跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/05 18:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊秋鈴
研究生(外文):Chiu-Ling Yang
論文名稱:植物缺鐵時序性調控及LIER基因之功能研究
論文名稱(外文):Time course regulation of plant iron deficiency and functional study of LIER gene.
指導教授:潘怡君潘怡君引用關係
口試委員:陳彥銘李嘉雯黃建誌
口試日期:2019-07-06
學位類別:碩士
校院名稱:國立中興大學
系所名稱:園藝學系所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:95
中文關鍵詞:LIERtranscriptomeiron-deficiencyphotosynthesisimmune
外文關鍵詞:LIERtranscriptomeiron-deficiencyphotosynthesisimmune
相關次數:
  • 被引用被引用:0
  • 點閱點閱:74
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
鐵是參與光合作用以及植物的代謝途徑之催化功能所需的微量營養元素,缺鐵影響鐵的在植物體中的動態平衡,導致新葉嚴重黃化並降低光合作用效率。本研究利用次世代定序 (Next Generation Sequence, NGS) 分析缺鐵0.5、6、12、72小時之基因表現時序,從中發現 LIER 基因可能為缺鐵逆境影響光合作用的關鍵調控基因,進一步利用 lier 突變株分析 LIER- regulon以及72小時缺鐵下LIER所影響的生理功能。利用顯著差異表現基因(differential expression genes, DEG) 的共表現網絡比較轉錄組之間的改變,發現植物缺鐵6小時後整體系統性的免疫和防禦基因受到誘導,並且在缺鐵72小時抑制光合作用系統和葉綠素生物合成,而LIER身為免疫與防禦基因群的一員,調控的基因包含光合作用和免疫基因。同時,在敲除突變株lier中,80%的缺鐵反應基因的表現不受到缺鐵逆境調控,顯示LIER基因是影響植物缺鐵轉錄的重要關鍵基因。本研究提供了缺鐵72小時內的基因轉錄調控模式,並證實LIER是參與協調光反應、缺鐵反應及免疫系統平衡的中間轉錄因子。
Iron is an essential micro-nutrition for photosynthesis and catalysis function to involve in metabolism pathway in the plant. Deficiency of iron affects the iron homeostasis, causes serious young-leaves chlorosis symposium and low-photosynthesis efficiency. In this study, the Next Generation Sequence (NGS) methods were applied to observe the 0.5, 6, 12, 72 hr time course of iron-deficiency. LIER (Light, Iron and Ethylene Regulator) is a gene found in time course and might be the key regulation-gene affect photosynthesis under iron-deficiency. Mutant line of lier was utilized for analyzing LIER-regulon, and the function of LIER-affected metabolic transcriptomic changes under 72 hr iron-deficiency. The networks of differential expression genes (DEG) were visualized to compare the changes of transcriptomes, results revealed that a set of immune and defense genes were induced at 6 hr of iron-deficiency in whole plants, while photosynthesis system and chlorophyll biosynthesis were turned down at 72 hr of iron-deficiency in the shoot. As to be one of the immune system genes, LIER in the co-expression network regulated the photosynthesis and immune genes. In addition, 80% of iron-deficiency responses DEG were not been regulated in lier plant. This study provided a global pattern of short-term iron-deficiency response and indicated that LIER was an intermediator coordinating light, iron deficiency response, and immune systematically homeostasis.
目錄
一、 前言 1
二、 前人研究 2
(一) 植物的鐵的吸收機制 2
1. 共質體吸收途徑(symplast pathway) 2
2. 質體外(apoplast)構造影響鐵的吸收 5
(二) 鐵的運輸機制 6
1. 組織間的輸送機制 6
2. 細胞內的運移機制 7
(三) 缺鐵之下的調控機制 10
三、 材料方法 15
(一) 植物栽培、處理及樣品收集 15
(二) RNA-Seq 15
(三) 生物資訊處理 16
1. 篩選DEG 16
2. DEG資料的重疊情況與分群(cluster) 17
3. 分析GO annotation 18
(1) 繪製有向無環圖 (Directed Acyclic Graph, DAG) 18
(2) 列出顯著GO annotation 18
4. 視覺化DEG共表現網絡圖 18
(四) 以ICP-OES測量植物體金屬元素含量 19
四、 結果 20
(一) 缺鐵基因調控時序分析 20
1. 缺鐵時序反應DEG之分布概況 20
2. 缺鐵時序反應DEG之基因功能分析 20
3. 缺鐵逆境下的生理調控模式 22
(二) LIER-regulon之分析 24
1. LIER-regulon DEG之分布概況 24
2. LIER-regulon DEG之功能分析 25
3. LIER-regulon網絡分析 28
(三) 缺鐵逆境下LIER影響的生理反應 29
1. 缺鐵逆境下LIER影響的DEG之分布概況 29
2. 缺鐵逆境下LIER影響的DEG之功能分析 30
3. 缺鐵逆境下LIER影響的網絡分析 32
4. LIER轉殖株在缺鐵逆境下的金屬元素分析 33
5. LIER轉殖株在缺鐵及高光逆境下的外表型 34
6. LIER轉殖株在缺鐵及光處理下的地上部鐵含量 34
五、 討論 36
(一) 缺鐵時序下的調控機制 36
(二) LIER-regulon 39
(三) LIER轉錄因子在缺鐵逆境下調控模式的改變 41
六、 總結 43
參考文獻 85
Andriankaja, M. E., S. Danisman, L. F. Mignolet-Spruyt, H. Claeys, I. Kochanke, M. Vermeersch, L. De Milde, S. De Bodt, V. Storme, and A. Skirycz. 2014. Transcriptional coordination between leaf cell differentiation and chloroplast development established by TCP20 and the subgroup Ib bHLH transcription factors. Plant Mol. Biol. 85: 233-245.
