跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/13 10:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳宣竹
研究生(外文):Hsuan-Chu Chen
論文名稱:利用Actinomucor taiwanensis生產幾丁聚醣並探討幾丁聚醣之抗菌效果及成膜性質
論文名稱(外文):Production of chitosan from Actinomucor taiwanensis and the antibacterial effect and film properties of chitosan
指導教授:陳錦樹陳錦樹引用關係
口試委員:謝寶全林俊杰陳炎鍊
口試日期:2019-07-19
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品安全研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:108
中文關鍵詞:幾丁聚醣Actinomucor taiwanensis抗菌幾丁聚醣膜生質法
外文關鍵詞:chitosanActinomucor taiwanensisantimicrobialchitosan filmbiomass method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:362
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
幾丁聚醣是地球上發現的最豐富的天然資源之一,是由幾丁質的去乙醯化製備而成,幾丁質則是大部分存在甲殼類和昆蟲的骨骼材料以及真菌的細胞壁中,但由於蝦蟹殼商業化生產有季節性限制,而真菌易於培養、不受季節及原料來源限制且可產生高產量的生物質。因此,真菌幾丁聚醣成為有吸引力的替代來源。
本研究以生質法製備幾丁聚醣,從食品發酵用安全菌株中選出生產幾丁聚醣之最適黴菌菌株,探討真菌在不同培養條件下生長,對生物量、幾丁聚醣含量及產量之影響,並測定其抗菌力及成膜後之特性。
結果顯示以Actinomucor taiwanensis BCRC 31159生產之幾丁聚醣有最高產量表現,爾後接種4%孢子液於最適培養基(額外添加15 g/L peptone之PDB)調整初始pH 5,於30℃、200rpm下培養3天,經乾燥可秤得菌絲量為10.36±0.21 g/L,再經由萃取後,可得較佳幾丁聚醣含量12.84±0.80%(w/w)及幾丁聚醣產量1.33±0.08 g/L。
另外,抗菌研究顯示0.5%幾丁聚醣-醋酸溶液中,可明顯抑制Escherichia coli生長,抑菌率達98%,較低濃度之幾丁聚醣,也可有效減緩其生長速率。將幾丁聚醣製成薄膜後,有高拉伸力(7.30±1.91 N/mm2)、延展性(28.28±6.77%)及高水氣通透力之特性,可作為蔬果包材之潛力。
Chitosan is one of the most abundant natural resources found on the earth and is generally prepared by the deacetylation of chitin, found in the skeletal materials of crustaceans and insects, and the cell walls of bacteria and fungi. However, the commercial production of chitosan by shrimp and crab shells has seasonal restrictions, and fungi are easy to culture, regardless of seasonal and raw material sources. It also produces high yields of biomass. Therefore, fungal chitosan has become an attractive alternative source of production of chitosan.
In this study, chitosan was prepared by the biomass method. We chose the most suitable mold strain which recognized as safe fungi for preparing foods for the production of chitosan. The influences of fungi growth under different culture conditions on biomass, chitosan content and chitosan concentration were assessed, and determined their antimicrobial activity and chitosan film properties.
The results showed that the chitosan produced by Actinomucor taiwanensis BCRC 31159 had the highest chitosan concentration, and inoculated with 4% spore suspension in the optimal medium (PDB supplemented with 15 g/L peptone), which was cultured at condition of initial pH 5, 30 ° C and 200 rpm rotary shaker for 3 days. After drying and extraction, the amount of mycelium could be weighed to 10.36±0.21 g/L, chitosan content was 12.84±0.80% (w/w) and the chitosan concentration was 1.33±0.08 g/ L.
In addition, antibacterial studies showed that 0.5% chitosan-acetic acid solution could significantly inhibit the growth of Escherichia coli, the inhibition rate was 98%, and the lower concentration of chitosan could also effectively slow down the growth rate. After the fungal chitosan was made into a film, it has the characteristics of high tensile force (7.30±1.91 N/mm2), elongation at break (28.28±6.77%) and high water vapor permeability, which could be used as a material for fruits and vegetables.
