跳到主要內容

臺灣博碩士論文加值系統

(44.210.99.209) 您好!臺灣時間:2024/04/16 03:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李佩君
研究生(外文):Pei-Chun Lee
論文名稱:利用枯草桿菌及化學殺菌劑防治百香果頸腐病
論文名稱(外文):Control of Fusarium disease on passion fruits by Bacillus subtilis and chemical fungicides
指導教授:黃姿碧
口試委員:黃振文林宜賢
口試日期:2019-07-23
學位類別:碩士
校院名稱:國立中興大學
系所名稱:植物病理學系所
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:99
中文關鍵詞:百香果枯草桿菌Fusarium solani百香果頸腐病生物防治細胞凋亡能量代謝粒線體膜潛勢生長促進吲哚乙酸溶磷能力殺菌劑
外文關鍵詞:passion fruitsBacillus subtilisFusarium solanicollar rot of passion fruitbiocontrolapoptosismitochondrial membrane potentialenergy metabolismgrowth promotionindole-3-acetic acidphosphate solubilization activityfungicides
相關次數:
  • 被引用被引用:2
  • 點閱點閱:439
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
百香果種苗及其果實在台灣及國際貿易上具高經濟價值,而由Fusarium solani所造成的百香果頸腐病為一百香果重要病害,並會造成其嚴重苗株死亡及產量損失。本研究目的為開發以Bacillus 屬菌株做為防治百香果頸腐病之生物防治資材,篩選具潛力可防治頸腐病的化學藥劑,並評估以Bacillus 屬菌株及化學藥劑共同防治潛力,另進一步探討Bacillus 屬具植物生長促進及生物防治潛力之相關機制。由本研究前期試驗結果顯示B. subtilis YBC及151B1 對許多種真菌病原具拮抗性,其中也包括百香果病原菌Colletotrichum karstii 及 Fusarium solani PF7。而本研究中發現B. subtilis YBC及151B1可抑制F. solani PF7菌絲生長及孢子發芽,其抑制率分別為41.8 %及39.5%。而施用B. subtilis YBC and 151B1 培養液可以降低Fusarium於葉片感染之罹病度並提升帶病土中百香果扦插苗的存活率。另試驗結果亦顯示施用B. subtilis YBC 及 151B1 培養液,具促進百香果種苗生長效果,可提升黃百香果種苗植株高度、增加葉片大小及數量與植株鮮重及乾重。另經測試十三種延伸使用於百香果病害防治及其他作物上子囊菌引起之病害防治用化學殺菌劑對F. solani PF7之生長抑制及引起病害之防治效果,結果顯示得克利具有最佳菌絲生長抑制能力並可以顯著提升百香果扦插苗於病土中之存活率。且亦發現供試測試藥劑皆不會影響拮抗菌B. subtilis YBC 及151B1生長,顯示所測試藥劑與B. subtilis YBC 及 151B1具有親和性。另探討B. subtilis YBC及151B1於百香果Fusarium病害防治機制,結果顯示經B. subtilis YBC 及B. subtilis 151B1 培養濾液處理之F. solani PF7,其發芽管畸形膨大且會喪失細胞膜完整性,且會造成病原真菌粒線體膜潛勢降低及干擾其能量代謝。另亦發現經B. subtilis YBC及151B1培養濾液處理後會導致F. solani PF7細胞之激活態氧累積及造成膜磷脂絲胺酸外顯性、染色質凝聚及DNA 片段化等細胞程序性凋亡之特徵性生理生化表現,因此證實B. subtilis YBC及151B1可以誘導病原之細胞程序性凋亡。另本研究中亦證實B. subtilis YBC及151B1兩株菌株具產生吲哚乙酸及溶磷能力等植物生長促進性狀。綜合上述實驗結果顯示,B. subtilis YBC 及151B1具有防治由F. solani所造成百香果病害之潛力,而其病害防治機制可能因其可誘導病原菌細胞程序性凋亡,並降低粒線體膜潛勢及干擾能量代謝。另B. subtilis YBC 及151B1可透過產生吲哚乙酸及具溶磷能力而促進植物生長。另研究中亦發現化學藥劑-得克利、B. subtilis YBC 及151B1單獨使用或是得克利與B. subtilis 混合應用皆具可防治由F. solani PF7所造成的病害之潛力,因此未來可以用於田間進行綜合防治由F. solani所造成百香果頸腐病。
The seedlings and the fresh fruits of passion fruits are of high value in local and global trade. Fusarium solani (Teleomorph: Neocosmospora solani (Martius) is one of the main disease causal agents affecting passion fruits. The objectives of this study are to develop Bacillus-based biocontrol agents for the management of fusarium disease on passion fruits; to assess the potential fungicides to control fusarium disease on passion fruits; to evaluate of the compatibility of potential Bacillus species strains with chemical fungicides; and to develop integrated strategy for controlling Fusarium disease on passion fruits; to investigate the putative plant protection mechanisms by Bacillus species. Our previous studies indicated that Bacillus subtilis YBC and 