Barberon, M., J. E. M. Vermeer, D. De Bellis, P. Wang, S. Naseer, T. G. Andersen, B. M. Humbel, C. Nawrath, J. Takano, and D. E. Salt. 2016. Adaptation of root function by nutrient-induced plasticity of endodermal differentiation. Cell 164: 447-459.
Bashir, K., S. Rasheed, T. Kobayashi, M. Seki, and N. K. Nishizawa. 2016. Regulating subcellular metal homeostasis: the key to crop improvement. Front. Plant Sci. 7: 1192.
Bauer, P., T. Thiel, M. Klatte, Z. Bereczky, T. Brumbarova, R. Hell, and I. Grosse. 2004. Analysis of sequence, map position, and gene expression reveals conserved essential genes for iron uptake in Arabidopsis and tomato. Plant Physiol. 136: 4169-4183.
Baxter, I., P. S. Hosmani, A. Rus, B. Lahner, J. O. Borevitz, B. Muthukumar, M. V. Mickelbart, L. Schreiber, R. B. Franke, and D. E. Salt. 2009. Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in Arabidopsis. PLoS Genet. 5: e1000492.
Bernard, D. G., Y. Cheng, Y. Zhao, and J. Balk. 2009. An allelic mutant series of ATM3 reveals its key role in the biogenesis of cytosolic iron-sulfur proteins in Arabidopsis. Plant Physiol. 151: 590-602.
Briat, J. F., C. Duc, K. Ravet, and F. Gaymard. 2010. Ferritins and iron storage in plants. Biochim. Biophys. Acta 1800: 806-814.
Brumbarova, T., P. Bauer, and R. Ivanov. 2015. Molecular mechanisms governing Arabidopsis iron uptake. Trends Plant Sci. 20: 124-133.
Carmody, M., P. A. Crisp, S. d''Alessandro, D. Ganguly, M. Gordon, M. Havaux, V. Albrecht-Borth, and B. J. Pogson. 2016. Uncoupling high light responses from singlet oxygen retrograde signaling and spatial-temporal systemic acquired acclimation. Plant Physiol. 171: 1734-1749.
Chassot, C. L., A. Buchala, H.-J. Schoonbeek, J. P. MãcTraux, and O. Lamotte. 2008. Wounding of Arabidopsis leaves causes a powerful but transient protection against Botrytis infection. Plant J. 55: 555-567.
Chen, W. W., J. L. Yang, C. Qin, C. W. Jin, J. H. Mo, T. Ye, and S. J. Zheng. 2010. Nitric oxide acts downstream of auxin to trigger root ferric-chelate reductase activity in response to iron deficiency in Arabidopsis. Plant Physiol. 154: 810-819.
Choudhury, F. K., R. M. Rivero, E. Blumwald, and R. Mittler. 2017. Reactive oxygen species, abiotic stress and stress combination. Plant J. 90: 856-867.
Chu, H. H., S. S. Conte, D. Chan Rodriguez, K. Vasques, T. Punshon, D. E. Salt, and E. L. Walker. 2013. Arabidopsis thaliana Yellow Stripe1-Like 4 and Yellow Stripe1-Like 6 localize to internal cellular membranes and are involved in metal ion homeostasis. Front. Plant Sci. 4: 283.
Colangelo, E. P. and M. L. Guerinot. 2004. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response. Plant Cell 16: 3400-3412.
Conte, S. S. and E. L. Walker. 2011. Transporters contributing to iron trafficking in plants. Mol. Plant 4: 464-476.
