跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/27 01:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊承翰
研究生(外文):Chen-Han Chuang
論文名稱:仿生半透薄膜用以微流體驅動之元件開發與分析
論文名稱(外文):Semipermeable Biomimetic Membrane for Microfluidic Application
指導教授:蔣雅郁
口試委員:蔡佳宏郭正雄
口試日期:2018-07-30
學位類別:碩士
校院名稱:國立中興大學
系所名稱:機械工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:80
中文關鍵詞:半透膜微流道晶片滲透壓微幫浦
外文關鍵詞:Semipermeable MembraneMicrofluidicOsmotic PressureMicropump
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
微流道實驗中流體驅動方式多以針筒幫浦為主,其因管路之連接,外接能源等 需求,造成實驗將受場地與背景知識限制。本研究將仿生半透薄膜整合至微流道晶 片,首次使用滲透壓原理產生流體驅動力,以達到不需外接管路與電力的流道驅動 系統,並實驗分析其結果。研究以數種體積莫耳濃度氯化鈉(2M NaCl)溶液作為 滲透驅動液(Draw Solution),去離子水(Deionized Water)作為供給液(Feed Solution)。以 2 體積莫耳濃度(M)之濃度差為例,可使面積 153.94 mm2 之仿生半透
薄膜水通量到達 22.68 μL/mm2・hr。
本研究探討不同薄膜有效面積、環境溫度、蒸發量、長時間操作與不同驅動液 與供給液間濃度差所產生之流量差異。另外因仿生薄膜無法百分之百阻隔電解質 離子(如Na+ 與Cl-),故測量供給液端之電導率(ElectricalConductivity),探討氯化鈉之回滲現象,並進一步探討是否會造成後續生物醫學相關應用影響。本研究亦 開發不同插銷式薄膜夾具,可使用於聚甲基丙烯酸甲酯(PMMA)與聚二甲基矽氧 烷(PDMS)。
於微尺度流動下比較不同濃度驅動液(1 M 與 2 M 之氯化鈉水溶液)流速之 差異,並証實在微尺度流道內應用滲透壓驅動流體的可行性。利用 Y 字型與 Ψ 字 形流道瞭解使用滲透壓作為流體驅動力時,對流道內液體擴散之影響;並進一步展 示硫酸銅溶液與銅離子指示劑平行流入流道中之呈色反應,輔以灰階形式分析,並 與針筒幫浦推動之方法比較。生物研究應用常需抓取稀少細胞,本研究於微流道晶 片出口處使用薄膜夾具插銷作為流體負壓驅動力,流入低濃度巨噬細胞後進一步 紀錄其抓取與定位狀況,並與使用針筒幫浦驅動之相同設計晶片比較抓取率,以探 討此技術於微米級流道應用之發展性。最後將微接觸印刷技術結合半透膜,透過滲 透壓液體驅動力產生之流線操控微粒子排列,探討半透薄膜於微尺度之多元應用。
Fluid delivery is demonstrated by pressure difference. According to the principle of osmosis, through the membrane we can generate a osmotic pressure (∆π) by making the feed solution and draw solution concentration different (∆C). We used 2M, 1.63M, 1.26M, 1M, 0.89M, 0.52M, 0.15M sodium chloride solution, 1M magnesium dichloride solution and 1M sucrose solution as the draw solution and deionized water as the feed solution.
The water flux performance of the membrane influences the usability of pumpless device. To understand the performance, we designed three membrane test cells with different active area. In the experiment, each active area is using three different concentration of sodium chloride draw solution and deionized water as feed solution, then timing for an hour to record the volume increment of draw solution. Due to the electrolyte rejection of the membrane is not 100%, we also measured the conductivity of feed solution to verify the usage of biological experiments can be achieved.
We also used different type of PMMA microfluidic to verify the application of osmotic pressure such as Y channel or Ψ channel. There is a plug-in design for the PMMA microfluidic. In microfluidic research, PDMS chip is the most common type of microfluidic. We designed a plug-in to combine the outlet, biomimetic membrane fixture and the draw solution tank. Use the plug-in in cell trap chip to verify the osmotic pressure driven liquid delivery system can replace the pump. Finally, to manipulate cells or particles, we used the technique which is micro contact printing to construct micro structure onto the membrane.