摘要 i
Abstract ii
目次 iii
圖目次 v
表目次 vii
第一章、前言 1
第二章 文獻回顧 2
一、 幾丁聚醣 2
(一) 幾丁聚醣結構及特性 2
(二) 幾丁聚醣衍生物 2
(三) 幾丁聚醣來源 5
(四) 幾丁聚醣之抗菌特性 7
(五) 幾丁聚醣之應用 15
二、 Actinomucor taiwanensis 之介紹 18
(一) 簡介 18
(二) 生長特性及型態 18
(三) 應用 20
第三章 材料與方法 22
一、 實驗材料 22
(一) 實驗菌株 22
(二) 培養基 22
(三) 化學藥劑 23
二、 儀器設備 23
三、 套裝軟體 24
四、 實驗方法 25
(一) 實驗架構 25
(二) 名詞定義 26
(三) 菌種活化及保存 26
(四) 菌株觀察 26
(五) 黴菌孢子懸浮液製備 26
(六) 幾丁聚醣萃取及純化之流程 27
(七) 幾丁聚醣萃取條件確立 27
(八) 幾丁聚醣萃取及純化之簡易流程 28
(九) 菌株篩選 29
(十) 搖瓶培養之最適條件探討 29
(十一) 製備幾丁聚醣-醋酸溶液 31
(十二) 製備幾丁聚醣薄膜 31
(十三) 分析方法 31
第四章、結果與討論 36
一、 生產幾丁聚醣之最適菌株確立 36
二、 幾丁聚醣萃取條件確立 36
三、 Act. taiwanensis BCRC 31159之外觀形態 40
四、 搖瓶培養之最適生產幾丁聚醣之條件 44
(一) 最適氮源種類 44
(二) 最適氮源濃度之探討 46
(三) 最適碳源種類之探討 50
(四) 調整初始pH值 54
(五) 最適接種量之探討 63
(六) 培養時間 67
五、 調整培養條件後之菌絲微觀結構(FE-SEM) 69
六、 幾丁聚醣特性分析 72
(一) 幾丁聚醣粉末外觀探討 72
(二) 幾丁聚醣化學結構鑑定—FPA-FTIR分析 72
(三) 幾丁聚醣特性分析 76
七、 幾丁聚醣醋酸溶液抗菌分析 79
八、 幾丁聚醣膜特性分析 88
第五章 結論 92
一、 生產幾丁聚醣之菌株確立及最適萃取條件 92
二、 生產幾丁聚醣較適液態培養條件 92
三、 真菌幾丁聚醣特性 92
四、 真菌幾丁聚醣抗菌能力 92
五、 真菌幾丁聚醣薄膜特性 93
第六章 未來展望 94
第七章 參考文獻 95
王蒙, 李澜鹏, 张全, 彭绍忠, & 曹长海. (2019). 生物法制备甲壳素/壳聚糖的研究进展. 生物技术通报, 35(4), 213-222.
吳婷雅. (2016). 普魯蘭多醣發酵槽生產條件及其塗膜在草莓保鮮之應用. 中興大學食品暨應用生物科技學系所碩士學位論文, 1-101.
李佩琪, 許芳瑜, 楊雯珺, & 詹錦豐. (2012). 高分子水溶性幾丁聚醣的抗氧化及抗菌活性. 弘光學報, (67), 1-10.
周博俊. (2015). 普魯蘭多醣生產菌株 Aureobasidium pullulans 之篩選, 培養條件與普魯蘭多醣純化及特性探討. 中興大學食品暨應用生物科技學系所碩士學位論文, 1-114.
林孟琪. (2017). 利用食品發酵用黴菌菌絲體生產葡萄糖胺. 中興大學食品暨應用生物科技學系所碩士學位論文, 1-88.
林詩涵. (2014). 以反應曲面法探討糖質克弗爾多醣/小麥澱粉混合膜之物理及機械特性. 中興大學食品暨應用生物科技學系所學位論文, 1-144.
陳意雯. (2018). 培養基組成及條件對 Aspergillus oryzae NCH-42 固態培養生產葡萄糖胺之影響. 中興大學食品暨應用生物科技學系所碩士學位論文, 1-98.