Curie, C., G. Cassin, D. Couch, F. Divol, K. Higuchi, M. Le Jean, J. Misson, A. Schikora, P. Czernic, and S. Mari. 2009. Metal movement within the plant: contribution of nicotianamine and Yellow Stripe 1-Like transporters. Ann. Bot. 103: 1-11.
Curie, C. and S. Mari. 2017. New routes for plant iron mining. New Phytol. 214: 521-525.
DiDonato, R. J., L. A. Roberts, T. Sanderson, R. B. Eisley, and E. L. Walker. 2004. Arabidopsis Yellow Stripe‐Like2 (YSL2): a metal‐regulated gene encoding a plasma membrane transporter of nicotianamine - metal complexes. Plant J. 39:403-414.
Divol, F., D. Couch, G. Conéjéro, H. Roschzttardtz, S. Mari, and C. Curie. 2013. The Arabidopsis YELLOW STRIPE LIKE4 and 6 transporters control iron release from the chloroplast. Plant Cell 25: 1040-1055.
Durrett, T. P., W. Gassmann, and E. E. Rogers. 2007. The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiol. 144:197-205.
Duy, D., R. Stübe, G. Wanner, and K. Philippar. 2011. The chloroplast permease PIC1 regulates plant growth and development by directing homeostasis and transport of iron. Plant Physiol. 155: 1709-1722.
Eroglu, S., B. Meier, N. von Wiren, and E. Peiter. 2016. The vacuolar manganese transporter MTP8 determines tolerance to iron deficiency-induced chlorosis in Arabidopsis. Plant Physiol. 170: 1030-1045.
Fourcroy, P., P. Sisó-Terraza, D. Sudre, M. Savirón, G. Reyt, F. Gaymard, A. Abadía, J. Abadia, A. Álvarez-Fernández, and J. F. Briat. 2014. Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. New Phytol. 201: 155-167.
Fourcroy, P., N. Tissot, F. Gaymard, J. F. Briat, and C. Dubos. 2016. Facilitated Fe nutrition by phenolic compounds excreted by the Arabidopsis ABCG37/PDR9 transporter requires the IRT1/FRO2 high-affinity root Fe2+ transport system. Mol. Plant 9: 485-488.
García, M. J., C. Lucena, F. J. Romera, E. Alcántara, and R. Pérez-Vicente. 2010. Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis. J. Exp. Bot. 61:3885-3899.
Geldner, N. 2013. Casparian strips. Curr. Biol. 23: 1025-1026.
Gollhofer, J., R. Timofeev, P. Lan, W. Schmidt, and T. J. Buckhout. 2014. Vacuolar-iron-transporter1-like proteins mediate iron homeostasis in Arabidopsis. PLoS One 9: e110468.
Graziano, M. and L. Lamattina. 2007. Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. Plant J. 52: 949-960.
Grillet, L., P. Lan, W. Li, G. Mokkapati, and W. Schmidt. 2018. IRON MAN is a ubiquitous family of peptides that control iron transport in plants. Nat. Plants 4: 953.
Hay, R. T. 2005. SUMO: a history of modification. Mol. Cell 18: 1-12.
Haydon, M. J., M. Kawachi, M. Wirtz, S. Hillmer, R. Hell, and U. Krämer. 2012. Vacuolar nicotianamine has critical and distinct roles under iron deficiency and for zinc sequestration in Arabidopsis. Plant Cell 24(2): 724-737.
Hell, R., and U. W., Stephan. 2003. Iron uptake, trafficking and homeostasis in plants. Planta. 216(4): 541-551.
Hosmani, P. S., T. Kamiya, J. Danku, S. Naseer, N. Geldner, M. L. Guerinot, and D. E. Salt. 2013. Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root. P. Natl. Acad. Sci. 110: 14498-14503.
Huot, B., J. Yao, B. L. Montgomery, and S. Y. He. 2014. Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant 7: 1267-1287.
Ivanov, R., T. Brumbarova, and P. Bauer. 2012. Fitting into the harsh reality: regulation of iron-deficiency responses in dicotyledonous plants. Mol. Plant 5: 27-42.
Jain, A., G. T. Wilson, and E. L. Connolly. 2014a. The diverse roles of FRO family metalloreductases in iron and copper homeostasis. Front. Plant Sci. 5: 100.
Jain, A. 2014b. Ferric reductases and transporters that contribute to mitochondrial iron homeostasis. Doctoral dissertation, University of South Carolina, America. 139 pp.
Jakoby, M., H. Y. Wang, W. Reidt, B. Weisshaar, and P. Bauer. 2004. FRU (BHLH029) is required for induction of iron mobilization genes in Arabidopsis thaliana. FEBS Lett. 577: 528-534.
Jeong, J., C. Cohu, L. Kerkeb, M. Pilon, E. L. Connolly, and M. L. Guerinot. 2008. Chloroplast Fe (III) chelate reductase activity is essential for seedling viability under iron limiting conditions. P. Natl. Acad. Sci. 105: 10619-10624.
