跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/10/01 13:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝幸芸
研究生(外文):Xing-Yun Xie
論文名稱:有效篩選亞硝酸誘變矮南瓜黃化嵌紋病毒的輕症病毒株用於交互保護
論文名稱(外文):Efficient selection of nitrous acid-induced mild strains of Zucchini yellow mosaic virus for cross protection
指導教授:葉錫東葉錫東引用關係
指導教授(外文):Shyi-Dong Yeh
口試委員:詹富智陳煜焜林詩舜陳宗祺
口試委員(外文):Fuh-Jyh JanYuh-Kun ChenShih-Shun LinTsung-Chi Chen
口試日期:2019-07-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:植物病理學系所
學門:農業科學學門
學類:植物保護學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:57
中文關鍵詞:矮南瓜黃化嵌紋病毒交互保護輕症病毒亞硝酸
外文關鍵詞:Zucchini yellow mosaic viruscross protectionmild strain virusnitrous acid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
矮南瓜黃化嵌紋病毒(Zucchini yellow mosaic virus, ZYMV)是造成瓜類作物上嚴重危害的病毒之一。利用輕症病毒來感染植物以保護其不被強系病毒感染稱之為交互保護作用,利用此方法能夠有效的降低ZYMV對於作物的影響。篩選亞硝酸誘變後的ZYMV突變株能夠獲得有實際應用價值的輕症病毒株,但在傳統的方式上篩選突變株過程繁雜,費時費力。我們在過去的研究中發現輕症多種馬鈴薯Y屬病毒(potyviruses)在奎藜葉片上不會誘發過敏性反應(hypersensitive reaction , HR)的壞死病斑,因此我們推測可以利用此現象來加速馬鈴薯Y屬病毒的輕症病毒株的篩選。為了方便偵測,我們利用帶有綠色螢光蛋白的ZYMV做為病毒來源以進行亞硝酸誘變。利用螢光照相系統追蹤接種在奎藜葉片上的所有處理過的病毒感染,把在葉片上不會產生過敏性反應的螢光感染點分離出來後,再接種至ZYMV的系統性寄主以測試突變株的病原性。經過三次獨立試驗後得到10個突變株能夠成功感染矮南瓜、刺角瓜和小胡瓜,並且皆僅引起輕微的病徵。經過病毒的病徵分析、病毒量累積變化、基因體穩定性測試後,篩選出兩個理想的突變株ZG-4-3和ZG-4-10。在溫室的交互保護試驗中,矮南瓜接種輕症突變株後15天進行挑戰接種強系病毒ZYMV-TN3,試驗結果顯示兩個突變株皆能夠提供完全對抗此強系病毒感染的交互保護能力。我們進一步利用重疊延伸聚合酶連鎖反應(overlapping extension polymerase chain reaction)去除了ZG-4-10的GFP基因,ZG-4-10其他部分則利用聚合酶連鎖反應(polymerase chain reaction, PCR)來擴增,再利用限制酶的切位與p35SZYMV-TN3進行置換,獲得了不帶有螢光基因的具感染性cDNA 克隆 Z-4-10。如此我們順利獲得了一個非基因改造的輕症病毒株Z-4-10,具有被應用於控制瓜類上ZYMV的危害的優越能力。經過定序後得知Z-4-10突變株在基因體核酸上有6的突變點,在胺基酸層次則是有5個改變。藉此,我們利用輕症病毒在奎藜上不產生過敏性反應的特性,建立了一種方法能夠快速獲得經過亞硝酸誘變並具有實用性價值的輕症病毒株,可提供完全的交互保護作用來防治ZYMV。
Zucchini yellow mosaic virus (ZYMV) causes severe damage on cucurbits. Cross protection, a phenomenon describes that a mild virus strain is used to protect a host against infection by the related severe viruses, is an effective control measure for plant viruses. Useful mild strains can be obtained from nitrous-acid induction; however, the process is time consuming, tedious and difficult. Our previous studies have revealed that effective mild strains of several potyviruses for cross protection do not induce hypersensitive reaction (HR) in Chenopodium quinoa plants and causing infection without formation of local lesion. Thus, we hypothesize that a potential mild virus mutant can be readily identified based on its inability to cause HR in C. quinoa plants after nitrous acid mutagenesis. Accordingly, a reporter gene expressing green fluorescent protein (GFP) was inserted into ZYMV genome for monitoring virus mutants in C. quinoa leaves after nitrous acid induction. The infected leaves were examined under an imaging system to identity infection spots with fluorescence but without HR reaction. Viruses present in individual identified spots were then transferred to ZYMV systemic hosts of squash to test their pathogenicity. From three independent experiments, ten mutants were successfully transferred to plants of squash (Cucurbita pepo L.), horned melon (Cucumis metuliferus L.) and cucumber (Cucumis sativus L.), on which all induced mild symptoms. After analyses of their symptomatology, virus titer and genetic stability, two ideal mild mutants of ZG-4-3 and ZG-4-10 were selected, both induced