[1]曾偉銘(2018)。植基於卷積神經網路技術之自動化船艦偵測與切割。國立臺中科技大學資訊工程系碩士班碩士論文,台中市。 取自https://hdl.handle.net/11296/m88c2e[2]Dalal, N., and B. Triggs. “Histograms of Oriented Gradients for Human Detection.” 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005, doi:10.1109/cvpr.2005.177.
[3]Yeo, B.c., et al. “Scalable-Width Temporal Edge Detection for Recursive Background Recovery in Adaptive Background Modeling.” Applied Soft Computing, vol. 13, no. 4, 2013, pp. 1583–1591., doi:10.1016/j.asoc.2013.01.012.
[4]Rakibe, R. S., and B. D. Patil. “Background Subtraction Algorithm Based Human Motion Detection.” International Journal of Scientific and Research Publications, vol. 3, no. 5, May 2013, pp. 2250–3153.
[5]Mashak, Saeed Vahabi, et al. “Background Subtraction for Object Detection under Varying Environments.” 2010 International Conference of Soft Computing and Pattern Recognition, 2010, doi:10.1109/socpar.2010.5685960.
[6]Zivkovic, Z. “Improved Adaptive Gaussian Mixture Model for Background Subtraction.” 2004 17th International Conference on Pattern Recognition, 2004, doi:10.1109/icpr.2004.1333992.
[7]Aslani, S., and H. Mahdavi-Nasab. “Optical Flow Based Moving Object Detection and Tracking for Traffic Surveillanc.” International Journal of Electrical and Computer Engineering, vol. 7, no. 9, 2013.
[8]Russakovsky, Olga, et al. “ImageNet Large Scale Visual Recognition Challenge.” International Journal of Computer Vision, vol. 115, no. 3, 2015, pp. 211–252., doi:10.1007/s11263-015-0816-y.
[9]Krizhevsky, Alex, et al. “ImageNet Classification with Deep Convolutional Neural Networks.” Communications of the ACM, vol. 60, no. 6, 2017, pp. 84–90., doi:10.1145/3065386.
[10]Simonyan, K.,and A. Zisserman. “Very Deep Convolutional Networks for Large-Scale Image Recognition.”2015 IEEE Conference on Computer Vision and Pattern Recognition, 2015.
[11]Szegedy, Christian, et al. “Going Deeper with Convolutions.” 2015 IEEE Conference on Computer Vision and Pattern Recognition, 2015, doi:10.1109/cvpr.2015.7298594.
[12]He, Kaiming, et al. “Deep Residual Learning for Image Recognition.” 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016, doi:10.1109/cvpr.2016.90.
[13]Everingham, Mark, et al. “The Pascal Visual Object Classes (VOC) Challenge.” International Journal of Computer Vision, vol. 88, no. 2, 2009, pp. 303–338., doi:10.1007/s11263-009-0275-4.
[14]Redmon, Joseph, and Ali Farhadi. “YOLO9000: Better, Faster, Stronger.” 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017, doi:10.1109/cvpr.2017.690.
[15]Ren, Shaoqing, et al. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, 2017, pp. 1137–1149., doi:10.1109/tpami.2016.2577031.
[16]Liu, Wei, et al. “SSD: Single Shot MultiBox Detector.” Computer Vision – ECCV 2016 Lecture Notes in Computer Science, 2016, pp. 21–37., doi:10.1007/978-3-319-46448-0_2.
[17]Long, Jonathan, et al. “Fully Convolutional Networks for Semantic Segmentation.” 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, doi:10.1109/cvpr.2015.7298965.
[18]Orstavik, M. “AirNet – A Deep Learning Approach to Extracting Building Information from Remotely Sensed Imagery.” Faculty of Engineering Science and Technology Department of Civil and Environmental Engineering, url:{ https://github.com/mathildor/TF-SegNet}, 2017.
[19]Chuang, Meng-Che, et al. “A Feature Learning and Object Recognition Framework for Underwater Fish Images.” IEEE Transactions on Image Processing, 2016, pp. 1862–1872.2., doi:10.1109/tip.2016.2535342.
[20]Zhu, Ji-Wei, et al. “An Improved Shape Contexts Based Ship Classification in SAR Images.” Remote Sensing, vol. 9, no. 2, 2017, p. 145., doi:10.3390/rs9020145.
[21]Lowe, D.g. “Object Recognition from Local Scale-Invariant Features.” 1999 7th IEEE International Conference on Computer Vision, 1999, pp. 1150-1157, doi:10.1109/iccv.1999.790410.
[22]Bay, Herbert, et al. “Speeded-Up Robust Features (SURF).” Computer Vision and Image Understanding, vol. 110, no. 3, 2008, pp. 346–359., doi:10.1016/j.cviu.2007.09.014.
[23]Rublee, Ethan, et al. “ORB: An Efficient Alternative to SIFT or SURF.” 2011 International Conference on Computer Vision, 2011, doi:10.1109/iccv.2011.6126544.
[24]Shi, Qiaoqiao, et al. “Deep CNN With Multi-Scale Rotation Invariance Features for Ship Classification.” IEEE Access, vol. 6, 2018, pp. 38656–38668., doi:10.1109/access.2018.2853620.
[25]Li, Wenkai, et al. “Integrated Localization and Recognition for Inshore Ships in Large Scene Remote Sensing Images.” IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 6, 2017, pp. 936–940., doi:10.1109/lgrs.2017.2688357.
[26]Zhu, Ji-Wei, et al. “An Improved Shape Contexts Based Ship Classification in SAR Images.” Remote Sensing, vol. 9, no. 2, 2017, p. 145., doi:10.3390/rs9020145.
[27]Xu, Yongzheng, et al. “Car Detection from Low-Altitude UAV Imagery with the Faster R-CNN.” Journal of Advanced Transportation, 2017, pp. 1–10., doi:10.1155/2017/2823617.