彭泓期. (2018). 利用迴轉側噴式流動床探討複合膜包覆薑黃糖蕊釋控粒子之效果及其釋放特性評估. 中興大學食品暨應用生物科技學系所碩士學位論文, 1-249.
魏玉嬌. (2008). 以紅麴菌生產葡萄糖胺之培養基組成最佳化研究. 元智大學化學工程與材料科學學系碩士學位論文, 1-68.
羅聖全。2013。科學基礎研究之重要利器─掃描式電子顯微鏡(SEM)。國立台灣科學教育館科學研習月刊,第52卷第5期。
Aguirre-Alvarez, G., Pimentel-Gonzalez, D. J., Campos-Montiel, R. G., Foster, T., & Hill, S. E. (2011). The effect of drying temperature on mechanical properties of pig skin gelatin films El efecto de la temperatura de secado sobre las propiedades mecánicas de películas de gelatina de cerdo. CyTA-Journal of Food, 9(3), 243-249.
Anitha, A., Sowmya, S., Kumar, P. S., Deepthi, S., Chennazhi, K. P., Ehrlich, H., Tsurkan, M & Jayakumar, R. (2014). Chitin and chitosan in selected biomedical applications. Progress in Polymer Science, 39(9), 1644-1667.
Bailey, S. E., Olin, T. J., Bricka, R. M., & Adrian, D. D. (1999). A review of potentially low-cost sorbents for heavy metals. Water research, 33(11), 2469-2479.
Bano, I., Arshad, M., Yasin, T., Ghauri, M. A., & Younus, M. (2017). Chitosan: A potential biopolymer for wound management. International journal of biological macromolecules, 102, 380-383.
Bano, I., Ghauri, M. A., Yasin, T., Huang, Q., & Palaparthi, A. D. S. (2014). Characterization and potential applications of gamma irradiated chitosan and its blends with poly (vinyl alcohol). International journal of biological macromolecules, 65, 81-88.
Borchard, G. (2001). Chitosans for gene delivery. Advanced drug delivery reviews, 52(2), 145-150.
Cashel, M., Gentry, D. R., Hernandez, V. J., & Vinella, D. (1996). Escherichia coli and Salmonella: cellular and molecular biology.
Cheba, B. A. (2011). Chitin and chitosan: marine biopolymers with unique properties and versatile applications. Global Journal of Biotechnology & Biochemistry, 6(3), 149-153.
Chen, K. S., Ku, Y. A., Lee, C. H., Lin, H. R., Lin, F. H., & Chen, T. M. (2005). Immobilization of chitosan gel with cross-linking reagent on PNIPAAm gel/PP nonwoven composites surface. Materials Science and Engineering: C, 25(4), 472-478.
Chen, S., Wu, G., & Zeng, H. (2005). Preparation of high antimicrobial activity thiourea chitosan–Ag+ complex. Carbohydrate Polymers, 60(1), 33-38.
Chen, S., Wu, G., Long, D., & Liu, Y. (2006). Preparation, characterization and antibacterial activity of chitosan–Ca3V10O28 complex membrane. Carbohydrate Polymers, 64(1), 92-97.
Chen, X., Jia, J., & Dong, S. (2003). Organically modified sol‐gel/chitosan composite based glucose biosensor. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 15(7), 608-612.
Chou, C. C., Ho, F. M., & Tsai, C. S. (1988). Effects of temperature and relative humidity on the growth of and enzyme production by Actinomucor taiwanensis during sufu pehtze preparation. Appl. Environ. Microbiol., 54(3), 688-692.
Chow, K. S., Khor, E., & Wan, A. C. A. (2001). Porous chitin matrices for tissue engineering: fabrication and in vitro cytotoxic assessment. Journal of Polymer Research, 8(1), 27-35.
Chung, Y. C., Su, Y. P., Chen, C. C., Jia, G., Wang, H. L., Wu, J. G., & Lin, J. G. (2004). Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta pharmacologica sinica, 25(7), 932-936.
Cui, Z., & Mumper, R. J. (2001). Chitosan-based nanoparticles for topical genetic immunization. Journal of Controlled Release, 75(3), 409-419.
Davidovich-Pinhas, M., Danin-Poleg, Y., Kashi, Y., & Bianco-Peled, H. (2014). Modified chitosan: A step toward improving the properties of antibacterial food packages. Food packaging and shelf life, 1(2), 160-169.