151B1 native in Taiwan showed antagonistic activity to several fungal pathogens on passion fruits including Colletotrichum karstii and F. solani PF7. They also inhibited mycelial growth and conidial germination of F. solani PF7. Application of B. subtilis 151B1 and YBC culture broth caused a reduction in the disease severity of fusarium wilt on leaves of passion fruits and enhanced the survival rates of passion fruit seedlings with challenge of F. solani. Application of B. subtilis 151B1 and YBC culture broth promoted the growth of plant height, increased the size and numbers of leaves, and fresh and dry weights of passion fruit seedlings. Among thirteen fungicides commosnly used for the control of Ascomycetes tested, the results showed that tebuconazole showed the best effecacy on the inhibition of hyphal growth of F. solani PF7 and the best survival of the passion fruit cuttings in the infested soil. We also found that the growth of B. subtilis 151B1 and YBC was not affected by the above tested fungicides and the efficacy in enhancing survival rates of passion fruit cuttings in the Fusarium-infested soil remained, suggesting the compatibility between B. subtilis and tested fungicides. To investigate the putative mechanisms of disease control, the results indicated that the treatments of culture filtrates from B. subtilis 151B1 and YBC both caused aberrant conidial morphology and loss of cell membrane integrity. Additionally, the treatments caused reduction in mitochondrial membrane potential and interfered with energy metabolism of Fusarium solani PF7. The treatments also enhanced the reactive oxygen species accumulation, and resulted in externalization of phosphatidylserine, chromatin condensation, and DNA fragmentation, suggesting the functions of culture filtrates in triggering apoptotic-like cell death. To investigate the mechanisms of plant growth promotion by B. subtilis 151B1 and YBC, our results indicated that both Bacillus strains exhibited activities of producing indole-3-acetic acid (IAA) and solubilizing phosphate. In conclusions, B. subtilis 151B1 and YBC are potential biocontrol agents for passion fruit disease caused by F. solani. The control efficacy may be contributed to their ability in triggering apoptotic-like cell death, reducing the mitochondrial membrane potential and interfering with energy metabolism of the pathogen. B. subtilis 151B1 and YBC also exhibited growth promotion traits by producing IAA and solubilizing phosphates. Chemical fungicide, tebuconazole, B. subtilis 151B1 and YBC, or combination of tebuconazole and B. subtilis could be used to prevent the passion fruits from the infection by F. solani PF7. The integrated control strategies by combination use of Bacillus species and chemical fungicides could be further implemented to control the collar rot disease of passion fruits caused by F. solani.