致謝 i
摘要 ii
Abstract iii
目次 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 文獻回顧 3
1.3.1 主動式流體輸送系統 3
1.3.2 被動式流體輸送系統 5
1.4 研究目標 7
第二章 實驗原理 8
2.1 滲透現象 8
2.1.1 滲透壓 8
2.1.2 滲透形式 13
2.1.3 水通道蛋白薄膜 13
2.1.4 極化現象 15
2.2 流動與壓力差 17
2.3 微流道系統 19
2.3.1 粒子定位操控 19
2.4 仿生薄膜阻隔分析 22
2.4.1 電導率 22
2.5 擴散 24
2.5.1 流道內擴散 24
2.5.2 氯化鈉回滲之濃度擴散 25
第三章 設計與實驗方法 27
3.1 水通道蛋白薄膜滲透性能實驗 27
3.1.1 薄膜表面厚度與親疏水性分析 27
3.1.2 薄膜夾具設計與製造 28
3.1.3 流量與流率實驗 30
3.1.4 電導率測量 31
3.2 聚甲基丙烯酸甲酯微流道晶片實驗 32
3.2.1 聚甲基丙烯酸甲酯微流道晶片規格與實驗設計 32
3.2.2 聚甲基丙烯酸甲酯微流道晶片製作與封裝 34
3.2.3 插銷式薄膜夾具規格設計與製作 35
3.3 聚二甲基矽氧烷微流道晶片實驗 37
3.3.1 聚二甲基矽氧烷微流道晶片規格設計 37
3.3.2 聚二甲基矽氧烷微流道晶片製作與封裝 37
3.3.3 插銷式薄膜夾具規格設計與製作 38
3.4 水通道蛋白薄膜微接觸印刷實驗 40
3.4.1 微結構規格 40
3.4.2 微結構製程 41
3.4.3 薄膜夾具與支架 41
第四章 結果與分析 43
4.1 水通道蛋白薄膜性能結果與分析 43
4.1.1 水通道蛋白薄膜表面分析 43
4.1.2 濃度差、有效面積、蒸發量與環境溫度之影響 46
4.1.3 氯化鈉阻隔分析 57
4.1.4 不同驅動液實驗分析 59
4.2 聚甲基丙烯酸甲酯微流道晶片實驗結果與分析 60
4.2.1 不同濃度流動分析 60
4.2.2 擴散實驗 61
4.2.3 插銷串聯實驗 66
4.3 聚二甲基矽氧烷微流道晶片實驗結果與分析 68
4.4 水通道蛋白薄膜微接觸印刷結果與分析 72
4.4.1 軟體模擬分析 72
4.4.2 微接觸印刷結果分析 72
第五章 結論與未來展望 74
參考文獻 75
附錄 77
附錄 一 氯化鈉濃度差 0.15 M 長時間滲透數據擬合多項式 77
附錄 二 氯化鈉濃度差 1 M 長時間滲透數據擬合多項式 78
附錄 三 氯化鈉濃度差 2 M 長時間滲透數據擬合多項式 79
附錄 四 氯化鈉回滲現象之理論濃度分布程式碼 80
1. Wikipedia. Conductivity (electrolytic). 2018 10 July 2018.
2. Agre, P., The Aquaporin Water Channels. Proceedings of the American Thoracic
Society, 2006. 3(1): p. 5-13.
3. Juncker, D., et al., Autonomous Microfluidic Capillary System. Analytical
Chemistry, 2002. 74(24): p. 6139-6144.
4. Cath, T.Y., A.E. Childress, and M. Elimelech, Forward osmosis: Principles,
applications, and recent developments. Journal of Membrane Science, 2006.
281(1–2): p. 70-87.
5. Berthier, E. and D.J. Beebe, Flow rate analysis of a surface tension driven passive
micropump. Lab on a Chip, 2007. 7(11): p. 1475-1478.
6. Kazuo, H. and M. Ryutaro, A pneumatically-actuated three-way microvalve
fabricated with polydimethylsiloxane using the membrane transfer technique.