Jeong, J. and E. L. Connolly. 2009. Iron uptake mechanisms in plants: functions of the FRO family of ferric reductases. Plant Sci. 176:709-714.
Jeong, J., A. Merkovich, M. Clyne, and E. L. Connolly. 2017. Directing iron transport in dicots: regulation of iron acquisition and translocation. Curr. Opin. Plant Biol. 39: 106-113.
Jin, C. W., G. Y. You, Y. F. He, C. Tang, P. Wu, and S. J. Zheng. 2007. Iron deficiency-induced secretion of phenolics facilitates the reutilization of root apoplastic iron in red clover. Plant Physiol. 144: 278-285.
Kamiya, T., M. Borghi, P. Wang, J.M. Danku, L. Kalmbach, P. S. Hosmani, S. Naseer, T. Fujiwara, N. Geldner, and D. E. Salt. 2015. The MYB36 transcription factor orchestrates Casparian strip formation. P. Natl. Acad. Sci. 112: 10533-10538.
Karpiński, S., M. Szechyńska-Hebda, W. Wituszyńska, and P. Burdiak. 2013. Light acclimation, retrograde signalling, cell death and immune defences in plants. Plant Cell Environ. 36: 736-744.
Kim, S. A., T. Punshon, A. Lanzirotti, L. Li, J. M. Alonso, J. R. Ecker, J. Kaplan, and M. L. Guerinot. 2006. Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Sci. 314: 1295-1298.
Kim, C., R. Meskauskiene, S. Zhang, K. P. Lee, M. Lakshmanan Ashok, K. Blajecka, C. Herrfurth, I. Feussner, and K. Apel. 2012. Chloroplasts of Arabidopsis are the source and a primary target of a plant-specific programmed cell death signaling pathway. Plant Cell 24: 3026-3039.
Klatte, M., M. Schuler, M. Wirtz, C. Fink-Straube, R. Hell, and P. Bauer. 2009. The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses. Plant Physiol. 150: 257-271.
Kobayashi, T., S. Nagasaka, T. Senoura, R. N. Itai, H. Nakanishi, and N. K. Nishizawa. 2013. Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation. Nat. Commun. 4:2792.
Kobayashi, T. and N. K. Nishizawa. 2012. Iron uptake, translocation, and regulation in higher plants. Annu. Rev. Plant Biol. 63: 131-152.
Kobayashi, T. and N. K. Nishizawa. 2015. Intracellular iron sensing by the direct binding of iron to regulators. Front. Plant Sci. 6: 155.
Kobayashi, K., and T. Masuda. 2016. Transcriptional regulation of tetrapyrrole biosynthesis in Arabidopsis thaliana. Front. Plant Sci. 7: 1811.
Kushnir, S., E. Babiychuk, S. Storozhenko, M. W. Davey, J. Papenbrock, R. De Rycke, G. Engler, U. W. Stephan, H. Lange, and G. Kispal. 2001. A mutation of the mitochondrial ABC transporter STA1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell 13:8 9-100.
López-Millán, A. F., D. Duy, and K. Philippar. 2016. Chloroplast iron transport proteins-function and impact on plant physiology. Front. Plant Sci. 7: 178.
Lanquar, V., F. Lelièvre, S. Bolte, C. Hamès, C. Alcon, D. Neumann, G. Vansuyt, C. Curie, A. Schröder, and U. Krämer. 2005. Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J. 24: 4041-4051.
Leaden, L., M. A. Pagani, M. Balparda, M. V. Busi, and D. F. Gomez-Casati. 2016. Altered levels of AtHSCB disrupts iron translocation from roots to shoots. Plant Mol. Biol. 92: 613-628.
Lee, K. P., C. Kim, F. Landgraf, and K. Apel. 2007. EXECUTER1-and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. P. Natl. Acad. Sci. 104: 10270-10275.
Lei, G. J., X. F. Zhu, Z. W. Wang, F. Dong, N. Y. Dong, and S. J. Zheng. 2014. Abscisic acid alleviates iron deficiency by promoting root iron reutilization and transport from root to shoot in Arabidopsis. Plan Cell Environ. 37: 852-863.
Li, X., H. Zhang, Q. Ai, G. Liang, and D. Yu. 2016. Two bHLH transcription factors, bHLH34 and bHLH104, regulate iron homeostasis in Arabidopsis thaliana. Plant Physiol. 170: 2478-2493.
Liang, G., H. Zhang, X. Li, Q. Ai, and D. Yu. 2017. bHLH transcription factor bHLH115 regulates iron homeostasis in Arabidopsis thaliana. J. Exp. Bot. 68: 1743-1755.
