跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/04 08:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃韋淳
研究生(外文):Wei-Chun Huang
論文名稱:拮抗Pseudomonas aeruginosa 及 P. syringae 之土壤微生物抗菌胜肽 (AMPs) 篩選與分離純化鑑定
論文名稱(外文):Isolation and characterization of antimicrobial peptides (AMPs) from soil microbiota against Pseudomonas aeruginosa and P. syringae
指導教授:鄧文玲鄧文玲引用關係
指導教授(外文):Wen-Ling Deng
口試委員:賴建成徐媛曼
口試委員(外文):Chien-Chen LaiYuan-Man Hsu
口試日期:2019-07-16
學位類別:碩士
校院名稱:國立中興大學
系所名稱:植物病理學系所
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:99
中文關鍵詞:抗菌胜肽NRPSEnolase綠膿桿菌細菌性葉斑病菌總蛋白質體學
外文關鍵詞:antimicrobial peptidesNRPSEnolasePseudomonas aeruginosaPseudomonas syringaemetaproteomic method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:95
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
Abstract iii
目次 v
表目次 ix
圖目次 ix
縮寫表 xi
實驗藥品清冊 xiii
前言 1
一、 細菌抗藥性之現況 1
二、 獲得抗藥性之機制 2
三、 抗菌胜肽的興起 3
四、 抗菌胜肽起源與兩大生合成機制 3
五、 抗菌胜肽之抑菌作用機制 4
六、 抗菌胜肽結構與作用機制之關聯性 6
七、 抗菌胜肽使用之優劣 6
八、 研究目的及篩選抗菌胜肽之拮抗對象 7
材料與方法 9
一、 試驗之土壤樣品來源 9
二、 試驗菌株以及培養條件 9
三、 聚合酶連鎖反應 (PCR) 10
四、 DNA 膠體電泳 10
五、 PCR 產物純化回收及 DNA 片段純化回收 10
六、 TA 載體構築、熱休克法轉型作用及質體 DNA 之萃取 11
七、 核酸序列分析 11
八、 脂肪酸甲酯 (FAME) 萃取暨微生物脂肪酸快速鑑定系統 12
九、 土壤菌種保存庫具拮抗力之細菌篩選 12
十、 細菌酵素測定暨生理生化測試 13
(1) 澱粉水解能力測試 13
(2) 蛋白質水解能力測試 13
(3) 脂質水解能力測試 13
(4) 果膠分解酵素能力測試 13
(5) 卵磷脂分解能力測試 14
(6) 七葉樹苷 (Esculin) 分解能力測試 14
十一、 液態培養之土壤拮抗細菌對峙病原菌拮抗試驗 14
十二、 格蘭氏陽性細菌染色體 DNA 萃取 15
十三、 Nanopore定序細菌全基因體 15
(1) Genomic DNA 樣品純化 15
(2) Genomic DNA 樣品上機前處理 16
(3) Oxford Nanopore minION device 之使用方式 16
十四、 拮抗細菌二次代謝物基因組預測及分析 17
十五、 萃取液濃縮法及樣品透析 17
(1) 樣品濃縮法 17
(2) 蛋白質透析 18
十六、 蛋白質聚丙烯胺膠體電泳 (PAGE) 、膠片染色及膠片對峙試驗前處理 18
(1) 10% Tricine - SDS PAGE 膠片製備 18
(2) 16.5% Tricine - SDS PAGE 膠片製備 18
(3) 蛋白質膠體電泳 19
(4) 銀染染色 19
(5) 膠片對峙試驗前處理 19
十七、 以蛋白質快速液相層析儀 (Fast performance liquid chromatography, FPLC) 純化胜肽 20
(1) 拮抗菌之培養液樣品前處理 20
(2) 以陽離子交換樹脂純化拮抗菌培養液中之抗菌胜肽 20
(3) 分子篩管柱 (SEC Column) 純化抗菌胜肽 20
十八、 土壤總體蛋白質體 (metaproteome) 萃取法 21
(1) 改良式 MUB 蛋白質萃取法 21
(2) GeneMarkTM TriSolution Plus reagent kit 蛋白質萃取法 21
十九、 Sep Pak C18 逆相層析管柱層析土壤蛋白質體 22
二十、 蛋白質萃取液對峙病原細菌試驗 22
(1) 抗菌物質對峙實驗 22
(2) 土壤蛋白質總體萃取對峙實驗 22
(3) 抗菌胜肽對不同病原細菌拮抗力測試 22