Deng, C. M., He, L. Z., Zhao, M., Yang, D., & Liu, Y. (2007). Biological properties of the chitosan-gelatin sponge wound dressing. Carbohydrate Polymers, 69(3), 583-589.
Di Mario, F., Rapana, P., Tomati, U., & Galli, E. (2008). Chitin and chitosan from Basidiomycetes. International Journal of Biological Macromolecules, 43(1), 8-12
Dutta, P. K., Ravikumar, M. N. V., & Dutta, J. (2002). Chitin and chitosan for versatile applications. Journal of Macromolecular Science, Part C: Polymer Reviews, 42(3), 307-354.
Elsabee, M. Z., Abdou, E. S., Nagy, K. S., & Eweis, M. (2008). Surface modification of polypropylene films by chitosan and chitosan/pectin multilayer. Carbohydrate Polymers, 71(2), 187-195.
Fan, L., Du, Y., Zhang, B., Yang, J., Zhou, J., & Kennedy, J. F. (2006). Preparation and properties of alginate/carboxymethyl chitosan blend fibers. Carbohydrate polymers, 65(4), 447-452.
Fortunati, E., Giovanale, G., Luzi, F., Mazzaglia, A., Kenny, J., Torre, L., & Balestra, G. (2017). Effective postharvest preservation of kiwifruit and romaine lettuce with a chitosan hydrochloride coating. Coatings, 7(11), 196.
Fujita, M., Kinoshita, M., Ishihara, M., Kanatani, Y., Morimoto, Y., Simizu, M & Takase, B. (2004). Inhibition of vascular prosthetic graft infection using a photocrosslinkable chitosan hydrogel. Journal of Surgical Research, 121(1), 135-140.
Ganan, M., Carrascosa, A. V., & Martinez-Rodriguez, A. J. (2009). Antimicrobial activity of chitosan against Campylobacter spp. and other microorganisms and its mechanism of action. Journal of food protection, 72(8), 1735-1738.
Ghormade, V., Pathan, E. K., & Deshpande, M. V. (2017). Can fungi compete with marine sources for chitosan production? International journal of biological macromolecules, 104, 1415-1421.
Guo, Z., Xing, R., Liu, S., Zhong, Z., & Li, P. (2008). Synthesis and hydroxyl radicals scavenging activity of quaternized carboxymethyl chitosan. Carbohydrate Polymers, 73(1), 173-177.
Hayashi, Y., Ohara, N., Ganno, T., Ishizaki, H., & Yanagiguchi, K. (2007). Chitosan-containing gum chewing accelerates antibacterial effect with an increase in salivary secretion. Journal of dentistry, 35(11), 871-874.
Helander, I. M., Nurmiaho-Lassila, E. L., Ahvenainen, R., Rhoades, J., & Roller, S. (2001). Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria. International journal of food microbiology, 71(2-3), 235-244.
Hirai, A., Odani, H., & Nakajima, A. (1991). Determination of degree of deacetylation of chitosan by 1 H NMR spectroscopy. Polymer Bulletin, 26(1), 87-94.
Hirano, S. (1996). Chitin biotechnology applications. In Biotechnology annual review (Vol. 2, pp. 237-258). Elsevier.
Homez-Jara, A., Daza, L. D., Aguirre, D. M., Muñoz, J. A., Solanilla, J. F., & Váquiro, H. A. (2018). Characterization of chitosan edible films obtained with various polymer concentrations and drying temperatures. International journal of biological macromolecules, 113, 1233-1240.
Huang, J. R., Huang, C. Y., Huang, Y. W., & Chen, R. H. (2007). Shelf-life of fresh noodles as affected by chitosan and its Maillard reaction products. LWT-Food science and technology, 40(7), 1287-1291.
Huang, K. S., Wu, W. J., Chen, J. B., & Lian, H. S. (2008). Application of low-molecular-weight chitosan in durable press finishing. Carbohydrate Polymers, 73(2), 254-260.