inconspicuous symptoms on three cucurbits. Under greenhouse conditions, these two mild mutants provided compete cross protection in squash plants against the severe strain ZYMV TN3. GFP gene in the genome of ZG-4-10 was removed by overlapping extension polymerase chain reaction. The infectious cDNA clone of Z-4-10 without GFP gene was constructed using p35SZYMV-TN3 as backbone, by replacing the cDNA fragments amplified from the genome of the mild mutant. Thus, Z-4-10 becomes a pure nitrous acid-induced mild strain and can be used for control of ZYMV in cucurbits similar to the conventional mild protectant. Genomic sequencing of Z-4-10 revealed that there are six nucleotides mutated, resulting in 5 amino acid changes. Here, we have established a novel way to promptly select effective nitrous-acid induced mild strains for control of ZYMV by cross protection.
中文摘要……………………………………………………………………………………………………………………………i
Abstract…………………………………………………………………………………………………………………………ii
前人研究……………………………………………………………………………………………………………………………1
矮南瓜黃化嵌紋病毒之特性……………………………………………………………………………………1
針對矮南瓜黃化嵌紋病毒的防治策略…………………………………………………………………2
交互保護之背景與輕症病毒之特性………………………………………………………………………3
交互保護的機制……………………………………………………………………………………………………………3
獲取有交互保護潛力的輕症病毒之策略……………………………………………………………4
亞硝酸誘導突變的機制……………………………………………………………………………………………5
本研究的假設、策略與目的……………………………………………………………………………………5
Introduction………………………………………………………………………………………………………………7
The features of Zucchini yellow mosaic virus…………………………7
The strategies for control of ZYMV……………………………………………………9
Background of cross-protection and the feature of an effective mild virus strain……………………………………………………………………10
The mechanism of cross-protection……………………………………………………11
The strategies to obtain effective mild strain virus for cross-protection…………………………………………………………………………………………………12
The mechanism of mutation induced by nitrous-acid…………14
Hypothesis, objectives and the strategy use in this study ……………………………………………………………………………………………………………………………………………15
Materials and Methods……………………………………………………………………………………16
Virus sources and nitrous acid induction…………………………………16
Screen of mild mutants from leaves of C. quinoa………………17
Accumulation of ZYMV mutants in plants………………………………………18
Cross-protection assay of the selected ZYMV mutants……18
Construction of infectious clone of ZYMV mild mutants and removal of GFP gene…………………………………………………………………………………………19
Results…………………………………………………………………………………………………………………………21
Screening for ZYMV-GFP mutants with inability to induce necrotic lesions in Chenopodium quinoa leaves……………………21
Symptoms induced by mutants in squash plants………………………21
Symptoms induced by mild mutants on cucurbit plants……22
Accumulation of ZYMV mild mutants in squash plants………22
Cross-protection effectiveness of attenuated mutants against severe strain ZYMV infection……………………………………………23
Construction of infectious clone from mild mutants………24
Genomic sequence of ZYMV mutant Z-4-10………………………………………25
Discussion…………………………………………………………………………………………………………………27
References…………………………………………………………………………………………………………………32
Table 1. Primers used in study……………………………………………………………44
Table 2. Symptoms of cucurbit plants infected by mild mutants…………………………………………………………………………………………………………………………45
Table 3. Cross-protection effectiveness of ZG-4-3 and ZG-4-10 against zucchini yellow mosaic virus severe strain ZYMV-GFPhis3…………………………………………………………………………………………………………………………46