二十一、 電泳膠體活性蛋白質對峙病原細菌拮抗試驗 (gel overlay test) 23
二十二、 拮抗物質穩定性測試 23
二十三、 高解析液相層析串聯質譜儀 HPLC - ESI - qTOF MS 蛋白質胜肽片段解析 24
二十四、 抗菌分子質譜分析 24
(1) NRPS結構預測與質譜數據分析 24
(2) 胜肽片段無資料庫比對解序法 (de novo sequencing) 25
(3) 二次代謝物解序與數據分析 25
二十五、 胜肽結構預測分析 25
(1) 胜肽結構預測 25
(2) 胜肽電荷分佈與可能具分子交互作用之結構單位預測 25
結果 27
一、 自土壤菌種庫篩選出之9株拮抗細菌及其鑑定與酵素生理生化特性 27
二、 9株土壤拮抗細菌對峙 Pseudomonas aeruginosa PAO1 及 P. syringae PSL24 之拮抗活性測試 28
三、 蛋白質體學技術分析拮抗菌合成之抗菌蛋白質 29
四、 拮抗菌 Brevibacillus brevis JRL04B3 之全基因體解序及二次代謝物基因組分析 29
五、 拮抗菌 Brevibacillus brevis JRL04B3 之陰離子拮抗物質分離純化及質譜分析 31
六、 拮抗菌 Brevibacillus brevis JRL04B3 之陽離子拮抗物質分離純化及質譜分析 32
七、 拮抗物質 Frac. 5 及 Frac. 8 物化性質分析 34
八、 Frac. 8 及 Frac. 5 對不同病原細菌之拮抗力強弱分析 35
九、 土壤總體蛋白質體萃取法萃取效果及效率分析 35
十、 以蛋白質體學技術分析土壤總體蛋白質體之抗菌活性 36
十一、 土壤蛋白質體中之蛋白質粗萃物純化與分離 37
討論 38
參考文獻 49
圖表 59
附錄 87
蔡佳欣、安寶貞、鄧文玲。2015。進口梨接穗花枯病之鑑定與防治。《台灣新浮現之重要作物病害及其防治研討會專刊》,頁23-30。
Abou-Zied, A., and Shehata, Y. (1972). A new antibiotic from the group of peptide antibiotics produced by Streptomyces species, isolated from Egyptian soils. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene Zweite naturwissenschaftliche Abt: Allgemeine, landwirtschaftliche und technische Mikrobiologie 127, 429.
Alam, M., and Jha, D. (2019). Optimization of culture conditions for antimetabolite production by a rare tea garden actinobacterial isolate, Amycolatopsis sp. ST-28. African Journal of Clinical and Experimental Microbiology 20, 209-220.
Altamura, S., Sanz, J., Amils, R., Cammarano, P., and Londei, P. (1988). The antibiotic sensitivity spectra of ribosomes from the Thermoproteales: phylogenetic depth and distribution of antibiotic binding sites. Systematic and applied microbiology 10, 218-225.
Aoki, W., and Ueda, M. (2013). Characterization of antimicrobial peptides toward the development of novel antibiotics. Pharmaceuticals 6, 1055-1081.
Arnison, P.G., Bibb, M.J., Bierbaum, G., Bowers, A.A., Bugni, T.S., Bulaj, G., Camarero, J.A., Campopiano, D.J., Challis, G.L., and Clardy, J. (2013). Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Natural product reports 30, 108-160.
Bahar, A.A., and Ren, D. (2013). Antimicrobial peptides. Pharmaceuticals (Basel) 6, 1543-1575.