Lill, R., R. Dutkiewicz, S.A. Freibert, T. Heidenreich, J. Mascarenhas, D. J. Netz, V. D. Paul, A. J. Pierik, N. Richter, and M. Stümpfig. 2015. The role of mitochondria and the CIA machinery in the maturation of cytosolic and nuclear iron-sulfur proteins. Eur. J. Cell Biol. 94: 280-291.
Lin, C. H. and C. R. Stocking, 1978. Influence of leaf age, light, dark, and iron deficiency on polyribosome levels in maize leaves. Plant Cell Physiol. 19: 461-470.
Lin, W. -D., Y. -C. Chen, J. -M. Ho, and C. -D. Hsiao. 2006. GOBU: toward an integration interface for biological objects. J. Inf. Sci. Eng. 22: 19-29.
Ling, H. -Q., P. Bauer, Z. Bereczky, B. Keller, and M. Ganal. 2002. The tomato FER gene encoding a bHLH protein controls iron-uptake responses in roots. P. Natl. Acad. Sci. 99: 13938-13943.
Ling, H. Q., A. Pich, G. Scholz, and M. W. Ganal, 1996. Genetic analysis of two tomato mutants affected in the regulation of iron metabolism. Mol. Gen. Genet. 252: 87-92.
Lingam, S., J. Mohrbacher, T. Brumbarova, T. Potuschak, C. Fink-Straube, E. Blondet, P. Genschik, and P. Bauer. 2011. Interaction between the bHLH transcription factor FIT and ETHYLENE INSENSITIVE3/ ETHYLENE INSENSITIVE3-LIKE1 reveals molecular linkage between the regulation of iron acquisition and ethylene signaling in Arabidopsis. Plant Cell 23: 1815-1829.
Long, T. A., H. Tsukagoshi, W. Busch, B. Lahner, D. E. Salt, and P. N. Benfey. 2010. The bhlh transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell 22: 2219-2236.
Maere, S., K. Heymans, and M. Kuiper. 2005. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21: 3448-3449.
Mahawar, L. and G. S. Shekhawat. 2018. Haem oxygenase: A functionally diverse enzyme of photosynthetic organisms and its role in phytochrome chromophore biosynthesis, cellular signalling and defence mechanisms. Plant Cell Environ. 41: 483-500.
Marschner, H. 2012. Marschner''s mineral nutrition of higher plants. 3rd ed. Academic press, USA. 651 pp.
Marschner, H., V. Römheld, and M. Kissel, 1986. Different strategies in higher plants in mobilization and uptake of iron. J. plant nutr. 9: 695-713.
Mary, V., M. S. Ramos, C. Gillet, A. L. Socha, J. Giraudat, A. Agorio, S. Merlot, C. Clairet, S. A. Kim, and T. Punshon. 2015. Bypassing iron storage in endodermal vacuoles rescues the iron mobilization defect in the natural resistance associated-macrophage protein3 natural resistance associated-macrophage protein4 double mutant. Plant Physiol. 169: 748-759.
Maurer, F., M. A. N. Arcos, and P. Bauer. 2014. Responses of a triple mutant defective in three iron deficiency-induced BASIC HELIX-LOOP-HELIX genes of the subgroup Ib II to iron deficiency and salicylic acid. PloS One 9: e99234.
Meiser, J., S. Lingam, and P. Bauer. 2011. Posttranslational regulation of the iron deficiency basic helix-loop-helix transcription factor FIT is affected by iron and nitric oxide. Plant Physiol. 157: 2154-2166.
Mendoza-Cózatl, D. G., Q. Xie, G. Z. Akmakjian, T. O. Jobe, A. Patel, M. G. Stacey, L. Song, D. W. Demoin, S. S. Jurisson, and G. Stacey. 2014. OPT3 is a component of the iron-signaling network between leaves and roots and misregulation of OPT3 leads to an over-accumulation of cadmium in seeds. Mol. Plant 7: 1455-1469.
Morrissey, J., I. R. Baxter, J. Lee, L. Li, B. Lahner, N. Grotz, J. Kaplan, D. E. Salt, and M. L. Guerinot. 2009. The ferroportin metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. Plant Cell 21: 3326-3338.
Mullineaux, P. M. and N. R. Baker. 2010. Oxidative stress: antagonistic signaling for acclimation or cell death? Plant Physiol. 154: 521-525.
Murgia, I. and G. Vigani. 2015. Analysis of Arabidopsis thaliana atfer4-1, atfh and atfer4-1/atfh mutants uncovers frataxin and ferritin contributions to leaf ionome homeostasis. Plant Physiol. Biochem. 94: 65-72.