Figure 1. GFP expression in Chenopodium quinoa leaves inoculated with ZYMV-GFP mutants………………………………………………………47
Figure 2. Symptoms on cucurbit plants inoculated with different attenuated mutants of zucchini yellow mosaic virus (ZYMV)……………………………………………………………………………………………………………48
Figure 3. Accumulation of ZYMV mutants in squash plants at different time course as determined by indirect ELISA.…49
Figure 4. The symptoms on squash plants after challenge inoculation.……………………………………………………………………………………………………………50
Figure 5. The amino acid sequence comparison of helper-component proteinase (HC-Pro) of zucchini yellow mosaic (ZYMV) mild mutants ZG-4-3 and ZG-4-10………………………………………51
Figure 6. Construction of infectious cDNA clone of mild mutant Z-4-10 without GFP gene using severe strain ZYMV-TN3 as a backbone…………………………………………………………………………………………………………53
Figure 7. The formation of local infection and molecular detection after introduction of Z-4-10 infectious clones to Chenopodium quinoa leaves…………………………………………………………………………55
Figure 8. Schematic representation of sequence comparison with mutant ZG-4-10 and ZYMV-TN3………………………………………………………57
張亦冰. 2011. 抗植物病毒病疫苗——ZYMV-2002. 世界農藥 33: 50-51.
Allison, R., Johnston, R. E., and Dougherty, W. G. 1986. The nucleotide sequence of the coding region of tobacco etch virus genomic RNA: evidence for the synthesis of a single polyprotein. Virology 154: 9-20.
Anandalakshmi, R., Pruss, G. J., Ge, X., Marathe, R., Mallory, A. C., Smith, T. H., and Vance, V. B. 1998. A viral suppressor of gene silencing in plants. Proc. Natl. Acad. Sci. U.S.A. 95: 13079-13084.
Atreya, C. D., and Pirone, T. P. 1993. Mutational analysis of the helper component-proteinase gene of a potyvirus: effects of amino acid substitutions, deletions, and gene replacement on virulence and aphid transmissibility. Proc. Natl. Acad. Sci. U.S.A. 90: 11919-11923.
Balint, R. 1990. The nucleotide sequence of zucchini yellow mosaic potyvirus. In Abstr. VIIIth Int Congress Virol, 1990. 8: 84-107
Blanc, S., Ammar, E. D., Garcia-Lampasona, S., Dolja, V. V., Llave, C., Baker, J., and Pirone, T. P. 1998. Mutations in the potyvirus helper component protein: effects on interactions with virions and aphid stylets. J. Gen. Virol. 79 ( Pt 12): 3119-3122.
Brault, V., Uzest, M., Monsion, B., Jacquot, E., and Blanc, S. 2010. Aphids as transport devices for plant viruses. C. R. Biol. 333: 524-538.
Cardoso, A. I. I., Pavan, M. A., Sakate, R. K., and Fattori, K. 2010. Inheritance of Cucumber Tolerance to Zucchini Yellow Mosaic Virus. J. Plant Pathol. 92: 245-248.
Carrington, J. C., Jensen, P. E., and Schaad, M. C. 1998. Genetic evidence for an essential role for potyvirus CI protein in cell-to-cell movement. Plant J. 14: 393-400.
Chamberlain, E. E., Atkinson, J. D., and Hunter, J. A. 1964. Cross-protection between strains of apple mosaic virus. New Zeal. J. of Agr. Res. 7: 480-490.
Chen, C. H. 2001. Analyses of the genomic sequence of the mild strain HA 5-1 of Papaya ringspot virus, Master Thesis, National Chung Hsing University.
Chiang, C. H., Lee, C. Y., Wang, C. H., Jan, F. J., Lin, S. S., Chen, T. C., Raja, J. A. J., and Yeh, S. D. 2007. Genetic analysis of an attenuated Papaya ringspot virus strain applied for cross-protection. Eur. J. Plant Pathol. 118: 333-348.