Balls, A., Hale, W., and Harris, T. (1940). A sulphur-bearing constituent of the petroleum ether extract of wheat flour (preliminary report). Cereal Chemistry 17, 243-245.
Bastida, F., Hernandez, T., and Garcia, C. (2014). Metaproteomics of soils from semiarid environment: functional and phylogenetic information obtained with different protein extraction methods. Journal of Proteomics 101, 31-42.
Bastida, F., Jehmlich, N., Torres, I.F., and Garcia, C. (2018). The extracellular metaproteome of soils under semiarid climate: A methodological comparison of extraction buffers. Science Total Environment 619-620, 707-711.
Baumberg, S., and Klingel, U. (1993). Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics, ASMscience, pp. 299-306.
Beaven, A.H., Maer, A.M., Sodt, A.J., Rui, H., Pastor, R.W., Andersen, O.S., and Im, W. (2017). Gramicidin a channel formation induces local lipid redistribution I: Experiment and simulation. Biophysical journal 112, 1185-1197.
Borowska, Z.K. (1962). On the mode of action of edeine. Biochimica et Biophysica Acta (BBA)-Specialized Section on Nucleic Acids and Related Subjects 61, 897-902.
Breen, S., Solomon, P.S., Bedon, F., and Vincent, D. (2015). Surveying the potential of secreted antimicrobial peptides to enhance plant disease resistance. Frontiers in plant science 6, 900.
Brogden, K.A. (2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature reviews microbiology 3, 238.
Bull, C., De Boer, S., Denny, T., Firrao, G., Saux, M.F.-L., Saddler, G., Scortichini, M., Stead, D., and Takikawa, Y. (2010). Comprehensive list of names of plant pathogenic bacteria, 1980-2007. Journal of Plant Pathology, 551-592.
Chalkley, R.J., Baker, P.R., Huang, L., Hansen, K.C., Allen, N.P., Rexach, M., and Burlingame, A.L. (2005). Comprehensive analysis of a multidimensional liquid chromatography mass spectrometry dataset acquired on a quadrupole selecting, quadrupole collision cell, time-of-flight mass spectrometer: II. New developments in Protein Prospector allow for reliable and comprehensive automatic analysis of large datasets. Molecular & Cellular Proteomics 4, 1194-1204.
Chen, H., Haynes, R.K., Scherkenbeck, J., Sze, K.H., and Zhu, G. (2004). Elucidation of the solution conformations of loloatin C by NMR spectroscopy and molecular simulation. European Journal of Organic Chemistry 2004, 31-37.
Chiang, Y.-M., Chang, S.-L., Oakley, B.R., and Wang, C.C. (2011). Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms. Current opinion in chemical biology 15, 137-143.
Datta, A., Ghosh, A., Airoldi, C., Sperandeo, P., Mroue, K.H., Jiménez-Barbero, J., Kundu, P., Ramamoorthy, A., and Bhunia, A. (2015). Antimicrobial peptides: insights into membrane permeabilization, lipopolysaccharide fragmentation and application in plant disease control. Scientific reports 5, 11951.
Demain, A.L. (1989). Regulation of Secondary Metabolism in Actinomycetes, CRC Press, pp. 127-132.
Demain, A.L. (1998). Induction of microbial secondary metabolism. International Microbiology 1, 259-264.
Deutscher, J. (2008). The mechanisms of carbon catabolite repression in bacteria. Current opinion in microbiology 11, 87-93.
de Loubresse, N.G., Prokhorova, I., Holtkamp, W., Rodnina, M.V., Yusupova, G., and Yusupov, M. (2014). Structural basis for the inhibition of the eukaryotic ribosome. Nature 513, 517.
Drlica, K., Malik, M., Kerns, R.J., and Zhao, X. (2008). Quinolone-mediated bacterial death. Antimicrobial agents and chemotherapy 52, 385-392.