中文摘要 i
Abstract iii
目錄 v
圖目次 ix
前言 1
材料與方法 8
一、供試藥品來源 8
二、供試菌種來源與病原性測試 8
(一)供試百香果病原菌來源與保存 8
(二)供試拮抗性枯草桿菌群菌株之來源與保存 9
(三)百香果病原菌病原性測試 9
三、百香果頸腐病原PF7之形態及分子生物學鑑定 9
(一)形態鑑定 9
(二)分子生物學鑑定 10
四、B. subtilis YBC、YBX及151B1對F. solani PF7之拮抗作用
11
五、具拮抗性之芽孢桿菌屬菌株YBC、YBX及151B1之生理生化特性
及16S rRNA 序列分析 11
(一)Biolog 鑑定及生理生化分析 11
(二)B. subtilis YBC及151B1之碳、氮素源利用分析 13
(三)16S rRNA 序列分析 14
六、具拮抗性之B. subtilis YBC及151B1培養液的製備 15
七、B. subtilis YBC及151B1對百香果防治潛力測試 15
(一)施用微生物培養液對百香果離葉之防治測試 15
(二)施用微生物培養液對於扦插苗存活性測試 16
八、B. subtilis YBC及151B1對百香果實生苗生長之影響測試 16
九、化學藥劑對百香果病原菌PF7之菌絲生長抑制測試及孢子發芽抑制測
試 17
十、化學藥劑與B. subtilis YBC及151B1親和性及共同防治試驗 18
十一、B. subtilis YBC及151B1培養濾液對F. solani PF7孢子發芽及於百香
果葉片上侵入感染之影響 19
十二、B. subtilis YBC及151B1培養濾液是否會導致百香果頸腐病菌PF7之
細胞凋亡之檢測 20
(一)細胞膜通透性測試 20
(二)激活態氧(Reactive oxygen species, ROS)累積 20
(三)膜磷脂絲胺酸(phosphatidylserine, PS )外顯性 21
(四)染色質凝聚 22
(五)DNA 片段化 22
十三、 B. subtilis YBC and 151B1 培養濾液對百香果頸腐病原菌PF7粒線體
膜潛勢及呼吸作用之影響 22
十四、B. subtilis YBC及151B1之植物生長促進特性分析 23
十五、統計分析 25
結果 26
一、百香果果實壞疽病原菌之分離及病原性測定 26
二、百香果頸腐病原PF7之形態及分子生物學鑑定 26
(一)形態鑑定 26
(二)分子生物學鑑定 27
三、根圈土壤分離之芽孢桿菌屬菌株對百香果病原菌之拮抗作用 28
四、以生理生化特性及分子生物學鑑定具拮抗性芽孢桿菌屬菌株 28
(一)Biolog 鑑定及生理生化分析 28
(二)B. subtilis YBC及151B1之碳、氮素源利用分析 29
(三)16S rRNA 序列分析 29
五、B. subtilis YBC及151B1對百香果頸腐病害防治潛力測試 29
六、B. subtilis YBC及151B1對百香果實生苗生長之影響測試 30
七、化學藥劑對百香果病原菌PF7之菌絲生長抑制測試及孢子發芽抑
制測試 31
八、化學藥劑與B. subtilis YBC及151B1親和性及共同防治試驗 31
九、B. subtilis YBC及151B1培養濾液對F. solani PF7孢子發芽及於百香果
葉片上侵入感染之影響 32
十、B. subtilis YBC及151B1 培養濾液是否會導致百香果頸腐病菌PF7之
細胞凋亡之檢測 33
十一、B. subtilis YBC and 151B1 培養濾液對百香果頸腐病原菌PF7粒線體
膜潛勢及呼吸作用之影響 35
十二、B. subtilis YBC及151B1之植物生長促進特性分析 36
討論 38
參考文獻 43
圖說明 53
附錄 83
黃振文、孫守恭。1997。台灣產鐮胞菌。初版。62-73。世維出版社:台中。
黃振文。2005。鐮孢菌的分類系統概論。植物病理系。國立中興大學。台中。
李文立、王德男。 2007。百香果栽培管理要點。園藝之友119: 18-26。
李文立、林榮貴。2008。百香果的栽培管理。行政院農業委員會農業試驗所
技術服務季刊 74 :4-8。
林雅涵。2015。茶與百香果炭疽病之拮抗微生物鑑定及其於病害防治應用潛力。
國立中興大學植物病理學系碩士論文。24-59。
黃翔瑜。2016。應用Bacillus subtilis TKS1-1及SP4-17菌株防治草莓炭疽病。國
立中興大學植物病理學系碩士論文。1-69。
陳金枝、鄭櫻慧、鄧汀欽。2014。無病毒健康種苗對百香果產業發展之重要性及
未來展望。植物種苗生技 37: 63-71。
陳金枝、蔡志濃、黃晉興、張瑞璋、李文立、徐智政。2019。提升台灣百香果種
苗輸出東南亞競爭力之技術與策略。農業試驗所技術服務季刊117: 9-14。
Abd‐Alla, M. 1994. Phosphatases and the utilization of organic phosphorus by Rhizobium leguminosarum biovar viceae. Letters in Applied Microbiology 18:294-296.
Abeysinghe, S. 2012. Biological control of Fusarium solani f. sp. phaseoli the causal agent of root rot of bean using Bacillus subtilis CA32 and Trichoderma harzianum RU01. Ruhuna Journal of Science 2.
Ahmad, F., Ahmad, I., and Khan, M. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological research 163:173-181.
Ajilogba, C. F., Babalola, O. O., and Ahmad, F. 2013. Antagonistic effects of Bacillus species in biocontrol of tomato Fusarium wilt. Studies on Ethno-Medicine 7:205-216.