Chung, B. Y., Miller, W. A., Atkins, J. F., and Firth, A. E. 2008. An overlapping essential gene in the Potyviridae. Proc. Natl. Acad. Sci. U.S.A. 105: 5897-5902.
Conway, K. E., McCraw, B. D., Motes, J. E., and Sherwood, J. L. . 1989. Evaluations of mulches and row covers to delay virus diseases and their effects on yield of yellow squash. J. Appl. Agric. Res.: 201-207.
Costa, A. S., and Muller, G. W. 1980. Tristeza control by cross protection: a U.S.-Brazil cooperative success. Plant Dis. 64: 538-541.
Cotton, S., Grangeon, R., Thivierge, K., Mathieu, I., Ide, C., Wei, T., Wang, A., and Laliberté, J. F. 2009. Turnip Mosaic Virus RNA Replication Complex Vesicles Are Mobile, Align with Microfilaments, and Are Each Derived from a Single Viral Genome. J. Virol. 83: 10460-10471.
Cui, H., and Wang, A. 2016. Plum Pox Virus 6K1 Protein Is Required for Viral Replication and Targets the Viral Replication Complex at the Early Stage of Infection. J. Virol. 90: 5119-5131.
Deng, T. C. 2011. Evolutionary change of trends in prevalence of cucurbits-infecting viruses in Taiwan, 1981-2011. Taiwan Agricultural Research Institute, Taichung: 147-163.
Desbiez, C., and Lecoq, H. 1997. Zucchini yellow mosaic virus. Plant Pathol. 46: 809-829.
Dolja, V. V., Haldeman-Cahill, R., Montgomery, A. E., Vandenbosch, K. A., and Carrington, J. C. 1995. Capsid protein determinants involved in cell-to-cell and long distance movement of tobacco etch potyvirus. Virology 206: 1007-1016.
Dombrovsky, A., Huet, H., Chejanovsky, N., and Raccah, B. 2005. Aphid transmission of a potyvirus depends on suitability of the helper component and the N terminus of the coat protein. Arch. Virol. 150: 287-298.
Dougherty, W. G., and Parks, T. D. 1991. Post-translational processing of the tobacco etch virus 49-kDa small nuclear inclusion polyprotein: identification of an internal cleavage site and delimitation of VPg and proteinase domains. Virology 183: 449-456.
Gal-On, A. 2000. A Point Mutation in the FRNK Motif of the Potyvirus Helper Component-Protease Gene Alters Symptom Expression in Cucurbits and Elicits Protection Against the Severe Homologous Virus. Phytopathol. 90: 467-473.
Gal-On, A., and Shiboleth, Y. M. 2006. Cross-Protection. In:" Natural Resistance Mechanisms of Plants to Viruses".261-288, eds.G. Loebenstein and J. P. Carr Dordrecht: Springer.
Gerber, A. P., and Keller, W. 2001. RNA editing by base deamination: more enzymes, more targets, new mysteries. Trends Biochem. Sci. 26: 376-384.
Gierer, A., and Mundry, K. W. 1958. Production of mutants of tobacco mosaic virus by chemical alteration of its ribonucleic acid in vitro. Nature 182: 1457-1458.
Gonsalves, D. 1989. Cross-Protection Techniques for Control of Plant-Virus Diseases in the Tropics. Plant Dis. 73: 592-596.
Guo, D., Merits, A., and Saarma, M. 1999. Self-association and mapping of interaction domains of helper component-proteinase of potato A potyvirus. J. Gen. Virol. 80: 1127-1131.
Hari, V. 1981. The RNA of Tobacco etch virus: Further characterization and detection of protein linked to RNA. Virology 112: 391-399.
Hellwald, K. H., and Palukaitis, P. 1995. Viral RNA as a potential target for two independent mechanisms of replicase-mediated resistance against cucumber mosaic virus. Cell 83: 937-946.
Hofius, D., Maier, A. T., Dietrich, C., Jungkunz, I., Börnke, F., Maiss, E., and Sonnewald, U. 2007. Capsid Protein-Mediated Recruitment of Host DnaJ-Like Proteins Is Required for Potato Virus Y Infection in Tobacco Plants. J Virol. 81: 11870-11880.