Dubos, R.J. (1939). Studies on a bactericidal agent extracted from a soil bacillus: I. Preparation of the agent. Its activity in vitro. The Journal of experimental medicine 70, 1.
El-Nakeeb, M.A., and Lechevalier, H.A. (1963). Selective isolation of aerobic actinomycetes. Applied Environmental Microbiology 11, 75-77.
Erciyas, E., Erkaleli, H., and Cosar, G. (1994). Antimicrobial evaluation of some styryl ketone derivatives and related thiol adducts. Journal of pharmaceutical sciences 83, 545-548.
Fair, R.J., and Tor, Y. (2014). Antibiotics and bacterial resistance in the 21st century. Perspectives in Medicinal Chemistry 6, 25-64.
Gutierrez-Barranquero, J.A., de Vicente, A., Carrion, V.J., Sundin, G.W., and Cazorla, F.M. (2013). Recruitment and rearrangement of three different genetic determinants into a conjugative plasmid increase copper resistance in Pseudomonas syringae. Applied Environmental Microbiology 79, 1028-1033.
Hancock, R.E., and Brinkman, F.S. (2002). Function of Pseudomonas porins in uptake and efflux. Annual Reviews in Microbiology 56, 17-38.
Hancock, R.E., and Sahl, H.G. (2006). Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature Biotechnology 24, 1551-1557.
Hartzell, J.D., Neff, R., Ake, J., Howard, R., Olson, S., Paolino, K., Vishnepolsky, M., Weintrob, A., and Wortmann, G. (2009). Nephrotoxicity associated with intravenous colistin (colistimethate sodium) treatment at a tertiary care medical center. Clinical Infectious Diseases 48, 1724-1728.
Heyer, R., Schallert, K., Zoun, R., Becher, B., Saake, G., and Benndorf, D. (2017). Challenges and perspectives of metaproteomic data analysis. Journal of Biotechnology 261, 24-36.
Hirano, S.S., and Upper, C.D. (2000). Bacteria in the Leaf Ecosystem with Emphasis onPseudomonas syringae—a Pathogen, Ice Nucleus, and Epiphyte. Microbiology and Molecular Biology Reviews 64, 624-653.
Hirsch, J.G. (1956). Phagocytin: a bactericidal substance from polymorphonuclear leucocytes. Journal of Experimental Medicine 103, 589-611.
Hooper, D.C. (2000). Mechanisms of action and resistance of older and newer fluoroquinolones. Clinical Infectious Diseases 31, S24-S28.
Inui Kishi, R.N., Stach-Machado, D., Singulani, J.L., Dos Santos, C.T., Fusco-Almeida, A.M., Cilli, E.M., Freitas-Astua, J., Picchi, S.C., and Machado, M.A. (2018). Evaluation of cytotoxicity features of antimicrobial peptides with potential to control bacterial diseases of citrus. Public Library of Science One 13, e0203451.
Keiblinger, K.M., Wilhartitz, I.C., Schneider, T., Roschitzki, B., Schmid, E., Eberl, L., Riedel, K., and Zechmeister-Boltenstern, S. (2012). Soil metaproteomics–Comparative evaluation of protein extraction protocols. Soil Biology and Biochemistry 54, 14-24.
Kelner, A., and Kocholaty, W. (1946). Two antibiotics produced by Actinomyces isolated from soil. Journal of bacteriology 51, 591-591.
Kemperman, R., Kuipers, A., Karsens, H., Nauta, A., Kuipers, O., and Kok, J. (2003). Identification and characterization of two novel clostridial bacteriocins, circularin A and closticin 574. Applied Environmental Microbiology 69, 1589-1597.
Khan, H.A., Ahmad, A., and Mehboob, R. (2015). Nosocomial infections and their control strategies. Asian pacific journal of tropical biomedicine 5, 509-514.
Kim, W.S., and Dunn, N.W. (1997). Stabilization of the Lactococcus lactis nisin production transposon as a plasmid. FEMS microbiology letters 146, 285-289.