Ignatova, M., Manolova, N., & Rashkov, I. (2007). Novel antibacterial fibers of quaternized chitosan and poly (vinyl pyrrolidone) prepared by electrospinning. European Polymer Journal, 43(4), 1112-1122.
Ignatova, M., Starbova, K., Markova, N., Manolova, N., & Rashkov, I. (2006). Electrospun nano-fibre mats with antibacterial properties from quaternised chitosan and poly (vinyl alcohol). Carbohydrate research, 341(12), 2098-2107.
Je, J. Y., Park, P. J., & Kim, S. K. (2004). Free radical scavenging properties of hetero-chitooligosaccharides using an ESR spectroscopy. Food and Chemical Toxicology, 42(3), 381-387.
Kalinowski, H. O., Berger, S., & Braun, S. (1988). Carbon-13 NMR spectroscopy.
Kartal, S. N., & Imamura, Y. (2005). Removal of copper, chromium, and arsenic from CCA-treated wood onto chitin and chitosan. Bioresource technology, 96(3), 389-392.
Kato, Y., Onishi, H., & Machida, Y. (2003). Application of chitin and chitosan derivatives in the pharmaceutical field. Current Pharmaceutical Biotechnology, 4(5), 303-309.
Khattak, S., Wahid, F., Liu, L. P., Jia, S. R., Chu, L. Q., Xie, Y. Y., Li, Z. X & Zhong, C. (2019). Applications of cellulose and chitin/chitosan derivatives and composites as antibacterial materials: current state and perspectives. Applied microbiology and biotechnology, 103(5), 1989-2006.
Khor, E., & Lim, L. Y. (2003). Implantable applications of chitin and chitosan. Biomaterials, 24(13), 2339-2349.
Kim, I. Y., Seo, S. J., Moon, H. S., Yoo, M. K., Park, I. Y., Kim, B. C., & Cho, C. S. (2008). Chitosan and its derivatives for tissue engineering applications. Biotechnology advances, 26(1), 1-21.
Kim, S. K., & Rajapakse, N. (2005). Enzymatic production and biological activities of chitosan oligosaccharides (COS): A review. Carbohydrate polymers, 62(4), 357-368.
Knill, C. J., Kennedy, J. F., Mistry, J., Miraftab, M., Smart, G., Groocock, M. R., & Williams, H. J. (2004). Alginate fibres modified with unhydrolysed and hydrolysed chitosans for wound dressings. Carbohydrate Polymers, 55(1), 65-76.
Kong, M., Chen, X. G., Xing, K., & Park, H. J. (2010). Antimicrobial properties of chitosan and mode of action: a state of the art review. International journal of food microbiology, 144(1), 51-63.
Kong, M., Chen, X. G., Xue, Y. P., Liu, C. S., Yu, L. J., Ji, Q. X., ... & Park, H. J. (2008). Preparation and antibacterial activity of chitosan microshperes in a solid dispersing system. Frontiers of Materials Science in China, 2(2), 214-220.
Krajewska, B. (2004). Application of chitin-and chitosan-based materials for enzyme immobilizations: a review. Enzyme and microbial technology, 35(2-3), 126-139.
Lagaron, J. M., Fernandez-Saiz, P., & Ocio, M. J. (2007). Using ATR-FTIR spectroscopy to design active antimicrobial food packaging structures based on high molecular weight chitosan polysaccharide. Journal of agricultural and food chemistry, 55(7), 2554-2562
Li, Y., Chen, X. G., Liu, N., Liu, C. S., Liu, C. G., Meng, X. H., ... & Kenendy, J. F. (2007). Physicochemical characterization and antibacterial property of chitosan acetates. Carbohydrate Polymers, 67(2), 227-232.
Lim, S. H. (2003). Synthesis of a fiber-reactive chitosan derivative and its application to cotton fabric as an antimicrobial finish and a dyeing-improving agent.
Lim, S. H., & Hudson, S. M. (2004). Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydrate research, 339(2), 313-319.
Lin, W. C., Liu, T. Y., & Yang, M. C. (2004). Hemocompatibility of polyacrylonitrile dialysis membrane immobilized with chitosan and heparin conjugate. Biomaterials, 25(10), 1947-1957.
Luo, X. L., Xu, J. J., Wang, J. L., & Chen, H. Y. (2005). Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application. Chemical communications, (16), 2169-2171.