Naranjo-Arcos, M. A., F. Maurer, J. Meiser, S. Pateyron, C. Fink-Straube, and P. Bauer. 2017. Dissection of iron signaling and iron accumulation by overexpression of subgroup Ib bHLH039 protein. Sci. Rep. 7(1): 10911.
Nelson, N. and C. F. Yocum. 2006. Structure and function of photosystems I and II. Annu. Rev. Plant Biol. 57: 521-565.
Oh, Y. J., H. Kim, S. H. Seo, B. G. Hwang, Y. S. Chang, J. Lee, D. W. Lee, E. J. Sohn, S. J. Lee, Y. Lee, and I. Hwang. 2015. Cytochrome b5 reductase 1 triggers serial reactions that lead to iron uptake in plants. Mol. Plant 9: 501-513.
op den Camp, R. G., D. Przybyla, C. Ochsenbein, C. Laloi, C. Kim, A. Danon, D. Wagner, E. Hideg, C. Gobel, I. Feussner, M. Nater, and K. Apel. 2003. Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15: 2320-2332.
Palmer, C. M., M. N. Hindt, H. Schmidt, S. Clemens, and M. L. Guerinot. 2013. MYB10 and MYB72 are required for growth under iron-limiting conditions. PLoS Genet. 9: e1003953.
Pinto, E. and I. M. Ferreira. 2015. Cation transporters/channels in plants: Tools for nutrient biofortification. J. Plant Physiol. 179: 64-82.
Pottier, M., R. Oomen, C. Picco, J. Giraudat, J. Scholz‐Starke, P. Richaud, A. Carpaneto, and S. Thomine. 2015. Identification of mutations allowing Natural Resistance Associated Macrophage Proteins (NRAMP) to discriminate against cadmium. Plant J. 83: 625-637.
Ravet, K., B. Touraine, J. Boucherez, J. F. Briat, F. Gaymard, and F. Cellier. 2009. Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. Plant J. 57(3): 400-412.
RodríGuez-Celma, J., G. Lattanzio, M. A. Grusak, A. N. AbadíA, J. AbadíA, and A. F. LóPez-MilláN. 2011. Root responses of medicago truncatula plants grown in two different iron deficiency conditions: changes in root protein profile and riboflavin biosynthesis. J. Proteome Res. 10:2590-2601.
Rodriguez-Celma, J., W. D. Lin, G. M. Fu, J. Abadia, A. F. Lopez-Millan, and W. Schmidt. 2013a. Mutually exclusive alterations in secondary metabolism are critical for the uptake of insoluble iron compounds by Arabidopsis and Medicago truncatula. Plant Physiol. 162: 1473-1485.
Rodríguez-Celma, J., I. C. Pan, W. D. Li, P. D. Lan, T. J. Buckhout, and W. Schmidt. 2013b. The transcriptional response of Arabidopsis leaves to Fe deficiency. Front. Plant Sci. 4: 276.
Rodríguez-Celma, J., H. Chou, T. Kobayashi, T. A. Long, and J. Balk. 2019. Hemerythrin E3 ubiquitin ligases as negative regulators of iron homeostasis in plants. Front. Plant Sci. 10: 98.
Roschzttardtz, H., L. Grillet, M. P. Isaure, G. Conéjéro, R. Ortega, C. Curie, and S. Mari. 2011. Plant cell nucleolus as a hot spot for iron. J. Biol. Chem. 286: 27863-27866.
Rossel, J. B., P. B. Wilson, D. Hussain, N. S. Woo, M. J. Gordon, O. P. Mewett, K. A. Howell, J. Whelan, K. Kazan, and B. J. Pogson. 2007. Systemic and intracellular responses to photooxidative stress in Arabidopsis. Plant Cell 19: 4091-4110.
Schaaf, G., A. Schikora, J. Häberle, G. Vert, U. Ludewig, J. F. Briat, C. Curie, and N. von Wirén. 2005. A putative function for the Arabidopsis Fe-Phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Plant Cell Physiol. 46: 762-774.
Schaaf, G., A. Honsbein, A. R. Meda, S. Kirchner, D. Wipf, and N. von Wirén. 2006. AtIREG2 encodes a tonoplast transport protein involved in iron-dependent nickel detoxification in Arabidopsis thaliana roots. J. Biol. Chem. 281: 25532-25540.
Schaedler, T. A., J. D. Thornton, I. Kruse, M. Schwarzländer, A. J. Meyer, H. W. van Veen, and J. Balk. 2014. A conserved mitochondrial ATP-binding cassette transporter exports glutathione polysulfide for cytosolic metal cofactor assembly. J. Biol. Chem. 289: 23264-23274.