Kuzmin, D., Emelianova, A., Kalashnikova, M., Panteleev, P., and Ovchinnikova, T. (2017). Effect of N-and C-Terminal Modifications on Cytotoxic Properties of Antimicrobial Peptide Tachyplesin I. Bulletin of experimental biology and medicine 162, 754-757.
López-Causapé, C., Cabot, G., del Barrio-Tofiño, E., and Oliver, A. (2018). The versatile mutational resistome of Pseudomonas aeruginosa. Frontiers in microbiology 9, 685.
Lai, Y., and Gallo, R.L. (2009). AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends in immunology 30, 131-141.
Lee, I., Kim, Y.O., Park, S.-C., and Chun, J. (2016). OrthoANI: an improved algorithm and software for calculating average nucleotide identity. International journal of systematic and evolutionary microbiology 66, 1100-1103.
Le, C.-F., Fang, C.-M., and Sekaran, S.D. (2017). Intracellular targeting mechanisms by antimicrobial peptides. Antimicrobial agents and chemotherapy 61, e02340-02316.
Ling, L.L., Schneider, T., Peoples, A.J., Spoering, A.L., Engels, I., Conlon, B.P., Mueller, A., Schaberle, T.F., Hughes, D.E., Epstein, S., et al. (2015a). A new antibiotic kills pathogens without detectable resistance. Nature 517, 455-459.
Ling, M.L., Apisarnthanarak, A., and Madriaga, G. (2015b). The burden of healthcare-associated infections in Southeast Asia: a systematic literature review and meta-analysis. Clinical Infectious Diseases 60, 1690-1699.
Liu, W.-T., Ng, J., Meluzzi, D., Bandeira, N., Gutierrez, M., Simmons, T.L., Schultz, A.W., Linington, R.G., Moore, B.S., and Gerwick, W.H. (2009). Interpretation of tandem mass spectra obtained from cyclic nonribosomal peptides. Analytical chemistry 81, 4200-4209.
Lyu, Y., Fitriyanti, M., and Narsimhan, G. (2019). Nucleation and growth of pores in 1, 2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/cholesterol bilayer by antimicrobial peptides melittin, its mutants and cecropin P1. Colloids and Surfaces B: Biointerfaces 173, 121-127.
Mandalakis, M., Panikov, N.S., Polymenakou, P.N., Sizova, M.V., and Stamatakis, A. (2018). A simple cleanup method for the removal of humic substances from soil protein extracts using aluminum coagulation. Environmental Science and Pollution Research 25, 23845-23856.
Marteyn, B.S., Burgel, P.-R., Meijer, L., and Witko-Sarsat, V. (2017). Harnessing Neutrophil Survival Mechanisms during Chronic Infection by Pseudomonas aeruginosa: Novel Therapeutic Targets to Dampen Inflammation in Cystic Fibrosis. Frontiers in cellular and infection microbiology 7, 243.
Mazaheri Nezhad Fard, R., Barton, M., and Heuzenroeder, M. (2011). Bacteriophage‐mediated transduction of antibiotic resistance in enterococci. Letters in applied microbiology 52, 559-564.
Mazzaglia, A., Studholme, D.J., Taratufolo, M.C., Cai, R., Almeida, N.F., Goodman, T., Guttman, D.S., Vinatzer, B.A., and Balestra, G.M. (2012). Pseudomonas syringae pv. actinidiae (PSA) isolates from recent bacterial canker of kiwifruit outbreaks belong to the same genetic lineage. Public Library of Science one 7, e36518.
McGuinness, W.A., Malachowa, N., and DeLeo, F.R. (2017). Focus: Infectious Diseases: Vancomycin Resistance in Staphylococcus aureus. The Yale journal of biology and medicine 90, 269.
McManus, P., and Jones, A. (1994). Epidemiology and genetic analysis of streptomycin-resistant Erwinia amylovora from Michigan and evaluation of oxytetracycline for control. Phytopathology (USA) 84, 627-633.