Baffoni, L., Gaggia, F., Dalanaj, N., Prodi, A., Nipoti, P., Pisi, A., Biavati, B., and Di Gioia, D. 2015. Microbial inoculants for the biocontrol of Fusarium spp. in durum wheat. BMC microbiology 15:242.
Bahar, M., and Shahab, H. 2012a. Analysis of Iranian isolates of Fusarium solani using morphological, pathogenicity and microsatellite DNA marker characterization. African Journal of Biotechnology 11:474-482.
Bahar, M., and Shahab, H. J. A. J. o. B. 2012b. Analysis of Iranian isolates of Fusarium solani using morphological, pathogenicity and microsatellite DNA marker characterization. 11:474-482.
Baker, K., and Cook, R. J. 1974. Biological control of plant pathogens. WH Freeman and Company.
Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M., and Parr‐Dobrzanski, B. J. P. M. S. f. P. S. 2002. The strobilurin fungicides. 58:649-662.
Beever, R., and Bollard, E. 1970. The nature of the stimulation of fungal growth by potato extract. Microbiology 60:273-279.
Bennett, R. S., and Davis, R. M. 2013. Method for rapid production of Fusarium oxysporum f. sp. vasinfectum chlamydospores. J Cotton Sci 17:52-59.
Bhattacharyya, P. N., and Jha, D. K. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology Biotechnology 28:1327-1350.
Bueno, C., Fischer, I., Rosa, D., Firmino, A., Harakava, R., Oliveira, C., and Furtado, E. 2014. Fusarium solani f. sp. passiflorae: a new forma specialis causing collar rot in yellow passion fruit. Plant pathology 63:382-389.
Cao, Y., Zhang, Z., Ling, N., Yuan, Y., Zheng, X., Shen, B., and Shen, Q. 2011. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biology Fertility of Soils 47:495-506.
Cappuccino, J. G., and Sherman, N. 2008. Microbiology: a laboratory manual (Vol. 9). Pearson/Benjamin Cummings.
Cavaglieri, L., Orlando, J., Rodriguez, M., Chulze, S., and Etcheverry, M. 2005. Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Research in Microbiology 156:748-754.
Chen, C., and Dickman, M. B. 2005. Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proceedings of the National Academy of Sciences 102:3459-3464.
Chen, X., Zhao, X., Qian, Y., Li, J., Chen, L., Chen, J., Zhang, Y., and Suo, H. 2017. Screening and identification of lactic acid bacteria strains with high acid-producing from traditional fermented yak yogurt. Page 03002 in: BIO Web of Conferences EDP Sciences.
Chitarra, G. S., Breeuwer, P., Nout, M. J. R., van Aelst, A. C., Rombouts, F. M., and Abee, T. 2003. An antifungal compound produced by Bacillus subtilis YM 10-20 inhibits germination of Penicillium roqueforti conidiospores. J Appl Microbiol 94:159-166.
Chowdappa, P., Kumar, S. M., Lakshmi, M. J., and Upreti, K. 2013. Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biological Control 65:109-117.
Chung, W., Chen, L., Huang, J., Huang, H., and Chung, W. 2011. A new ‘forma specialis’ of Fusarium solani causing leaf yellowing of Phalaenopsis. Plant pathology 60:244-252.
Classen, A. T., Boyle, S. I., Haskins, K. E., Overby, S. T., and Hart, S. C. 2003. Community-level physiological profiles of bacteria and fungi: plate type and incubation temperature influences on contrasting soils. FEMS Microbiology Ecology 44:319-328.
Cox, K. D., Quello, K., Deford, R. J., and Beckerman, J. L. 2009. A rapid method to quantify fungicide sensitivity in the brown rot pathogen Monilinia fructicola. Plant disease 93:328-331.
Dar, G. H., Zargar, M., and Beigh, G. 1997. Biocontrol of Fusarium root rot in the common bean (Phaseolus vulgaris L.) by using symbiotic Glomus mosseae and Rhizobium leguminosarum. Microbial Ecology 34:74-80.
Davies, P. J. 2004. Plant hormones: biosynthesis, signal transduction, action! Springer Science & Business Media.
De Bach, P. 1964. Biological control of insect pests and weeds. Biological control of insect pests weeds.
De Vos, P., and Garrity, G. M. 2009. Bergey's manual of systematic bacteriology. Springer.