Hong, Y., and Hunt, A. G. 1996. RNA polymerase activity catalyzed by a potyvirus-encoded RNA-dependent RNA polymerase. Virology 226: 146-151.
Hseu, S. H., Wang, H. L., and Huang, C. H. 1985. Identification of a zucchini yellow mosaic virus from Cucumis sativus. J. Agric. China. 34: 87-95.
Hsu, C. H., Lin, S. S., Liu, F. L., Su, W. C., and Yeh, S. D. 2004. Oral administration of a mite allergen expressed by zucchini yellow mosaic virus in cucurbit species downregulates allergen-induced airway inflammation and IgE synthesis. J. Allergy Clin. Immunol. 113: 1079-1085.
Hughes, J. D., and Ollennu, L. A. A. 1994. Mild Strain Protection of Cocoa in Ghana against Cocoa Swollen Shoot Virus - a Review. Plant Pathol. 43: 442-457.
Huss, B, Walter, B, and Fuchs, M 1989. Cross‐protection between arabis mosaic virus and grapevine fan leaf virus isolates in Chenopodium quinoa. Ann. Appl. biol. 114: 45-60.
Jenner, C. E., Wang, X., Tomimura, K., Ohshima, K., Ponz, F., and Walsh, J. A. 2003. The dual role of the potyvirus P3 protein of Turnip mosaic virus as a symptom and avirulence determinant in brassicas. Mol Plant Microbe Interact. 16: 777-784.
Jovel, J., Walker, M., and Sanfacon, H. 2011. Salicylic Acid-Dependent Restriction of Tomato ringspot virus Spread in Tobacco Is Accompanied by a Hypersensitive Response, Local RNA Silencing, and Moderate Systemic Resistance. Mol. Plant Microbe. Interact. 24: 706-718.
Kasschau, K. D., and Carrington, J. C. 1995. Requirement for HC-Pro processing during genome amplification of tobacco etch potyvirus. Virology 209: 268-273.
Kasschau, K. D., and Carrington, J. C. 1998. A counterdefensive strategy of plant viruses: suppression of posttranscriptional gene silencing. Cell 95: 461-470.
Kasschau, K. D., and Carrington, J. C. 2001. Long-distance movement and replication maintenance functions correlate with silencing suppression activity of potyviral HC-Pro. Virology 285: 71-81.
Kim, B., Masuta, C., Matsuura, H., Takahashi, H., and Inukai, T. 2008. Veinal necrosis induced by Turnip mosaic virus infection in Arabidopsis is a form of defense response accompanying HR-like cell death. Mol. Plant Microbe. Interact. 21: 260-268.
Kosaka, Y., and Fukunishi, T. 1993. Attenuated Isolates of Soybean Mosaic-Virus Derived at a Low-Temperature. Plant Dis. 77: 882-886.
Kosaka, Y., Ryang, B. S., Katagiri, N., and Yasuhara, H. 2009. Development and diffusion of CUBIO ZY-02, a water-soluble formulation of an attenuated zucchini yellow mosaic virus isolate, for the control of cucumber mosaic disease. In Proceedings of PSJ Biocontrol Workshop. 11: 63-72
Kosaka, Y., Ryang, B. S., Kobori, T., Shiomi, H., Yasuhara, H., and Kataoka, M. 2006. Effectiveness of an attenuated Zucchini yellow mosaic virus isolate for cross-protecting cucumber. Plant Dis. 90: 67-72.
Kung, Y. J., Lin, P. C., Yeh, S. D., Hong, S. F., Chua, N. H., Liu, L. Y., Lin, C. P., Huang, Y. H., Wu, H. W., Chen, C. C., and Lin, S. S. 2014. Genetic analyses of the FRNK motif function of Turnip mosaic virus uncover multiple and potentially interactive pathways of cross-protection. Mol. Plant Microbe. Interact. 27: 944-955.
Lain, S., Riechmann, J. L., and Garcia, J. A. 1990. RNA helicase: a novel activity associated with a protein encoded by a positive strand RNA virus. Nucleic Acids. Res. 18: 7003-7006.
Lecoq, H. 1986. A Poorly Aphid Transmissible Variant of Zucchini Yellow Mosaic-Virus. Phytopathology 76: 1063.