Miller, B.R., and Gulick, A.M. (2016). Structural biology of nonribosomal peptide synthetases. In Nonribosomal Peptide and Polyketide Biosynthesis (Springer), pp. 3-29.
Mohan, K.V., Rao, S.S., Gao, Y., and Atreya, C.D. (2014). Enhanced antimicrobial activity of peptide-cocktails against common bacterial contaminants of ex vivo stored platelets. Clinical Microbiology and Infection 20, O39-46.
Moller, W., Schroth, M., and Thomson, S. (1981). The scenario of fire blight and streptomycin resistance [Erwinia amylovora; California; USA]. Plant Diseases (USA) 65, 563-568.
Mortera, S.L., Soggiu, A., Vernocchi, P., Del Chierico, F., Piras, C., Carsetti, R., Marzano, V., Britti, D., Urbani, A., and Roncada, P. (2019). Metaproteomic investigation to assess gut microbiota shaping in newborn mice: A combined taxonomic, functional and quantitative approach. Journal of proteomics, 103378.
Muller, H., Salzig, D., and Czermak, P. (2015). Considerations for the process development of insect-derived antimicrobial peptide production. Biotechnology Progress 31, 1-11.
Narayana, K., and Vijayalakshmi, M. (2008). Optimization of antimicrobial metabolites production by Streptomyces albidoflavus. Research Journal of Pharmacology 2, 4-7.
Naruse, N., Tenmyo, O., Tomita, K., Konishi, M., Miyaki, T., Kawaguchi, H., Fukase, K., Wakamiya, T., And Shiba, T. (1989). Lanthiopeptin, a new peptide antibiotic. The Journal of antibiotics 42, 837-845.
Nguyen, L.T., Haney, E.F., and Vogel, H.J. (2011). The expanding scope of antimicrobial peptide structures and their modes of action. Trends in biotechnology 29, 464-472.
Nguyen, L., Garcia, J., Gruenberg, K., and MacDougall, C. (2018). Multidrug-resistant pseudomonas infections: hard to treat, but hope on the horizon? Current infectious disease reports 20, 23.
Omura, S., Mamada, H., Wang, N.-j., Imamura, N., Oiwa, R., Iwai, Y., And Muto, N. (1984). Takaokamycin, A New Peptide Antibiotic Produced Bystreptomycessp. The Journal of antibiotics 37, 700-705.
Panda, A.K., Bisht, S.S., DeMondal, S., Kumar, N.S., Gurusubramanian, G., and Panigrahi, A.K. (2014). Brevibacillus as a biological tool: a short review. Antonie Van Leeuwenhoek 105, 623-639.
Pidot, S., Ishida, K., Cyrulies, M., and Hertweck, C. (2014). Discovery of clostrubin, an exceptional polyphenolic polyketide antibiotic from a strictly anaerobic bacterium. Angewandte Chemie International Edition 53, 7856-7859.
Poole, K. (2005). Efflux-mediated antimicrobial resistance. Journal of Antimicrobial Chemotherapy 56, 20-51.
Poulikakos, P., Tansarli, G., and Falagas, M. (2014). Combination antibiotic treatment versus monotherapy for multidrug-resistant, extensively drug-resistant, and pandrug-resistant Acinetobacter infections: a systematic review. European journal of clinical microbiology & infectious diseases 33, 1675-1685.
Ram, R.J., VerBerkmoes, N.C., Thelen, M.P., Tyson, G.W., Baker, B.J., Blake, R.C., Shah, M., Hettich, R.L., and Banfield, J.F. (2005). Community proteomics of a natural microbial biofilm. Science 308, 1915-1920.
Rodriguez-R, L.M., and Konstantinidis, K.T. (2014). Bypassing cultivation to identify bacterial species. Microbiology 9, 111-118.
Schmitt, S., Montalbán-López, M., Peterhoff, D., Deng, J., Wagner, R., Held, M., Kuipers, O.P., and Panke, S. (2019). Analysis of modular bioengineered antimicrobial lanthipeptides at nanoliter scale. Nature chemical biology 15, 437.