Schmid, N. B., R. F. Giehl, S. Döll, H. -P. Mock, N. Strehmel, D. Scheel, X. Kong, R.C. Hider, and N. von Wirén. 2014. Feruloyl-CoA 6′-Hydroxylase1-dependent coumarins mediate iron acquisition from alkaline substrates in Arabidopsis. Plant Physiol. 164: 160-172.
Schmidt, W. and T. J. Buckhout. 2011. A hitchhiker’s guide to the Arabidopsis ferrome. Plant Physiol. Bioch. 49: 462-470.
Schmidt, H., C. Günther, M. Weber, C. Spörlein, S. Loscher, C. Böttcher, R. Schobert, and S. Clemens. 2014. Metabolome Analysis of Arabidopsis thaliana roots identifies a key metabolic pathway for iron acquisition. PloS One 9:e102444.
Schwarzländer, M., A. C. König, L. J. Sweetlove, and I. Finkemeier. 2011. The impact of impaired mitochondrial function on retrograde signalling: a meta-analysis of transcriptomic responses. J. Exp. Bot. 63: 1735-1750.
Schuler, M., R. Rellán-Álvarez, C. Fink-Straube, J. Abadía, and P. Bauer. 2012. Nicotianamine functions in the phloem-based transport of iron to sink organs, in pollen development and pollen tube growth in Arabidopsis. Plant Cell 24(6): 2380-2400.
Seo, Pil J., J. Park, M. -J. Park, Y. -S. Kim, S. -G. Kim, J. -H. Jung, and C. -M. Park. 2012. A Golgi-localized MATE transporter mediates iron homoeostasis under osmotic stress in Arabidopsis. Biochem. J. 442: 551-561.
Shannon, P., A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, N. Amin, B. Schwikowski, and T. Ideker. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13: 2498-2504.
Singh, P., S. Yekondi, P. W. Chen, C. H. Tsai, C. W. Yu, K. Wu, and L. Zimmerli. 2014. Environmental history modulates Arabidopsis pattern-triggered immunity in a HISTONE ACETYLTRANSFERASE1-dependent manner. Plant Cell 26: 2676-2688.
Stephan, U. W., and G. Scholz. 1993. Nicotianamine: mediator of transport of iron and heavy metals in the phloem?. Physiol. Plantarum 88(3): 522-529.
Sivitz, A., C. Grinvalds, M. Barberon, C. Curie, and G. Vert. 2011. Proteasome‐mediated turnover of the transcriptional activator FIT is required for plant iron‐deficiency responses. Plant J. 66: 1044-1052.
Sivitz, A. B., V. Hermand, C. Curie, and G. Vert. 2012. Arabidopsis bHLH100 and bHLH101 control iron homeostasis via a FIT-independent pathway. PloS One 7(9): e44843.
Siwinska, J., K. Siatkowska, A. Olry, J. Grosjean, A. Hehn, F. Bourgaud, A. A. Meharg, M. Carey, E. Lojkowska, and A. Ihnatowicz. 2018. Scopoletin 8-hydroxylase: a novel enzyme involved in coumarin biosynthesis and iron-deficiency responses in Arabidopsis. J. Exp. Bot. 69: 1735-1748.
Socha, A. L. and M. L. Guerinot. 2014. Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants. Front. Plant Sci. 5: 106.
Swift, J. and G. M. Coruzzi. 2017. A matter of time- How transient transcription factor interactions create dynamic gene regulatory networks. BBA-Gene Regul. Mech. 1860: 75-83.
Teschner, J., N. Lachmann, J. Schulze, M. Geisler, K. Selbach, J. Santamaria-Araujo, J. Balk, R. R. Mendel, and F. Bittner. 2010. A novel role for Arabidopsis mitochondrial ABC transporter ATM3 in molybdenum cofactor biosynthesis. Plant Cell 22: 468-480.
Thimm, O., B. Essigmann, S. Kloska, T. Altmann, and T. J. Buckhout. 2001. Response of Arabidopsis to iron deficiency stress as revealed by microarray analysis. 127: 1030-1043.
Triantaphylides, C., M. Krischke, F. A. Hoeberichts, B. Ksas, G. Gresser, M. Havaux, F. Van Breusegem, and M. J. Mueller. 2008. Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol. 148: 960-968.
Tsai, H. H., J. Rodriguez-Celma, P. Lan, Y. C. Wu, I. C. Vélez-Bermúdez, and W. Schmidt. 2018. Scopoletin 8-Hydroxylase-mediated fraxetin production is crucial for iron mobilization. Plant Physiol. 1: 194-207.
Van der Ent, S., B. W. Verhagen, R. Van Doorn, D. Bakker, M. G. Verlaan, M. J. Pel, R. G. Joosten, M. C. Proveniers, L. Van Loon, and J. Ton. 2008. MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiol. 146: 1293-1304.