Lecoq, H., Lemaire, J. M., and Wipfscheibel, C. 1991. Control of Zucchini Yellow Mosaic-Virus in Squash by Cross Protection. Plant Dis. 75: 208-211.
Lellis, A. D., Kasschau, K. D., Whitham, S. A., and Carrington, J. C. 2002. Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during potyvirus infection. Curr. Biol. 12: 1046-1051.
Lin, S. S., Hou, R. F, Huang, C. H., and Yeh, S. D. . 1998. Characterization of Zucchini yellow mosaic virus (ZYMV) isolates collected from Taiwan by host reactions, serology, and RT-PCR. Plant Prot. Bull. 40: 163-176.
Lin, S. S., Wu, H. W., Jan, F. J., Hou, R. F., and Yeh, S. D. 2007. Modifications of the Helper Component-Protease of Zucchini yellow mosaic virus for Generation of Attenuated Mutants for Cross Protection Against Severe Infection. Phytopathology 97: 287-296.
Lin, T. T. 2016. Generation of useful mild virus strains by modification of pathogenicity factor HC-Pro of Papaya ringspot virus for solving the problem of strain-specific cross protection, Master Thesis, National Chung Hsing University.
Lisa, V., Boccardo, G., Dagostino, G., Dellavalle, G., and Daquilio, M. 1981. Characterization of a Potyvirus That Causes Zucchini Yellow Mosaic. Phytopathology 71: 667-672.
Love, A. J., Geri, C., Laird, J., Carr, C., Yun, B. W., Loake, G. J., Tada, Y., Sadanandom, A., and Milner, J. J. 2012. Cauliflower mosaic virus protein P6 inhibits signaling responses to salicylic acid and regulates innate immunity. PLoS One 7: e47535.
Lu, B., Stubbs, G., and Culver, J. N. 1998. Coat protein interactions involved in tobacco mosaic tobamovirus cross-protection. Virology 248: 188-198.
Maia, I. G., Haenni, A., and Bernardi, F. 1996. Potyviral HC-Pro: a multifunctional protein. J. Gen. Virol. 77: 1335-1341.
McKinney, H. H. 1929. Mosaic diseases in the Canary Islands, West Africa and Gibraltar. J. Agric. Res. 39: 577-578.
Nemeth, S. T., Dodds, J. A., Paulus, A. O., and Kishaba, A. . 1985. Zucchini Yellow Mosaic Virus Associated with Severe Diseases of Melon and Watermelon in Southern California Desert Valley. Plant Dis. 69: 785-788.
Nguyen, L., Lucas, W. J., Ding, B., and Zaitlin, M. 1996. Viral RNA trafficking is inhibited in replicase-mediated resistant transgenic tobacco plants. P. Natl. Acad. Sci. U.S.A. 93: 12643-12647.
Osbourn, J. K., Sarkar, S., and Wilson, T. M. 1990. Complementation of coat protein-defective TMV mutants in transgenic tobacco plants expressing TMV coat protein. Virology 179: 921-925.
Oshima, N. 1975. Control of tomato mosaic disease by attenuated virus of tomato strain of TMV. J. Plant Prot. Res. 14: 222-228.
Owor, B., Legg, J. P., Okao-Okuja, G., Obonyo, R., Kyamanywa, S., and Ogenga-Latigo, M. W. 2004. Field studies of cross protection with cassava mosaic geminiviruses in Uganda. J. Phytopathol. 152: 243-249.
Pirone, T. P., and Blanc, S. 1996. Helper-dependent vector transmission of plant viruses. Annu. Rev. Phytopathol. 34: 227-247.
Provvidenti, R 1987. Inheritance of resistance to a strain of zucchini yellow mosiac virus in cucumber. HortScience 22: 102-103.
Provvidenti, R., Gonsalves, D., and Humaydan, H. S. 1984. Occurrence of Zucchini Yellow Mosaic-Virus in Cucurbits from Connecticut, New-York, Florida, and California. Plant Dis. 68: 443-446.
Provvidenti, R., and Hampton, R. O. 1992. Sources of resistance to viruses in the Potyviridae. In:" Potyvirus Taxonomy".189-211, Wien: Springer.