Dela Cruz, T. E. E., and Torres, J. M. O. 2012. Gelatin hydrolysis test protocol. American Society for Microbiology. :10.
Deleu, M., Paquot, M., and Nylander, T. 2005. Fengycin interaction with lipid monolayers at the air–aqueous interface—implications for the effect of fengycin on biological membranes. Journal of Colloid Interface Science 283:358-365.
Fischer, I. H., and Rezende, J. A. 2008. Diseases of passion flower (Passiflora spp.). Pest technology 2:1-19.
Gilardi, G., Manker, D., Garibaldi, A., and Gullino, M. 2008. Efficacy of the biocontrol agents Bacillus subtilis and Ampelomyces quisqualis applied in combination with fungicides against powdery mildew of zucchini. Journal of Plant Diseases Protection 115:208-213.
Gong, A.-D., Li, H.-P., Yuan, Q.-S., Song, X.-S., Yao, W., He, W.-J., Zhang, J.-B., and Liao, Y.-C. 2015. Antagonistic mechanism of iturin A and plipastatin A from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. PloS one 10:1-18.
Herrold, R. D. 1931. Egg yolk agar medium for the growth of tubercle bacilli. The Journal of Infectious Diseases:236-241.
Honraet, K., De Vos, M., Summerbell, R., Van Kempen, I., De Saeger, S., Vermeersch, H., Van Peteghem, C., and Nelis, H. 2005. Recurrent colonization of successively implanted tracheoesophageal vocal prostheses by a member of the Fusarium solani species complex. Journal of clinical microbiology 43:770-777.
Hu, H.-J., Chen, Y.-L., Wang, Y.-F., Tang, Y.-Y., Chen, S.-L., and Yan, S.-Z. 2017. Endophytic Bacillus cereus effectively controls Meloidogyne incognita on tomato plants through rapid rhizosphere occupation and repellent action. Plant disease 101:448-455.
Hu, L. B., Shi, Z. Q., Zhang, T., and Yang, Z. M. 2007. Fengycin antibiotics isolated from B-FS01 culture inhibit the growth of Fusarium moniliforme Sheldon ATCC 38932. FEMS microbiology letters 272:91-98.
Il Kim, P., and Chung, K.-C. 2004. Production of an antifungal protein for control of Colletotrichum lagenarium by Bacillus amyloliquefaciens MET0908. FEMS Microbiology Letters 234:177-183.
Kado, C., and Heskett, M. 1970. Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas and Xanthomonas. Phytopathology 60:969-976.
Kannan, K., and Jain, S. K. 2000. Oxidative stress and apoptosis. Pathophysiology 7:153-163.
Kasana, R. C., Salwan, R., Dhar, H., Dutt, S., and Gulati, A. 2008. A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Current microbiology 57:503-507.
Leelasuphakul, W., Sivanunsakul, P., and Phongpaichit, S. 2006. Purification, characterization and synergistic activity of β-1, 3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89-24 against rice blast and sheath blight. Enzyme Microbial Technology 38:990-997.
Leslie, J. F., and Summerell, B. A. 2008. The Fusarium laboratory manual. John Wiley & Sons.
Li, S., Zhang, N., Zhang, Z., Luo, J., Shen, B., Zhang, R., and Shen, Q. 2013. Antagonist Bacillus subtilis HJ5 controls Verticillium wilt of cotton by root colonization and biofilm formation. Biology fertility of soils 49:295-303.
Louden, B. C., Haarmann, D., and Lynne, A. M. 2011. Use of blue agar CAS assay for siderophore detection. Journal of microbiology biology education 12:51.
Maget-Dana, R., Ptak, M., Peypoux, F., and Michel, G. 1985. Pore-forming properties of iturin A, a lipopeptide antibiotic. Biochimica et Biophysica Acta -Biomembranes 815:405-409.
Mnif, I., Hammami, I., Triki, M. A., Azabou, M. C., Ellouze-Chaabouni, S., and Ghribi, D. 2015. Antifungal efficiency of a lipopeptide biosurfactant derived from Bacillus subtilis SPB1 versus the phytopathogenic fungus, Fusarium solani. Environmental Science Pollution Research 22:18137-18147.
Nain, L., Yadav, R., and Saxena, J. 2012. Characterization of multifaceted Bacillus sp. RM-2 for its use as plant growth promoting bioinoculant for crops grown in semi arid deserts. Applied soil ecology 59:124-135.