Vigani, G., G. Zocchi, K. Bashir, K. Philippar, and J. -F. Briat. 2013a. Cellular iron homeostasis and metabolism in plant. Front. Plant Sci. 4: 490.
Vigani, G., G. Zocchi, K. Bashir, K. Philippar, and J. -F. Briat. 2013b. Signals from chloroplasts and mitochondria for iron homeostasis regulation. Trends Plant Sci. 18: 305-311.
Vorwieger, A., C. Gryczka, A. Czihal, D. Douchkov, J. Tiedemann, H. P. Mock, M. Jakoby, B. Weisshaar, I. Saalbach, and H. Bäumlein. 2007. Iron assimilation and transcription factor controlled synthesis of riboflavin in plants. Planta 226: 147-158.
Vu, L. D., K. Gevaert, and I. De Smet. 2018. Protein language: post-translational modifications talking to each other. Trends Plant Sci. 23: 1068-1080.
Wagner, D., D. Przybyla, R. op den Camp, C. Kim, F. Landgraf, K. P. Lee, M. Würsch, C. Laloi, M. Nater, and E. Hideg. 2004. The genetic basis of singlet oxygen-induced stress responses of Arabidopsis thaliana. Sci. 306: 1183-1185.
Wang, H. -Y., M. Klatte, M. Jakoby, H. Bäumlein, B. Weisshaar, and P. Bauer. 2007. Iron deficiency-mediated stress regulation of four subgroup Ib BHLH genes in Arabidopsis thaliana. Planta 226: 897-908.
Wang, J., P. Lan, H. Gao, L. Zheng, W. Li, and W. Schmidt. 2013a. Expression changes of ribosomal proteins in phosphate- and iron-deficient Arabidopsis roots predict stress-specific alterations in ribosome composition. BMC Genomics 14:783.
Wang, N., Y. Cui, Y. Liu, H. Fan, J. Du, Z. Huang, Y. Yuan, H. Wu, and H. Q. Ling. 2013b. Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana. Mol. Plant 6: 503-513.
Wintz, H., T. Fox, Y. -Y. Wu, V. Feng, W. Chen, H. -S. Chang, T. Zhu, and C. Vulpe. 2003. Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. J. Biol. Chem. 278: 47644-47653.
Ye, Y. Q., C. W. Jin, S. K. Fan, Q. Q. Mao, C. L. Sun, Y. Yu, and X. Y. Lin. 2015. Elevation of NO production increases Fe immobilization in the Fe-deficiency roots apoplast by decreasing pectin methylation of cell wall. Sci. Rep. 5: 10746.
Yuan, Y., H. Wu, N. Wang, J. Li, W. Zhao, J. Du, D. Wang, and H. Q. Ling. 2008. FIT interacts with AtbHLH38 and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis. Cell Res. 18: 385.
Yuan, Y. X., J. Zhang, D. W. Wang, and H. Q. Ling. 2005. AtbHLH29 of Arabidopsis thaliana is a functional ortholog of tomato FER involved in controlling iron acquisition in strategy I plants. Cell Res. 15: 613.
Zamioudis, C., J. Hanson, and C. M. Pieterse. 2014. β‐Glucosidase BGLU42 is a MYB72‐dependent key regulator of rhizobacteria‐induced systemic resistance and modulates iron deficiency responses in Arabidopsis roots. New Phytol. 204: 368-379.
Zhai, Z., S. R. Gayomba, H. -i. Jung, N. K. Vimalakumari, M. Piñeros, E. Craft, M. A. Rutzke, J. Danku, B. Lahner, T. Punshon, M. L. Guerinot, D. E. Salt, L. V. Kochian, and O. K. Vatamaniuk. 2014. OPT3 is a phloem-specific iron transporter that is essential for systemic iron signaling and redistribution of iron and cadmium in Arabidopsis. Plant Cell 26: 2249-2264.
Zhang, J., B. Liu, M. Li, D. Feng, H. Jin, P. Wang, J. Liu, F. Xiong, J. Wang, and H. B. Wang. 2015. The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis. Plant Cell 27: 787-805.
Zhu, X. F., G. J. Lei, Z. W. Wang, Y. Z. Shi, J. Braam, G. X. Li, and S .J. Zheng. 2013. Coordination between apoplastic and symplastic detoxification confers plant aluminum resistance. Plant Physiol. 162: 1947-1955.
Zhu, X. F., B. Wang, W. F. Song, S. J. Zheng, and R. F. Shen. 2016. Putrescine alleviates iron deficiency via NO-dependent reutilization of root cell-wall Fe in Arabidopsis. Plant Physiol. 170: 558-567.
Zipfel, C. and G. E. Oldroyd. 2017. Plant signalling in symbiosis and immunity. Nat. 543: 328.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top