[1]E. J. M. Colbert and A. Kott, Cyber-security of SCADA and Other Industrial Control Systems: Springer International Publishing, 2016.
[2]Wikipedia: Stuxnet. Available: https://en.wikipedia.org/wiki/Stuxnet[accessed 2018/11/22]
[3]Wikipedia: December 2015 Ukraine power grid cyberattack. Available:
https://en.wikipedia.org/wiki/December_2015_Ukraine_power_grid_cyberattack[accessed 2018/11/22]
[4]Attackers Deploy New ICS Attack Framework "TRITON" and Cause Operational Disruption to Critical Infrastructure. Available: https://www.fireeye.com/blog/threat-research/2017/12/attackers-deploy-new-ics-attack-framework-triton.html[accessed 2018/11/22]
[5]Power System Attack Datasets -Mississippi State University and Oak Ridge National Laboratory. Available: http://www.ece.uah.edu/~thm0009/icsdatasets/PowerSystem_Dataset_README.pdf [accessed 2018/10/26]
[6]L. A. Maglaras et al., “Cyber security of critical infrastructures,” ICT Express, vol. 4, no. 1, pp. 42-45,2018.
[7]A. O. Otuoze, M. W. Mustafa, R. M. Larik, "Smart grids security challenges: Classification by sources of threats", J. Elect. Syst. Inf. Technol., vol. 5, no. 3, pp. 468-483, 2018, [online] Available: http://www.sciencedirect.com/science/article/pii/S2314717218300163.[accessed 2019/02/06]
[8]C.-W. Ten, J. Hong, C.-C. Liu, "Anomaly detection for cybersecurity of the substations", IEEE Trans. Smart Grid, vol. 2, no. 4, pp. 865-873, Dec. 2011.
[9]Y. Zhang, L. Wang, W. Sun, R. C. Green, and M. Alam, “Distributed intrusion detection system in a multi-layer network architecture of smart grids,” IEEE Trans. Smart Grid, vol. 2, no. 4, pp. 796–808, Dec. 2011.
[10]R. Mitchell and I.-R. Chen, “Behavior-rule based intrusion detection systems for safety critical smart grid applications,” IEEE Trans. Smart Grid, vol. 4, no. 3, pp. 1254–1263, Sep. 2013.
[11]J. Valenzuela, J. Wang, and N. Bissinger, “Real-time intrusion detection in power system operations,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 1052–1062, May 2013.
[12]U. Adhikari, T. H. Morris, S. Pan, "Applying non-nested generalized exemplars classification for cyber-power event and intrusion detection", IEEE Trans. Smart Grid.
[13]R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc. 1995 Int’l Conf. Data Eng. (ICDE ’95), pp. 3-14, Mar. 1995.
[14]N. Lesh, M. J. Zaki, and M. Ogihara, “Scalable feature mining for sequential data,” IEEE Int Syst 15, pp. 48–56, 2000.
[15]J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal, and M.C. Hsu, “Mining Sequential Patterns by Pattern-Growth: The PrefixSpan Approach,” Proc. of IEEE Transactions on Knowledge and Data Engineering, pp. 1424-1440, 2004.
[16]E. Tuzun, and J.Dalmau, “Limbic encephalitis and variants: classification, diagnosis and treatment,” The neurologist, Vol.13, No. 5, pp.261–271, 2007.
[17]Y. Zhao, H. Zhang, S. Wu, J. Pei, L. Cao, C. Zhang, H. Bohlscheid, "Debt detection in social security by sequence classification using both positive and negative patterns", Proc. ECML-PKDD, vol. 5782, pp. 648-663, 2009.
[18]G. Fernandes, and P. F. Owezarski, “Automated Classification of Network Traffic Anomalies,” Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 19, pp. 91–100. 2009.
[19]林金翰, “以樣式涵蓋率為主的序列資料分類模型”, 碩士論文, 中興大學資訊工程學系, 2012.[20]N. Lesh, M. J. Zaki, and M. Ogihara, “Mining features for sequence classification,” Proc. of 5th ACM SIGKDD international conference on knowledge discovery and data mining, San Diego, California, USA, 1999, pp. 242-246.
[21]V. S. Tseng, and C. H. Lee, “CBS: A New Classification Method by Using Sequential Patterns,” Proceedings of SIAM International Conference on Data Mining, pp. 596-600, 2005.
[22]V. S. Tseng, and C. H. Lee, “Effective temporal data classification by integrating sequential pattern mining and probabilistic induction,” Expert Systems with Applications 36, pp. 9524-9532, 2009.
[23]T. P. Exarchos, M. G. Tsipouras, C. Papaloukas, and D. I. Fotiadis, “A two-stage methodology for sequence classification based on sequential pattern mining and optimization,” Data & knowledge Engineering 66, pp. 467-487, 2008.
[24]S. Pan, T. Morris, U. Adhikari, "Classification of disturbances and cyber-attacks in power systems using heterogeneous time-synchronized data", IEEE Trans. Ind. Informat., vol. 11, no. 3, pp. 650-662, Jun. 2015.
[25]S. Pan, T. Morris, U. Adhikari, "Developing a hybrid intrusion detection system using data mining for power systems", IEEE Trans. Smart Grid, vol. 6, no. 6, pp. 3104-3113, Nov. 2015.
[26]U. Adhikari, T. Morris, S. Pan, "Applying Hoeffding adaptive trees for real-time cyber-power event and intrusion classification", IEEE Trans. Smart Grid.
[27]林孟秋, “一個以序列樣式長度為考量的序列資料分類模型”, 碩士論文,中興大學資訊工程學系, 2011.[28]Power System Attack Datasets -Mississippi State University and Oak Ridge National Laboratory. Available: http://www.ece.uah.edu/~thm0009/icsdatasets/multiclass.7z [accessed 2018/10/26]
[29]R. C. B. Hink, J. M. Beaver, M. A. Buckner, T. Morris, U. Adhikari, S. Pan, "Machine learning for power system disturbance and cyber-attack discrimination", Resilient Control Systems (ISRCS) 2014 7th InternationalSymposium, pp. 1-8, Aug 2014.