Ma, Y., Zhou, T., & Zhao, C. (2008). Preparation of chitosan–nylon-6 blended membranes containing silver ions as antibacterial materials. Carbohydrate research, 343(2), 230-237.
Makoi, J. H., & Ndakidemi, P. A. (2008). Selected soil enzymes: examples of their potential roles in the ecosystem. African Journal of Biotechnology, 7(3).
Mathur, N. K., & Narang, C. K. (1990). Chitin and chitosan, versatile polysaccharides from marine animals. Journal of Chemical Education, 67(11), 938.
Mishra, A., & Bajpai, M. (2005). Flocculation behaviour of model textile wastewater treated with a food grade polysaccharide. Journal of Hazardous Materials, 118(1-3), 213-217.
Möller, H., Grelier, S., Pardon, P., & Coma, V. (2004). Antimicrobial and physicochemical properties of chitosan− hpmc-based films. Journal of agricultural and food chemistry, 52(21), 6585-6591.
Naghdi, M., Zamani, A., & Karimi, K. (2014). A sulfuric–lactic acid process for efficient purification of fungal chitosan with intact molecular weight. International journal of biological macromolecules, 63, 158-162.
Nguyen, T. T., Jung, H. Y., Lee, Y. S., Voigt, K., & Lee, H. B. (2017). Phylogenetic status of two undescribed zygomycete species from Korea: Actinomucor elegans and Mucor minutus. Mycobiology, 45(4), 344-352.
No, H. K., Park, N. Y., Lee, S. H., & Meyers, S. P. (2002). Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International journal of food microbiology, 74(1-2), 65-72.
Ohashi, E., & Karube, I. (1995). Development of a thin membrane glucose sensor using β-type crystalline chitin for implantable biosensor. Journal of biotechnology, 40(1), 13-19.
Okamoto, Y., Kawakami, K., Miyatake, K., Morimoto, M., Shigemasa, Y., & Minami, S. (2002). Analgesic effects of chitin and chitosan. Carbohydrate Polymers, 49(3), 249-252.
Pascual, E., & Julia, M. R. (2001). The role of chitosan in wool finishing. Journal of biotechnology, 89(2-3), 289-296.
Peshkova, S., & Li, K. (2003). Investigation of chitosan–phenolics systems as wood adhesives. Journal of biotechnology, 102(2), 199-207.
Pochanavanich, P., & Suntornsuk, W. (2002). Fungal chitosan production and its characterization. Letters in applied microbiology, 35(1), 17-21.
Rabea, E. I., Badawy, M. E. T., Stevens, C. V., Smagghe, G., & Steurbaut, W. (2003). Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 4(6), 1457-1465.
Rane, K. D., & Hoover, D. G. (1993). Production of chitosan by fungi. Food biotechnology, 7(1), 11-33.
Reginster, J. Y., Deroisy, R., Rovati, L. C., Lee, R. L., Lejeune, E., Bruyere, O., ... & Gossett, C. (2001). Long-term effects of glucosamine sulphate on osteoarthritis progression: a randomised, placebo-controlled clinical trial. The Lancet, 357(9252), 251-256.
Ren, K., Ji, J., & Shen, J. (2006). Construction and enzymatic degradation of multilayered poly-L-lysine/DNA films. Biomaterials, 27(7), 1152-1159.
Roy, K., Mao, H. Q., Huang, S. K., & Leong, K. W. (1999). Oral gene delivery with chitosan–DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nature medicine, 5(4), 387.
Sadeghi, A. M. M., Dorkoosh, F. A., Avadi, M. R., Saadat, P., Rafiee-Tehrani, M., & Junginger, H. E. (2008). Preparation, characterization and antibacterial activities of chitosan, N-trimethyl chitosan (TMC) and N-diethylmethyl chitosan (DEMC) nanoparticles loaded with insulin using both the ionotropic gelation and polyelectrolyte complexation methods. International Journal of Pharmaceutics, 355(1-2), 299-306.
Sajomsang, W., Gonil, P., Saesoo, S., & Ovatlarnporn, C. (2012). Antifungal property of quaternized chitosan and its derivatives. International journal of biological macromolecules, 50(1), 263-269.