Narayanan, P., Vanitha, S., Rajalakshmi, J., Parthasarathy, S., Arunkumar, K., Nagendran, K., and Karthikeyan, G. 2015. Efficacy of biocontrol agents and fungicides in management of mulberry wilt caused by Fusarium solani. Journal of Biological Control 29:107-114.
Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS microbiology Letters 170:265-270.
O'Donnell, K. 2000. Molecular phylogeny of the Nectria haematococca-Fusarium solani species complex. Mycologia 92:919-938.
Ongena, M., Jacques, P., Touré, Y., Destain, J., Jabrane, A., and Thonart, P. 2005. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Applied microbiology biotechnology 69:29.
Pérez-Miranda, S., Cabirol, N., George-Téllez, R., Zamudio-Rivera, L., and Fernández, F. 2007. O-CAS, a fast and universal method for siderophore detection. Journal of microbiological methods 70:127-131.
Papavizas, G. C. 1985. Trichoderma and Gliocladium: biology, ecology, and potential for biocontrol. 23:23-54.
Peng, D., Li, S., Chen, C., and Zhou, M. 2014. Combined application of Bacillus subtilis NJ-18 with fungicides for control of sharp eyespot of wheat. Biological control 70:28-34.
Reers, M., Smiley, S. T., Mottola-Hartshorn, C., Chen, A., Lin, M., and Chen, L. B. 1995. Mitochondrial membrane potential monitored by JC-1 dye. Pages 406-417 in: Methods in enzymology, vol. 260. Elsevier.
Robledo-Buriticá, J., Ángel-García, C., and Castaño-Zapata, J. 2017. Environmental scanning electron microscopy of the infection process of Fusarium solani f. sp. passiflorae in seedlings of passionfruit (Passiflora edulis f. flavicarpa). Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 41:213-220.
Rojo, F. G., Reynoso, M. M., Ferez, M., Chulze, S. N., and Torres, A. M. 2007. Biological control by Trichoderma species of Fusarium solani causing peanut brown root rot under field conditions. Crop protection 26:549-555.
Sala, M. M., Arrieta, J. M., Boras, J. A., Duarte, C. M., and Vaqué, D. 2010. The impact of ice melting on bacterioplankton in the Arctic Ocean. Polar biology 33:1683-1694.
Sarwar, A., Hassan, M. N., Imran, M., Iqbal, M., Majeed, S., Brader, G., Sessitsch, A., and Hafeez, F. Y. 2018. Biocontrol activity of surfactin A purified from Bacillus NH-100 and NH-217 against rice bakanae disease. Microbiological research 209:1-13.
SaTJ, W. T. T. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. . Pages 315-322 London: Academic Press.
Schwyn, B., and Neilands, J. 1987. Universal chemical assay for the detection and determination of siderophores. Analytical biochemistry 160:47-56.
Shafi, J., Tian, H., and Ji, M. 2017. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnology Biotechnological Equipment 31:446-459.
Shaligram, N. S., and Singhal, R. S. 2010. Surfactin–a review on biosynthesis, fermentation, purification and applications. Food technology biotechnology 48:119-134.
Sharath Babu, G., Anand, T., Ilaiyaraja, N., Khanum, F., and Gopalan, N. 2017. Pelargonidin modulates Keap1/Nrf2 pathway gene expression and ameliorates citrinin-induced oxidative stress in HepG2 cells. Frontiers in pharmacology 8:868.
Sharifi, R., and Ryu, C.-M. 2016. Are bacterial volatile compounds poisonous odors to a fungal pathogen Botrytis cinerea, alarm signals to Arabidopsis seedlings for eliciting induced resistance, or both? Frontiers in microbiology 7:196.
Snyder, W. C., and Hansen, H. 1941. The species concept in Fusarium with reference to section Martiella. American Journal of Botany:738-742.
Ssekyewa, C., Opio, A. F., Swinburne, T., Van Damme, P., and Abubakar, Z. 1999. Sustainable management of collar rot disease of passion fruits in Uganda. International journal of pest management 45:173-177.
Sun, H.-Y., Zhu, Y.-F., Liu, Y.-Y., Deng, Y.-Y., Li, W., Zhang, A.-X., and Chen, H.-G. 2014. Evaluation of tebuconazole for the management of Fusarium head blight in China. Australasian Plant Pathology 43:631-638.
