯微結構分析 23
4-3 多孔隙之綠光發光二極體光激發螢光光譜分析 24
4-4 氮化鎵綠光發光二極體角度解析電激發螢光光譜分析 25
4-5 多孔隙之綠光發光二極體電激發螢光光譜分析 27
4-6 多孔隙之綠光發光二極體電注入光強度分布分析 29
4-7 拉曼光譜分析(Raman Spectroscopy) 30
4-8 多孔隙之綠光發光二極體變溫偏壓光激與電激光譜 31
第5章、 結論 34
5-1 結論 34
參考文獻 35
[1]D. F.Albeanu, E.Soucy, T. F.Sato, M.Meister, andV. N.Murthy, “LED arrays as cost effective and efficient light sources for widefield microscopy,” PLoS One, vol. 3, no. 5, pp. 1–7, 2008.
[2]H.J.Round, “A note on carborundum,” Electr. word, vol. 49, p. 309, 1907.
[3]N.Holonyak andS. F.Bevacqua, “Coherent (visible) light emission from Ga(As1-xPx) junctions,” Appl. Phys. Lett., vol. 1, no. 4, pp. 82–83, 1962.
[4]N. I. and S. N.Shuji Nakamura, Masayuki Senoh, “High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures,” Jpn. J. Appl. Phys., vol. 34, no. 7A, pp. 797–779, 1995.
[5]郭浩中,賴芳儀郭守義, “LED原理與應用,” 五南圖書出版股份有限公司.
[6]I.Vurgaftman, J. R.Meyer, andL. R.Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys., vol. 89, no. 11 I, pp. 5815–5875, 2001.
[7]Chia-hsuan Hu, “Surface characterizations of GaN nanostructure grown on γ -LiAlO2 substrate by plasma-assisted MBE,” Natl. Sun Yat-sen Univ., 2009.
[8]T.Takeuchi et al., “Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells,” Jpn. J. Appl. Phys., vol. 36, no. Part 2, No. 4A, pp. L382–L385, 1997.
[9]M.Thesis andZ.Chen, “Study of high Indium composition InGaN/GaN quantum wells grown on GaN-template by plasma-assisted MBE,” no. August, 2013.
[10]D.Chen, H.Xiao, andJ.Han, “Nanopores in GaN by electrochemical anodization in hydrofluoric acid: Formation and mechanism,” J. Appl. Phys., vol. 112, no. 6, 2012.
[11]C.Zhang et al., “Mesoporous GaN for Photonic Engineering-Highly Reflective GaN Mirrors as an Example,” ACS Photonics, vol. 2, no. 7, pp. 980–986, 2015.
[12]G.Yuan, K.Xiong, C.Zhang, Y.Li, andJ.Han, “Optical Engineering of Modal Gain in a III-Nitride Laser with Nanoporous GaN,” ACS Photonics, vol. 3, no. 9, pp. 1604–1610, 2016.
[13]H. P.Springbett et al., “Improvement of single photon emission from InGaN QDs embedded in porous micropillars,” Appl. Phys. Lett., vol. 113, no. 10, 2018.
[14]C.Yang et al., “Light Modulation and Water Splitting Enhancement Using a Composite Porous GaN Structure,” ACS Appl. Mater. Interfaces, vol. 10, no. 6, pp. 5492–5497, 2018.
[15]T. M.S. NAKAMURA, M. SENOH, S. NAGAHAMA, N. IWASA, T. MATUSHITA, “InGaN/GaN/AlGaN-BASED LEDS and LASER DIODES,” MRS Internet J. Nitride Semicond. Res., vol. 3, 1999.
[16]P.-F. C.Chung-Chieh Yang, Chia-Feng Lin*, Jiang Ren-Hao, Bing-Cheng Shieh and and J.-J. D.Wang-Po Tseng, “InGaN light emitting diode with a photochemically oxidized GaN nanorod structure,” ECS J. Solid State Sci. Technol., vol. 2, no. 4, pp. 65–69, 2013.
[17]C. F.Lin et al., “High-efficiency InGaN -based light-emitting diodes with nanoporous GaN:Mg structure,” Appl. Phys. Lett., vol. 88, no. 8, pp. 2004–2007, 2006.
[18]C. F.Lin, W. C.Lee, B. C.Shieh, D.Chen, D.Wang, andJ.Han, “Fabrication of current confinement aperture structure by transforming a conductive GaN:Si Epitaxial layer into an insulating GaOx layer,” ACS Appl. Mater. Interfaces, vol. 6, no. 24, pp. 22235–22242, 2014.
[19]O.Ambacher et al., “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- And Ga-face AIGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6, pp. 3222–3233, 1999.
[20] and I. A.H. Amano, N. Sawaki, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer No Title,” Appl. Phys. Lett., vol. 48, p. 353, 1986.
[21]M.Mynbaeva et al., “Structural characterization and strain relaxation in porous GaN layers,” Appl. Phys. Lett., vol. 76, no. 9, pp. 1113–1115, 2000.
[22]C. C.Yang et al., “Improving light output power of InGaN-based light emitting diodes with pattern-nanoporous p -type GaN:Mg surfaces,” Appl. Phys. Lett., vol. 93, no. 20, pp. 2006–2009, 2008.
[23]T.Müller et al., “A quantum light-emitting diode for the standard telecom window around 1,550 nm,” Nat. Commun., vol. 9, no. 1, pp. 1–6, 2018.
[24]T.Zhu et al., “Wafer-scale Fabrication of Non-Polar Mesoporous GaN Distributed Bragg Reflectors via Electrochemical Porosification,” Sci. Rep., vol. 7, no. March, pp. 1–8, 2017.
[25]R.Tao, M.Arita, S.Kako, K.Kamide, andY.Arakawa, “Strong coupling in non-polar GaN/AlGaN microcavities with air-gap/III-nitride distributed Bragg reflectors,” Appl. Phys. Lett., vol. 107, no. 10, 2015.
[26]M. S.Alias et al., “Enhancing the Light-Extraction Efficiency of an AlGaN Nanowire Ultraviolet Light-Emitting Diode by Using Nitride/Air Distributed Bragg Reflector Nanogratings,” IEEE Photonics J., vol. 9, no. 5, 2017.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