Rajamaki, M. L., Kelloniemi, J., Alminaite, A., Kekarainen, T., Rabenstein, F., and Valkonen, J. P. 2005. A novel insertion site inside the potyvirus P1 cistron allows expression of heterologous proteins and suggests some P1 functions. Virology 342: 88-101.
Rajamaki, M. L., Streng, J., and Valkonen, J. P. 2014. Silencing suppressor protein VPg of a potyvirus interacts with the plant silencing-related protein SGS3. Mol. Plant Microbe. Interact. 27: 1199-1210.
Rast, A. T. B. . 1972. M II-16, an artificial symptomless mutant of tobacco mosaic virus for seedling inoculation of tomato crops. Neth. J. Plant Pathol. 78: 110-112.
Ratcliff, F., Harrison, B. D., and Baulcombe, D. C. 1997. A similarity between viral defense and gene silencing in plants. Science 276: 1558-1560.
Register, J. C., 3rd, and Beachy, R. N. 1988. Resistance to TMV in transgenic plants results from interference with an early event in infection. Virology 166: 524-532.
Restrepo-Hartwig, M. A., and Carrington, J. C. 1994. The tobacco etch potyvirus 6-kilodalton protein is membrane associated and involved in viral replication. J. Virol. 68: 2388-2397.
Revers, F., Le Gall, O., Candresse, T., and Maule, A. J. 1999. New advances in understanding the molecular biology of plant/potyvirus interactions. Mol. Plant Microbe. Interact. 12: 367-376.
Riechmann, J. L., Cervera, M. T., and Garcia, J. A. 1995. Processing of the plum pox virus polyprotein at the P3-6K1 junction is not required for virus viability. J. Gen. Virol. 76: 951-956.
Riechmann, J. L., Lain, S., and Garcia, J. A. 1989. The genome-linked protein and 5' end RNA sequence of plum pox potyvirus. J. Gen. Virol. 70: 2785-2789.
Rodríguez-Cerezo, E., Findlay, K., Shaw, J. G., Lomonossoff, G. P., Qiu, S. G., Linstead, P., Shanks, M., and Risco, C. 1997. The Coat and Cylindrical Inclusion Proteins of a Potyvirus Are Associated with Connections between Plant Cells. Virology 236: 296-306.
Saenz, P., Cervera, M. T., Dallot, S., Quiot, L., Quiot, J. B., Riechmann, J. L., and Garcia, J. A. 2000. Identification of a pathogenicity determinant of Plum pox virus in the sequence encoding the C-terminal region of protein P3+6K(1). J. Gen. Virol. 81: 557-566.
Schaad, M. C., Anderberg, R. J., and Carrington, J. C. 2000. Strain-specific interaction of the tobacco etch virus NIa protein with the translation initiation factor eIF4E in the yeast two-hybrid system. Virology 273: 300-306.
Shi, Y., Chen, J., Hong, X., Chen, J., and Adams, M. J. 2007. A potyvirus P1 protein interacts with the Rieske Fe/S protein of its host. Mol. Plant Pathol. 8: 785-790.
Shukla, D. D., and Ward, C. W. 1989. Structure of Potyvirus Coat Proteins and its Application in the Taxonomy of the Potyvirus Group. Adv. Virus Res. 36: 273-314.
Simon-Mateo, C., and Garcia, J. A. 2011. Antiviral strategies in plants based on RNA silencing. Biochim. Biophys. Acta. 1809: 722-731.
Suehiro, N., Natsuaki, T., Watanabe, T., and Okuda, S. 2004. An important determinant of the ability of Turnip mosaic virus to infect Brassica spp. and/or Raphanus sativus is in its P3 protein. J. Gen. Virol. 85: 2087-2098.
Torres-Barceló, Clara, Martín, Susana, Daròs, José-Antonio, and Elena, Santiago F. 2008. From Hypo- to Hypersuppression: Effect of Amino Acid Substitutions on the RNA-Silencing Suppressor Activity of the Tobacco etch potyvirus HC-Pro. Genetics 180: 1039-1049.