Tambekar, D., and Bhutada, S. 2010. Studies on antimicrobial activity and characteristics of bacteriocins produced by Lactobacillus strains isolated from milk of domestic animals. The Internet Journal of Microbiology 8:1-6.
Tang, Q., Bie, X., Lu, Z., Lv, F., Tao, Y., and Qu, X. 2014. Effects of fengycin from Bacillus subtilis fmbJ on apoptosis and necrosis in Rhizopus stolonifer. Journal of Microbiology 52:675-680.
Und Reinking, W. 1935. Die Fusarien, ihre Beschreibung, Schad-wirkung und Bekämpfung. Berlin.
Vanittanakom, N., Loeffler, W., Koch, U., and Jung, G. 1986. Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. The Journal of antibiotics 39:888-901.
Waheed, A., and Tehmina, A. 2011. Quantitative Changes in Defense System of Tomato Induced By Two Strains of Bacillus against Fusarium Wilt. Ind J Fund Appl Life Sci 1:2231-6345.
Wang, J., Liu, J., Wang, X., Yao, J., and Yu, Z. 2004. Application of electrospray ionization mass spectrometry in rapid typing of fengycin homologues produced by Bacillus subtilis. Letters in applied microbiology 39:98-102.
Wang, N., Liu, M., Guo, L., Yang, X., and Qiu, D. 2016a. A novel protein elicitor (PeBA1) from Bacillus amyloliquefaciens NC6 induces systemic resistance in tobacco. International journal of biological sciences 12:757.
Wang, S., Liang, Y., Shen, T., Yang, H., and Shen, B. 2016b. Biological characteristics of Streptomyces albospinus CT205 and its biocontrol potential against cucumber Fusarium wilt. Biocontrol Science Technology 26:951-963.
Weisburg, W. G., Barns, S. M., Pelletier, D. A., and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. Journal of bacteriology 173:697-703.
Wu, G., Liu, Y., Xu, Y., Zhang, G., Shen, Q., and Zhang, R. 2018. Exploring elicitors of the beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 to induce plant systemic resistance and their interactions with plant signaling pathways. Molecular plant-microbe interactions 31:560-567.
Yu, G., Sinclair, J., Hartman, G., and Bertagnolli, B. 2002. Production of iturin A by Bacillus amyloliquefaciens suppressing Rhizoctonia solani. Soil Biology Biochemistry 34:955-963.
Yu, X., Ai, C., Xin, L., and Zhou, G. 2011. The siderophore-producing bacterium, Bacillus subtilis CAS15, has a biocontrol effect on Fusarium wilt and promotes the growth of pepper. European Journal of Soil Biology 47:138-145.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 拮抗性枯草桿菌BacillussubtilisWG6-14菌株於柑橘潰瘍病防治應用
2. 枯草桿菌Bacillus subtilis WG6-14於檬果黑斑病防治之應用潛力與作用機制
3. BacillussubtilisV656所生產微生物抑制物質之研究
4. 台灣由Streptomycesscabies所引起之馬鈴薯瘡痂病-病原菌生物特性及應用拮抗性枯草桿菌於其生物防治之初探
5. 茶與百香果炭疽病之拮抗微生物鑑定及其於病害防治應用潛力
6. 枯草桿菌Bacillus subtilis WG6-14懸浮培養增量菌液製作及其病害管理之應用
7. 鏈黴菌Streptomyces sp. S1菌株作為木瓜疫病Phytophthora palmivora防治生物製劑之應用潛力
8. 傳染性胰臟壞死病毒外殼蛋白VP3造成斑馬魚肝臟細胞株凋亡分子機制之研究
9. 生物殺菌劑BacillussubtilisWG6-14作為產蛋雞益生菌及其排遺於植物病害防治應用之評估
10. 鏈黴菌Streptomyces sp. S1菌株生物製劑於強化殺菌劑防治荔枝露疫病Peronophythora litchii之應用性
11. Bacillus subtilis TKS1-1於水稻白葉枯病之防治應用與其防治機制之探討
12. 探討花生四烯酸對人類乳腺癌細胞進行細胞凋亡之研究
13. 傳染性胰臟壞死病毒造成宿主細胞大眼鮭魚胚胎細胞株因粒線體膜電位消失而凋亡之研究
14. 鉛暴露影響精子各類反應性氧化物質產生、粒線體膜電位與細胞凋亡之研究
15. 補充葉酸對氧化劑誘發細胞程式凋亡與啟動粒線體訊息傳遞機制的影響
 
無相關期刊