Sayari, N., Sila, A., Abdelmalek, B. E., Abdallah, R. B., Ellouz-Chaabouni, S., Bougatef, A., & Balti, R. (2016). Chitin and chitosan from the Norway lobster by-products: Antimicrobial and anti-proliferative activities. International journal of biological macromolecules, 87, 163-171.
Sebti, I., Chollet, E., Degraeve, P., Noel, C., & Peyrol, E. (2007). Water sensitivity, antimicrobial, and physicochemical analyses of edible films based on HPMC and/or chitosan. Journal of agricultural and food chemistry, 55(3), 693-699.
Shahidi, F., Arachchi, J. K. V., & Jeon, Y. J. (1999). Food applications of chitin and chitosans. Trends in food science & technology, 10(2), 37-51.
Sieber, V., Hofer, M., Brück, W. M., Garbe, D., Brück, T., & Lynch, C. A. (2018). ChiBio: An Integrated Bio-refinery for Processing Chitin-Rich Bio-waste to Specialty Chemicals. In Grand Challenges in Marine Biotechnology (pp. 555-578). Springer, Cham.
Silverstein, R. M., & Bassler, G. C. (1962). Spectrometric identification of organic compounds. Journal of Chemical Education, 39(11), 546.
Somjit, K., Ruttanapornwareesakul, Y., Hara, K., & Nozaki, Y. (2005). The cryoprotectant effect of shrimp chitin and shrimp chitin hydrolysate on denaturation and unfrozen water of lizardfish surimi during frozen storage. Food Research International, 38(4), 345-355.
Sosa, M. A. G., Fazely, F., Koch, J. A., Vercellotti, S. V., & Ruprecht, R. M. (1991). N-Carboxymethylchitosan-N, O-sulfate as an anti-HIV-1 agent. Biochemical and biophysical research communications, 174(2), 489-496.
Streitwieser, A., Heathcock, C. H., Kosower, E. M., & Corfield, P. J. (1992). Introduction to organic chemistry (No. 547 STR). New York: Macmillan.
Sun, L., Sun, J., Chen, L., Niu, P., Yang, X., & Guo, Y. (2017). Preparation and characterization of chitosan film incorporated with thinned young apple polyphenols as an active packaging material. Carbohydrate polymers, 163, 81-91.
Suntornsuk, W., Pochanavanich, P., & Suntornsuk, L. (2002). Fungal chitosan production on food processing by-products. Process Biochemistry, 37(7), 727-729.
Synowiecki, J., & Al-Khateeb, N. A. A. Q. (1997). Mycelia of Mucor rouxii as a source of chitin and chitosan. Food Chemistry, 60(4), 605-610.
Tajdini, F., Amini, M. A., Nafissi-Varcheh, N., & Faramarzi, M. A. (2010). Production, physiochemical and antimicrobial properties of fungal chitosan from Rhizomucor miehei and Mucor racemosus. International journal of biological macromolecules, 47(2), 180-183.
Tan, S. C., Khor, E., Tan, T. K., & Wong, S. M. (1998). The degree of deacetylation of chitosan: advocating the first derivative UV-spectrophotometry method of determination. Talanta, 45(4), 713-719.
Tasker, R. A. R., Ross, S. J., Dohoo, S. E., & Elson, C. M. (1997). Pharmacokinetics of an injectable sustained‐release formulation of morphine for use in dogs. Journal of veterinary pharmacology and therapeutics, 20(5), 362-367.
Thakkar, H., Sharma, R. K., Mishra, A. K., Chuttani, K., & Murthy, R. S. R. (2004). Efficacy of chitosan microspheres for controlled intra‐articular delivery of celecoxib in inflamed joints. Journal of Pharmacy and pharmacology, 56(9), 1091-1099.
Thanou, M., Florea, B. I., Geldof, M., Junginger, H. E., & Borchard, G. (2002). Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials, 23(1), 153-159.
Veneroni, G., Veneroni, F., Contos, S., Tripodi, S., De Bernardi, M., Guarino, C., & Marletta, M. (1996). Effect of a new chitosan dietary integrator and hypocaloric diet on hyperlipidemia and overweight in obese patients. Acta Toxicologica et Therapeutica, 17, 53-70.