Valli, A., Martín-Hernández, A. M., López-Moya, J. J., and García, J. A. 2006. RNA Silencing Suppression by a Second Copy of the P1 Serine Protease of Cucumber Vein Yellowing Ipomovirus, a Member of the Family Potyviridae That Lacks the Cysteine Protease HCPro. J. Virol. 80: 10055-10063.
Verchot, J., Herndon, K. L., and Carrington, J. C. 1992. Mutational analysis of the tobacco etch potyviral 35-kDa proteinase: identification of essential residues and requirements for autoproteolysis. Virology 190: 298-306.
Vielmetter, W., and Schuster, E. 1960. The base specificity of mutation induced by nitrous acid in phage T2. Biochem. Bioph. Res. Co. 2: 324-328.
Wang, H. L., Gonsalves, D., Provvidenti, R., and Lecoq, H. L. 1991. Effectiveness of Cross Protection by a Mild Strain of Zucchini Yellow Mosaic-Virus in Cucumber, Melon, and Squash. Plant Dis. 75: 203-207.
Wang, H. L., Yeh, S. D., and Chiu, R. J. 1987. Effectiveness of Cross-Protection by Mild Mutants of Papaya Ringspot Virus for Control of Ringspot Disease of Papaya in Taiwan. Plant Dis. 71: 491-497.
Wang, N. Y. . 2007. Abolishment of hypersensitive reaction and unlocalized spread on local lesion host Chenopodium quinoa by attenuated strains of Zucchini yellow mosaic virus with point mutations in helper component-proteinase gene, Master Thesis, National Chung Hsing University.
Ward, C. W., and Shukla, D. D. 1991. Taxonomy of Potyviruses - Current Problems and Some Solutions. Intervirology 32: 269-296.
Wei, T., Huang, T. S., McNeil, J., Laliberte, J. F., Hong, J., Nelson, R. S., and Wang, A. 2010. Sequential recruitment of the endoplasmic reticulum and chloroplasts for plant potyvirus replication. J. Virol. 84: 799-809.
Wittmann, S., Chatel, H., Fortin, M. G., and Laliberte, J. F. 1997. Interaction of the viral protein genome linked of turnip mosaic potyvirus with the translational eukaryotic initiation factor (iso) 4E of Arabidopsis thaliana using the yeast two-hybrid system. Virology 234: 84-92.
Wu, H. W., Lin, S. S., Chen, K. C., Yeh, S. D., and Chua, N. H. 2010. Discriminating mutations of HC-Pro of zucchini yellow mosaic virus with differential effects on small RNA pathways involved in viral pathogenicity and symptom development. Mol. Plant Microbe. Interact. 23: 17-28.
Yambao, M. L., Yagihashi, H., Sekiguchi, H., Sekiguchi, T., Sasaki, T., Sato, M., Atsumi, G., Tacahashi, Y., Nakahara, K. S., and Uyeda, I. 2008. Point mutations in helper component protease of clover yellow vein virus are associated with the attenuation of RNA-silencing suppression activity and symptom expression in broad bean. Arch. Virol. 153: 105-115.
Yarden, G, Hemo, R, Livne, H, Maoz, E, Lev, E, Lecoq, H, and Raccah, B. 2000. Cross-protection of cucurbitaceae from zucchini yellow mosaic potyvirus. In VII Eucarpia Meeting on Cucurbit Genetics and Breeding 510. 349-356.Israel
Yeh, S. D., Chen, C. C., Raja, J. A. J., and Huang, C. H. 2011. Cross-protection effectivenessof attenuated variants of Turnip mosaic virus with mutations in a conserved motif of the N-terminal region of HC-Pro. In XV International Congress of Virology.
Yeh, S. D., and Gonsalves, D. 1984. Evaluation of Induced Mutants of Papaya Ringspot Virus for Control by Cross Protection. Phytopathology 74: 1086-1091.
Yeh, S. D., Gonsalves, D., Wang, H. L., Namba, R., and Chiu, R. J. 1988. Control of Papaya Ringspot Virus by Cross Protection. Plant Dis. 72: 375-380.
Ziebell, H., and Carr, J. P. 2010. Cross-Protection. In:" Natural and Engineered Resistance to Plant Viruses, Part II".211-264, eds.J. P. Carr and G. Loebenstein New York: Academic Press.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