Schägger, H., and Von Jagow, G. (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical biochemistry 166, 368-379.
Slama, T.G. (2008). Gram-negative antibiotic resistance: there is a price to pay. Critical Care 12, S4.
Song, J.-H., and Group, A.H.W. (2008). Treatment recommendations of hospital-acquired pneumonia in Asian countries: first consensus report by the Asian HAP Working Group. American journal of infection control 36, S83-S92.
Spotts, R., and Cervantes, L. (1995). Copper, oxytetracycline, and streptomycin resistance of Pseudomonas syringae pv syringae strains from pear orchards in Oregon and Washington. Plant disease (USA) 79, 1132-1135.
Tabatabai, M.A. (2003). Encyclopedia of Agrochemicals, Wiley.
Tang, M., and Hong, M. (2009). Structure and mechanism of β-hairpin antimicrobial peptides in lipid bilayers from solid-state NMR spectroscopy. Molecular BioSystems 5, 317-322.
Tian, W., Chen, C., Lei, X., Zhao, J., and Liang, J. (2018). CASTp 3.0: computed atlas of surface topography of proteins. Nucleic acids research 46, W363-W367.
von Wintersdorff, C.J., Penders, J., van Niekerk, J.M., Mills, N.D., Majumder, S., van Alphen, L.B., Savelkoul, P.H., and Wolffs, P.F. (2016). Dissemination of Antimicrobial Resistance in Microbial Ecosystems through Horizontal Gene Transfer. Frontiers in Microbiology 7, 173.
Walsh, C.T., O''Brien, R.V., and Khosla, C. (2013). Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds. Angewandte Chemie International Edition 52, 7098-7124.
Walsh, C.T. (2016). Insights into the chemical logic and enzymatic machinery of NRPS assembly lines. Natural product reports 33, 127-135.
Wang, D.Z., Kong, L.F., Li, Y.Y., and Xie, Z.X. (2016). Environmental Microbial Community Proteomics: Status, Challenges and Perspectives. International Journal of Molecular Sciences 17, 1275.
Wang, F., Qin, L., Pace, C.J., Wong, P., Malonis, R., and Gao, J. (2012). Solubilized gramicidin A as potential systemic antibiotics. ChemBioChem 13, 51-55.
Wang, G., Mishra, B., Lau, K., Lushnikova, T., Golla, R., and Wang, X. (2015). Antimicrobial peptides in 2014. Pharmaceuticals 8, 123-150.
Wenzel, S.C., Kunze, B., Höfle, G., Silakowski, B., Scharfe, M., Blöcker, H., and Müller, R. (2005). Structure and biosynthesis of myxochromides S1–3 in Stigmatella aurantiaca: evidence for an iterative bacterial type I polyketide synthase and for module skipping in nonribosomal peptide biosynthesis. ChemBioChem 6, 375-385.
Xu, D., and Côte, J.-C. (2003). Phylogenetic relationships between Bacillus species and related genera inferred from comparison of 3′ end 16S rDNA and 5′ end 16S–23S ITS nucleotide sequences. International Journal of Systematic and Evolutionary Microbiology 53, 695-704.
Yang, X., and Yousef, A.E. (2018). Antimicrobial peptides produced by Brevibacillus spp.: structure, classification and bioactivity: a mini review. World Journal of Microbiology and Biotechnology 34, 57.
Zelezetsky, I., and Tossi, A. (2006). Alpha-helical antimicrobial peptides—using a sequence template to guide structure–activity relationship studies. Biochimica et Biophysica Acta (BBA)-Biomembranes 1758, 1436-1449.
Zeitler, B., Diaz, A.H., Dangel, A., Thellmann, M., Meyer, H., Sattler, M., and Lindermayr, C. (2013). De-novo design of antimicrobial peptides for plant protection. Public Library of Science one 8, e71687.
Zhang, L.-j., and Gallo, R.L. (2016). Antimicrobial peptides. Current Biology 26, R14-R19.
電子全文 電子全文(網際網路公開日期:20240827)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top