Ventura, P. (1996). Lipid lowering activity of chitosan, a new dietary integrator. Chitin enzymology, 2, 55-62.
Vila, A., Sánchez, A., Janes, K., Behrens, I., Kissel, T., Jato, J. L. V., & Alonso, M. J. (2004). Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. European Journal of pharmaceutics and biopharmaceutics, 57(1), 123-131.
Wang, S., Li, P., Su, J., Liang, R., & Wu, X. (2014). Enhanced glucosamine production with Actinomucor elegans based on stimulating factor of methanol. Indian journal of microbiology, 54(4), 459-465.
Wu, Y. B., Yu, S. H., Mi, F. L., Wu, C. W., Shyu, S. S., Peng, C. K., & Chao, A. C. (2004). Preparation and characterization on mechanical and antibacterial properties of chitsoan/cellulose blends. Carbohydrate Polymers, 57(4), 435-440.
Wuolioki, E., Hirvela, T., & Ylitalo, P. (1999). Decrease in serum LDL cholesterol with microcrystalline chitosan. Methods and findings in experimental and clinical pharmacology, 21(5), 357-362.
Xu, W., Shen, Y., Jiang, Z., Wang, Y., Chu, Y., & Xiong, S. (2004). Intranasal delivery of chitosan–DNA vaccine generates mucosal SIgA and anti-CVB3 protection. Vaccine, 22(27-28), 3603-3612.
Yang, J. M., & Lin, H. T. (2004). Properties of chitosan containing PP-g-AA-g-NIPAAm bigraft nonwoven fabric for wound dressing. Journal of membrane science, 243(1-2), 1-7.
Yang, J. M., Su, W. Y., & Yang, M. C. (2004). Evaluation of chitosan/PVA blended hydrogel membranes. Journal of Membrane Science, 236(1-2), 39-51.
Yang, T. C., Chou, C. C., & Li, C. F. (2005). Antibacterial activity of N-alkylated disaccharide chitosan derivatives. International Journal of Food Microbiology, 97(3), 237-245.
Yang, X., Liu, Q., Chen, X., Yu, F., & Zhu, Z. (2008). Investigation of PVA/ws-chitosan hydrogels prepared by combined γ-irradiation and freeze-thawing. Carbohydrate Polymers, 73(3), 401-408.
Yannas, I. V., Burke, J. F., Orgill, D. P., & Skrabut, E. M. (1982). Wound tissue can utilize a polymeric template to synthesize a functional extension of skin. Science, 215(4529), 174-176.
Ye, W., Leung, M. F., Xin, J., Kwong, T. L., Lee, D. K. L., & Li, P. (2005). Novel core-shell particles with poly (n-butyl acrylate) cores and chitosan shells as an antibacterial coating for textiles. Polymer, 46(23), 10538-10543.
Yu, S. H., Mi, F. L., Shyu, S. S., Tsai, C. H., Peng, C. K., & Lai, J. Y. (2006). Miscibility, mechanical characteristic and platelet adhesion of 6-O-carboxymethylchitosan/polyurethane semi-IPN membranes. Journal of Membrane Science, 276(1-2), 68-80.
Zheng, L. Y., & Zhu, J. F. (2003). Study on antimicrobial activity of chitosan with different molecular weights. Carbohydrate polymers, 54(4), 527-530.
Zhong, Z., Xing, R., Liu, S., Wang, L., Cai, S., & Li, P. (2008). Synthesis of acyl thiourea derivatives of chitosan and their antimicrobial activities in vitro. Carbohydrate Research, 343(3), 566-570.
Zhu, D., Cheng, H., Li, J., Zhang, W., Shen, Y., Chen, S., ... & Chen, S. (2016). Enhanced water-solubility and antibacterial activity of novel chitosan derivatives modified with quaternary phosphonium salt. Materials Science and Engineering: C, 61, 79-84.
Zivanovic, S., Li, J., Davidson, P. M., & Kit, K. (2007). Physical, mechanical, and antibacterial properties of chitosan/PEO blend films. Biomacromolecules, 8(5), 1505-1510.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