Journal of Micromechanics and Microengineering, 2000. 10(3): p. 415.
7. Lee, S.J., et al., Characterization of laterally deformable elastomer membranes for microfluidics. Journal of Micromechanics and Microengineering, 2007. 17(5):
p. 843.
8. Studer, V., et al., Scaling properties of a low-actuation pressure microfluidic valve.
Journal of Applied Physics, 2004. 95(1): p. 393-398.
9. Chih-Hao, W. and L. Gwo-Bin, Pneumatically driven peristaltic micropumps
utilizing serpentine-shape channels. Journal of Micromechanics and
Microengineering, 2006. 16(2): p. 341.
10. Song-Bin, H., et al., A membrane-based serpentine-shape pneumatic micropump
with pumping performance modulated by fluidic resistance. Journal of
Micromechanics and Microengineering, 2008. 18(4): p. 045008.
11. Gu, W., et al., Computerized microfluidic cell culture using elastomeric channels and Braille displays. Proceedings of the National Academy of Sciences of the
United States of America, 2004. 101(45): p. 15861.
12. Bo ̈hm, S., W. Olthuis, and P. Bergveld, An Integrated Micromachined
Electrochemical Pump and Dosing System. Biomedical Microdevices, 1999. 1(2):
p. 121-130.
13. Chuan-Hua, C. and J.G. Santiago, A planar electroosmotic micropump. Journal of
Microelectromechanical Systems, 2002. 11(6): p. 672-683.
14. Lee, A.P., et al., Microfluidic Air-Liquid Cavity Acoustic Transducers for On-Chip
Integration of Sample Preparation and Sample Detection. JALA: Journal of the Association for Laboratory Automation, 2010. 15(6): p. 449-454.
15. M Walker, G. and D. J Beebe, A passive pumping method for microfluidic devices.
Vol. 2. 2002. 131-4.
16. James, L.W., et al., Microcontact printing of self-assembled monolayers:
applications in microfabrication. Nanotechnology, 1996. 7(4): p. 452.
17. Lewis, G.N., THE OSMOTIC PRESSURE OF CONCENTRATED SOLUTIONS, AND THE LAWS OF THE PERFECT SOLUTION. Journal of the American Chemical Society,
1908. 30(5): p. 668-683.
18. Chaplin, M. Osmotic pressure. 2006 7 September, 2018; Available from:
http://www1.lsbu.ac.uk/water/osmotic_pressure.html.
19. Zavitsas, A.A., Properties of Water Solutions of Electrolytes and Nonelectrolytes.
The Journal of Physical Chemistry B, 2001. 105(32): p. 7805-7817.
20. Pirouzi, A., et al., Experiment and correlation of osmotic coefficient for aqueous solution of carboxylic acids using NRTL nonrandom factor model. Fluid Phase
Equilibria, 2012. 327: p. 38-44.
21. Graça, S., et al., Yeast water channels: an overview of orthodox aquaporins.
Biology of the Cell, 2011. 103(1): p. 35-54.
22. Thomas, D., et al., Aquaglyceroporins, one channel for two molecules. Biochimica
et Biophysica Acta (BBA) - Bioenergetics, 2002. 1555(1): p. 181-186.
23. 王立宏, 流體力學必勝秘笈. 2013.
24. Tan, W.-H. and S. Takeuchi, A trap-and-release integrated microfluidic system for
dynamic microarray applications. Proceedings of the National Academy of
Sciences, 2007. 104(4): p. 1146-1151.
25. Buffle, J., Z. Zhang, and K. Startchev, Metal Flux and Dynamic Speciation at
(Bio)interfaces. Part I: Critical Evaluation and Compilation of Physicochemical Parameters for Complexes with Simple Ligands and Fulvic/Humic Substances. Environmental Science & Technology, 2007. 41(22): p. 7609-7620.
26. Tang, C., et al., Biomimetic aquaporin membranes coming of age. Desalination, 2015. 368: p. 89-105.
27. Zhao, Y., et al., Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization. Journal of Membrane Science, 2012. 423- 424: p. 422-428.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